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This paper presents a new adaptive random weighting cubature Kalman filtering method for nonlinear state estimation. This
method adopts the concept of random weighting to address the problem that the cubature Kalman filter (CKF) performance
is sensitive to system noise. It establishes random weighting theories to estimate system noise statistics and predicted state and
measurement together with their associated covariances. Subsequently, it adaptively adjusts the weights of cubature points based
on the randomweighting estimations to improve the prediction accuracy, thus restraining the disturbances of systemnoises on state
estimation. Simulations and comparison analysis demonstrate the improved performance of the proposed method for nonlinear
state estimation.

1. Introduction

Since navigation systems generally involve nonlinear char-
acteristics, nonlinear filtering is a popular research topic in
navigation and positioning. So far, various nonlinear filtering
methods have been studied for spacecraft navigation. The
extended Kalman filter (EKF) is a traditional nonlinear
filtering method based on the first-order Taylor term of
nonlinear functions [1, 2]. It maintains the computational
efficiency of the linear Kalman filter. However, since it
neglects higher-order terms of the nonlinear system model,
EKF suffers from the degradation of estimation accuracy
[3, 4].TheunscentedKalman filter (UKF) conducts nonlinear
state estimation in the context of control theory, where a finite
number of sigma points are used to propagate the probability
of state distribution through nonlinear system dynamics [5–
8]. In addition to the improved accuracy comparing to EKF,
UKF has the merits such as simplicity in realization, high
filtering precision, and good convergence [9–12]. However,
UKF requires the a priori statistical characteristics of system
noise to be precisely known. In practical applications, due to
uncertainties in the dynamic environment, it is difficult to

accurately describe noise statistics, leading to biased or even
divergent filtering solutions [13–15].

In the recent ten years, the cubature Kalman filter (CKF)
has received a great attention in nonlinear filtering [16, 17].
Based on the cubature rules, thismethod adopts a set of cuba-
ture points evaluated via nonlinear functions to approximate
the Gaussian integration [18, 19]. Similar to UKF, CKF does
not require the linearization of the nonlinear model and the
calculation of Jacobianmatrix, thus overcoming the problems
caused by linear truncation such as poor positioning accuracy
and error divergence. Different fromUKF,CKFhas a stronger
nonlinearity due to the use of cubature points. However, CKF
requires exact information on the statistical characteristics of
system noise [20]. If the statistical characteristics of system
noise are not known exactly, the CKF filtering solution will
be deteriorated.

The random weighting is a statistical method with high
estimation accuracy and low computational burden [21, 22].
This method can handle the calculation of large sample size
without requiring the accurate distributions of model param-
eters. It has been used to solve many problems, for example,
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multisensor data fusion [23–25], parameter estimation [26],
M-test in linearmodels [27], analysis of asymptotic properties
of function distribution [28], and dynamic navigation and
positioning [29]. However, there has been very limited
research onutilizing the randomweightingmethodwithCKF
for spacecraft navigation.

This paper presents a new adaptive random weighting
cubature Kalman filter (ARWCKF) by adopting the concept
of random weighting to address the limitation that the
CKF performance is sensitive to system noise. This method
constructs random weighting estimations for system noise
statistics, as well as predicted state and measurement vectors
and their associated covariances. Based on the random
weighting estimations, it adaptively adjusts the weights of
cubature points to inhibit the disturbances of system noises
on state estimation, leading to improved filtering robustness.
Simulations and comparisonswithCKF have been conducted
to evaluate the performance of the proposed ARWCKF.

2. Concept of Random Weighting Methods

Denote 𝑋1, 𝑋2, . . . , 𝑋𝑛 as a series of random variables in
independent and identical distribution, and the common dis-
tribution function as𝐹(𝑥).Then, the corresponding empirical
distribution function can be defined as

𝐹𝑛 (𝑥) = 1𝑛
𝑛∑
𝑖=1

𝐼(𝑋𝑖≤𝑥) (1)

where 𝐼(𝑋𝑖<𝑥) is the indicator function.
The random weighted estimation of 𝐹𝑛(𝑥) can be defined

as

𝐻𝑛 (𝑥) = 𝑛∑
𝑖=1

𝜆𝑖𝐼(𝑋𝑖<𝑥) (2)

where (𝜆1, 𝜆2, . . . , 𝜆𝑛) represents the randomweighted vector
subject to Dirichlet distribution D(1, 1, . . . , 1), i.e., ∑𝑛

𝑖=1 𝜆𝑖 =1, and the joint density function of (𝜆1, 𝜆2, . . . , 𝜆𝑛−1) is𝑓(𝜆1, 𝜆2, . . . , 𝜆𝑛−1) = Γ(𝑛) with (𝜆1, 𝜆2, . . . , 𝜆𝑛−1) ∈ D𝑛−1

and D𝑛−1 = {(𝜆1, 𝜆2, . . . , 𝜆𝑛−1) : 𝜆𝑘 ≥ 0, 𝑘 = 1, . . . , 𝑛 −1, ∑𝑛−1
𝑘=1 𝜆𝑖 ≤ 1}.

3. Nonlinear System Models

Consider the following nonlinear discrete-time system:

𝑥𝑘+1 = 𝑓𝑘 (𝑥𝑘) +𝑊𝑘

𝑧𝑘 = ℎ𝑘 (𝑥𝑘) +𝑉𝑘 (3)

where 𝑥𝑘 ∈ R𝑛 is the state vector at epoch 𝑘, 𝑧𝑘 ∈ R𝑚

is the measurement vector, 𝑊𝑘 ∈ 𝑅𝑛 is the system process
noise,𝑉𝑘 ∈ 𝑅𝑚 is the measurement noise,𝑊𝑘 and𝑉𝑘 are the
Gaussian white noises, 𝑓(⋅) is the nonlinear system function,
and ℎ(⋅) is the nonlinear measurement function.

System process noise𝑊𝑘 and measurement noise 𝑉𝑘 are
assumed to be the uncorrelated Gaussian white noises of
constant statistical properties; i.e.,

𝐸 [𝑊𝑘] = 𝑞
𝐸 [𝑉𝑘] = 𝑟

cov (𝑊𝑘,𝑊T
𝑗 ) = E [(𝑊𝑘 − 𝑞) (𝑊𝑗 − 𝑞)T] = 𝑄𝛿𝑘𝑗

cov (𝑉𝑘,𝑉T𝑗 ) = 𝐸 [(𝑉𝑘 − 𝑟) (𝑉𝑗 − 𝑟)T] = 𝑅𝛿𝑘𝑗
cov (𝑊𝑘,𝑉T𝑗 ) = 0

(4)

where cov(⋅) is the covariance function, 𝑄 ≥ 0 and 𝑅 > 0
are the noise intensity matrices, and 𝛿𝑘𝑗 is the 𝐾𝑟𝑜𝑛𝑒𝑐𝑘𝑒𝑟-𝛿
function.

Let

𝑊𝑘 = 𝑞 + 𝜇𝑘
𝑉𝑘 = 𝑟 + 𝜂𝑘

⇓
𝜇𝑘 =𝑊𝑘 − 𝑞
𝜂𝑘 = 𝑉𝑘 − 𝑟

(5)

Substituting (5) into (3), the nonlinear system model can
be expressed as

𝑥𝑘+1 = 𝑓𝑘 (𝑥𝑘) + 𝑞 + 𝜇𝑘
𝑧𝑘 = ℎ𝑘 (𝑥𝑘) + 𝑟 + 𝜂𝑘 (6)

where 𝜇𝑘 and 𝜂𝑘 are the Gaussian white noises with zero
means and variances𝑄 and 𝑅, respectively.

4. Analysis of Cubature Kalman Filter

In order to improve the filtering performance of CKF, let us
briefly review the filtering procedure of CKF, which is given
as follows.

(i) Initialize State Estimate 𝑥̂0 and Its Associated Error Covari-
ance 𝑃0

𝑥̂0 = 𝐸 [𝑥0]
𝑃0 = cov (𝑥0,𝑥T0 ) = 𝐸 [(𝑥0 − 𝑥̂0) (𝑥0 − 𝑥̂0)T] (7)

where 𝑥0 obeys the Gaussian distribution.

(ii) Calculation of Cubature Points. Assume the posterior den-
sity function at epoch 𝑘−1 is 𝑝(𝑥𝑘−1) = 𝑁(𝑥̂𝑘−1|𝑘−1,𝑃𝑘−1|𝑘−1).
By Cholesky decomposition, the error covariance 𝑃𝑘−1|𝑘−1 at
epoch 𝑘−1 can bewritten as𝑃𝑘−1|𝑘−1 = 𝑆𝑘−1|𝑘−1𝑆T𝑘−1|𝑘−1, where
𝑆𝑘−1|𝑘−1 is a diagonal matrix at epoch 𝑘 − 1. The cubature
points can be calculated by 𝑥𝑖,𝑘−1|𝑘−1 = 𝑆𝑘−1|𝑘−1𝜉𝑖 + 𝑥̂𝑘−1|𝑘−1,
where 𝑥𝑖,𝑘−1|𝑘−1 (𝑖 = 1, 2, . . . , 𝑚) is the system state of the 𝑖th
cubature point at epoch 𝑘 − 1.
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Cubature points set [𝜉𝑖, 𝜔𝑖] can be represented as

𝜉𝑖 = √𝑚2 [1]𝑖
𝜔𝑖 = 1𝑚, 𝑖 = 1, . . . , 𝑚. 𝑚 = 2𝑛

(8)

where 𝑚 is the number of the cubature points and is set to
twice of the state dimension, [1] is a set of points, and [1]𝑖 is
the 𝑖-th point of [1].
(iii) State Prediction. The estimated state of the 𝑖th cubature
point from epoch 𝑘 − 1 to 𝑘 is described as

𝑥∗𝑖,𝑘|𝑘−1 = 𝑓 (𝑥𝑖,𝑘−1|𝑘−1) (9)

Based on (9), the predicted state of the ith cubature point
from epoch 𝑘 − 1 to 𝑘 is

𝑥̂𝑘|𝑘−1 = 1𝑚
𝑚∑
𝑖=1

𝑥∗𝑖,𝑘|𝑘−1 (10)

and its covariance is 𝑃𝑘|𝑘−1 = (1/𝑚)∑𝑚
𝑖=1 𝑥

∗
𝑖,𝑘|𝑘−1𝑥

∗T
𝑖,𝑘|𝑘−1 −

𝑥̂𝑘|𝑘−1𝑥̂
T
𝑘|𝑘−1 +𝑄𝑘−1.

Let

𝑥̂𝑘+1|𝑘 = 𝑓𝑘 (𝑥𝑘)󵄨󵄨󵄨󵄨𝑥𝑘←󳨀𝑥̂𝑘
+ 𝑞 = 𝐸 [𝑓𝑘 (𝑥𝑘) | 𝑧𝑘] + 𝑞 (11)

and

𝜌𝑘 = 𝑓𝑘 (𝑥𝑘) − 𝑓𝑘 (𝑥𝑘)󵄨󵄨󵄨󵄨𝑥𝑘←󳨀𝑥̂𝑘

= 𝑓𝑘 (𝑥𝑘) − 𝐸 [𝑓𝑘 (𝑥𝑘) | 𝑧𝑘] (12)

where𝑓𝑘(𝑥𝑘)|𝑥𝑘←󳨀𝑥̂𝑘
is the posterior mean of the state estima-

tion 𝑥̂𝑘, which is propagated by the nonlinear system function𝑓𝑘(⋅).
Then

𝑃𝑘+1|𝑘 = 𝐸 (𝜌𝑘𝜌T𝑘) +𝑄 (13)

(iv) Observation Update. The estimated observation of the 𝑖th
cubature point from epoch 𝑘 − 1 to 𝑘 is represented by

𝑧∗𝑖 ,𝑘|𝑘−1 = ℎ (𝑥𝑖,𝑘|𝑘−1) (14)

Based on (14), the predicted observation of the 𝑖th
cubature point from epoch 𝑘−1 to epoch 𝑘 can be represented
by

𝑧̂𝑘|𝑘−1 = 1𝑚
𝑚∑
𝑖=1

𝑧∗𝑖 ,𝑘|𝑘−1 (15)

and its autocovariance and cross-covariance matrices are
𝑃𝑧𝑧,𝑘|𝑘−1 = (1/𝑚)∑𝑚

𝑖=1 𝑧
∗
𝑖 ,𝑘|𝑘−1𝑧

∗
𝑖
T
,𝑘|𝑘−1 − 𝑧̂𝑘|𝑘−1𝑧̂T𝑘|𝑘−1 +𝑅𝑘 and

𝑃𝑥𝑧,𝑘|𝑘−1 = (1/𝑚)∑𝑚
𝑖=1 𝑥𝑖,𝑘|𝑘−1𝑧

∗T
𝑖 ,𝑘|𝑘−1 − 𝑥̂𝑘|𝑘−1𝑧̂T𝑘|𝑘−1.

Let

𝑧̂𝑘|𝑘−1 = ℎ𝑘+1 (𝑥𝑘+1)󵄨󵄨󵄨󵄨𝑥𝑘+1←󳨀𝑥𝑘+1|𝑘
+ 𝑟

= 𝐸 [ℎ𝑘+1 (𝑥𝑘+1) | 𝑧𝑘] + 𝑟 (16)

and

𝜁𝑘 = ℎ𝑘+1 (𝑥𝑘+1) − ℎ𝑘+1 (𝑥𝑘+1)󵄨󵄨󵄨󵄨𝑥𝑘+1←󳨀𝑥𝑘+1|𝑘

= ℎ𝑘+1 (𝑥𝑘+1) − 𝐸 [ℎ𝑘+1 (𝑥𝑘+1) | 𝑧𝑘] (17)

where ℎ𝑘+1(𝑥𝑘+1)|𝑥𝑘+1←󳨀𝑥𝑘+1|𝑘
is the posterior mean of the

state prediction 𝑥̂𝑘+1|𝑘, which is propagated by the nonlinear
measurement function ℎ𝑘+1(⋅), and 𝑥̃𝑘+1|𝑘 = 𝑥𝑘+1 − 𝑥̂𝑘+1|𝑘.

Then

𝑃𝑧̃𝑘+1 = 𝐸 (𝜁𝑘+1𝜁T𝑘+1) + 𝑅
𝑃𝑥𝑘+1𝑧̃𝑘+1 = 𝐸 (𝑥̃𝑘+1|𝑘𝜁T𝑘+1) (18)

(v) State Update

𝑥̂𝑘+1 = 𝑥̂𝑘+1|𝑘 +𝐾𝑘+1 (𝑧𝑘+1 − 𝑧̂𝑘+1|𝑘)
𝐾𝑘+1 = 𝑃𝑥𝑘+1𝑧̃𝑘+1𝑃−1𝑧̃𝑘+1
𝑃𝑘+1 = 𝑃𝑘+1|𝑘 −𝐾𝑘+1𝑃𝑧̃𝑘+1𝐾T𝑘+1

(19)

It can be seen from (11), (13), (16), and (18) that CKF requires
the statistical characteristics of the system and measured
noises to be known. However, in engineering practice, it
is difficult to accurately know the statistical characteristics
of the system and measurement noises, thus degrading the
filtering accuracy. In the following, we shall discuss how to
adaptively estimate the system noise and measurement noise
via the concept of random weighting.

5. Adaptive Random Weighting Estimation of
Noise Statistics

5.1. Estimation of Noise Statistics. Denote the maximum pos-
terior estimates of 𝑞,𝑄, 𝑟, and𝑅by 𝑞̂, 𝑄̂, 𝑟̂, and 𝑅̂, respectively,
and the posterior estimate of state 𝑥𝑗 (𝑗 = 0, 1, . . . , 𝑘 +1) by 𝑥̂𝑗|𝑘+1. Assuming 𝐽 = 𝑝[𝑥𝑘+1, 𝑞,𝑄, 𝑟,𝑅, 𝑧𝑘+1] is a joint
probability density function, we have [30]

𝐽 = 𝑝 [𝑥𝑘+1, 𝑞,𝑄, 𝑟,𝑅, 𝑧𝑘+1]
= 𝑝 [𝑧𝑘+1 | 𝑥𝑘+1, 𝑞,𝑄, 𝑟,𝑅] 𝑝 [𝑥𝑘+1 | 𝑞,𝑄, 𝑟,𝑅]
⋅ 𝑝 [𝑞,𝑄, 𝑟,𝑅]

(20)

where 𝑝[𝑞,𝑄, 𝑟,𝑅] can be obtained from prior information,
and thus it is considered as a constant.

Consider the conditional density function

𝐽∗ = 𝑝 [𝑥𝑘+1, 𝑞,𝑄, 𝑟,𝑅 | 𝑧𝑘+1]
= 𝑝 [𝑥𝑘+1, 𝑞,𝑄, 𝑟,𝑅, 𝑧𝑘+1]𝑝 [𝑧𝑘+1]

(21)

where 𝑥𝑘+1 = {𝑥0, 𝑥1, . . . , 𝑥𝑘+1} and 𝑧𝑘+1 = {𝑧0, 𝑧1, . . . , 𝑧𝑘+1}.
Consequently, the maximum posterior estimates 𝑞̂, 𝑄̂,
𝑟̂, and 𝑅̂ can be obtained by solving for the conditional
density function 𝐽∗. It is evident that the maximum posterior
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estimates 𝑞̂, 𝑄̂, 𝑟̂, and 𝑅̂ are not related to the denominator𝑝[𝑧𝑘+1] in (21). Therefore, the problem of calculating 𝑞̂, 𝑄̂,
𝑟̂, and 𝑅̂ can be equivalently obtained by maximizing the
following density function 𝑝[𝑥𝑘+1, 𝑞,𝑄, 𝑟,𝑅, 𝑧𝑘+1] in (21).

According to the multiplication theorem of conditional
probability, we can obtain [30]

𝑝 [𝑥𝑘+1 | 𝑞,𝑄, 𝑟,𝑅] = 𝑝 [𝑥0] 𝑘∏
𝑗=0

𝑝 [𝑥𝑗+1 | 𝑥𝑗, 𝑞,𝑄]
= 1

(2𝜋)𝑛/2 󵄨󵄨󵄨󵄨𝑃0󵄨󵄨󵄨󵄨1/2 exp {−12 󵄩󵄩󵄩󵄩𝑥0 − 𝑥̂0󵄩󵄩󵄩󵄩2𝑃−10 }

× 𝑘∏
𝑗=0

1(2𝜋)𝑛/2 |𝑄|1/2 exp {−12 󵄩󵄩󵄩󵄩󵄩𝑥𝑗+1 − 𝑓𝑗 (𝑥𝑗)
− 𝑞󵄩󵄩󵄩󵄩󵄩2𝑄−1} = 1(2𝜋)𝑛/2+𝑛(𝑘+1)/2 󵄨󵄨󵄨󵄨𝑃0󵄨󵄨󵄨󵄨−1/2 |𝑄|−(𝑘+1)/2

⋅ exp{{{−12 (󵄩󵄩󵄩󵄩𝑥0 − 𝑥̂0󵄩󵄩󵄩󵄩2𝑃−10
+ 𝑘∑

𝑗=0

󵄩󵄩󵄩󵄩󵄩𝑥𝑗+1 − 𝑓𝑗 (𝑥𝑗) − 𝑞󵄩󵄩󵄩󵄩󵄩2𝑄−1)}}} = 𝐶1
󵄨󵄨󵄨󵄨𝑃0󵄨󵄨󵄨󵄨−1/2

⋅ |𝑄|−(𝑘+1)/2 exp{{{−12 (󵄩󵄩󵄩󵄩𝑥0 − 𝑥̂0󵄩󵄩󵄩󵄩2𝑃−10
+ 𝑘∑

𝑗=0

󵄩󵄩󵄩󵄩󵄩𝑥𝑗+1 − 𝑓𝑗 (𝑥𝑗) − 𝑞󵄩󵄩󵄩󵄩󵄩2𝑄−1)}}}

(22)

where 𝑛 is the state dimension, 𝐶1 = 1/(2𝜋)𝑛(𝑘+2)/2 is a
constant, and |A| is the determinant of A.

Assume that themeasurements𝑧1, 𝑧2, . . . , 𝑧𝑘+1 are known
and are independent of each other. Then,

𝑝 [𝑧𝑘+1 | 𝑥𝑘+1, 𝑞,𝑄, 𝑟,𝑅] = 𝑘∏
𝑗=0

𝑝 [𝑧𝑗+1 | 𝑥𝑗+1, 𝑟,𝑅]

= 𝑘∏
𝑗=0

1(2𝜋)𝑚/2 |𝑅|1/2
⋅ exp {−12 󵄩󵄩󵄩󵄩󵄩𝑧𝑗+1 − ℎ𝑗+1 (𝑥𝑗+1) − 𝑟󵄩󵄩󵄩󵄩󵄩2𝑅−1}
= 𝐶2 |𝑅|(𝑘+1)/2
⋅ exp{{{−12

𝑘∑
𝑗=0

󵄩󵄩󵄩󵄩󵄩𝑧𝑗+1 − ℎ𝑗+1 (𝑥𝑗+1) − 𝑟󵄩󵄩󵄩󵄩󵄩2𝑅−1}}}

(23)

where 𝑚 is the measurement dimension and 𝐶2 =1/(2𝜋)𝑚(𝑘+1)/2 is a constant.

Substituting (22) and (23) into (20) yields

𝐽 = 𝐶1𝐶2
󵄨󵄨󵄨󵄨𝑃0󵄨󵄨󵄨󵄨−1/2 ⋅ |𝑄|−(𝑘+1)/2 ⋅ |𝑅|−(𝑘+1)/2 ⋅ 𝑝 [𝑞,𝑄, 𝑟,

𝑅] ⋅ exp{{{−12 [
[
󵄩󵄩󵄩󵄩𝑥0 − 𝑥̂0󵄩󵄩󵄩󵄩2𝑃−10

+ 𝑘∑
𝑗=0

󵄩󵄩󵄩󵄩󵄩𝑥𝑗+1 − 𝑓𝑗 (𝑥𝑗) − 𝑞󵄩󵄩󵄩󵄩󵄩2𝑄−1

+ 𝑘∑
𝑗=0

󵄩󵄩󵄩󵄩󵄩𝑧𝑗+1 − ℎ𝑗+1 (𝑥𝑗+1) − 𝑟󵄩󵄩󵄩󵄩󵄩2𝑅−1]]
}}}

= 𝐶 |𝑄|−(𝑘+1)/2 ⋅ |𝑅|−(𝑘+1)/2
× exp

{{{−12 [
[

𝑘∑
𝑗=0

󵄩󵄩󵄩󵄩󵄩𝑥𝑗+1 − 𝑓𝑗 (𝑥𝑗) − 𝑞󵄩󵄩󵄩󵄩󵄩2𝑄−1

+ 𝑘∑
𝑗=0

󵄩󵄩󵄩󵄩󵄩𝑧𝑗+1 − ℎ𝑗+1 (𝑥𝑗+1) − 𝑟󵄩󵄩󵄩󵄩󵄩2𝑅−1]]
}}}

(24)

where𝐶 = 𝐶1𝐶2|𝑃0|−1/2𝑝[𝑞,𝑄, 𝑟,𝑅] exp{−(1/2)‖𝑥0−𝑥̂0‖2𝑃−10 }.
Taking the logarithm on both sides of (24) yields

ln 𝐽 = −𝑘 + 12 ln |𝑄| − 𝑘 + 12 ln |𝑅|
− 12

𝑘∑
𝑗=0

󵄩󵄩󵄩󵄩󵄩𝑥𝑗+1 − 𝑓𝑗 (𝑥𝑗) − 𝑞󵄩󵄩󵄩󵄩󵄩2𝑄−1
− 𝑘∑

𝑗=0

󵄩󵄩󵄩󵄩󵄩𝑧𝑗+1 − ℎ𝑗+1 (𝑥𝑗+1) − 𝑟󵄩󵄩󵄩󵄩󵄩2𝑅−1 + ln𝐶
(25)

Let 𝜕 ln 𝐽𝜕𝑞
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑞=𝑞̂𝑘+1 = 0

𝜕 ln 𝐽𝜕𝑄
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑄=𝑄̂𝑘+1 = 0

(26)

The maximum posterior estimates 𝑞̂ and 𝑄̂ can be obtained
as (see Appendices A and B for details)

𝑞̂𝑘+1 = 1𝑘 + 1
𝑘∑
𝑗=0

[ 𝑥̂𝑗+1|𝑘+1 − 𝑓𝑗 (𝑥𝑗)󵄨󵄨󵄨󵄨󵄨𝑥𝑗←󳨀𝑥̂𝑗|𝑘+1
]

𝑄̂𝑘+1 = 1𝑘 + 1
𝑘∑
𝑗=0

{[ 𝑥̂𝑗+1|𝑘+1 − 𝑓𝑗 (𝑥𝑗)󵄨󵄨󵄨󵄨󵄨𝑥𝑗←󳨀𝑥̂𝑗|𝑘+1
− 𝑞]

⋅ [ 𝑥̂𝑗+1|𝑘+1 − 𝑓𝑗 (𝑥𝑗)󵄨󵄨󵄨󵄨󵄨𝑥𝑗←󳨀𝑥̂𝑗|𝑘+1
− 𝑞]T}

(27)

where 𝑓𝑗(𝑥𝑗)|𝑥𝑗←󳨀𝑥̂𝑗|𝑘+1
is the posterior mean of state estimate

𝑥̂𝑗, which is propagated through nonlinear system function𝑓𝑗(⋅).
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Similarly, let

𝜕 ln 𝐽𝜕𝑟
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟=𝑟̂𝑘+1 = 0

𝜕 ln 𝐽𝜕𝑅
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑅=𝑅̂𝑘+1 = 0

(28)

Themaximum posterior estimates 𝑟̂ and 𝑅̂ can be obtained as
(see Appendices C and D for details)

𝑟̂𝑘+1 = 1𝑘 + 1
𝑘∑
𝑗=0

[𝑧𝑗+1 − ℎ𝑗+1 (𝑥𝑗+1)󵄨󵄨󵄨󵄨󵄨𝑥𝑗+1←󳨀𝑥̂𝑗+1|𝑘+1
]

𝑅̂𝑘+1 = 1𝑘 + 1
⋅ 𝑘∑
𝑗=0

{[𝑧𝑗+1 − ℎ𝑗+1 (𝑥𝑗+1)󵄨󵄨󵄨󵄨󵄨𝑥𝑗+1←󳨀𝑥̂𝑗+1|𝑘+1
− 𝑟]

⋅ [𝑧𝑗+1 − ℎ𝑗+1 (𝑥𝑗+1)󵄨󵄨󵄨󵄨󵄨𝑥𝑗+1←󳨀𝑥̂𝑗+1|𝑘+1
− 𝑟]T}

(29)

where ℎ𝑗+1(𝑥𝑗+1)|𝑥𝑗+1←󳨀𝑥̂𝑗+1|𝑗
is the posterior mean of one-step

state prediction 𝑥̂𝑗+1|𝑗 which is propagated through nonlinear
measurement function ℎ𝑗+1(⋅).

In (27) and (29), replacing the filtering estimations 𝑥̂𝑗|𝑘+1
and 𝑥̂𝑗+1|𝑘+1 with the estimations 𝑥̂𝑗 and 𝑥̂𝑗+1 and replacing𝑓𝑗(𝑥𝑗)|𝑥𝑗←󳨀𝑥̂𝑗|𝑘+1

+ 𝑞 with state prediction 𝑥̂𝑗+1|𝑗, we have

𝑞̂𝑘+1 = 1𝑘 + 1
𝑘∑
𝑗=0

{𝑥̂𝑗+1 − 𝐸 [𝑓𝑗 (𝑥𝑗) | 𝑧𝑘]}

𝑄̂𝑘+1 = 1𝑘 + 1
𝑘∑
𝑗=0

{[𝑥̂𝑗+1 − 𝐸 [𝑓𝑗 (𝑥𝑗) | 𝑧𝑘] − 𝑞]
⋅ [𝑥̂𝑗+1 − 𝐸 [𝑓𝑗 (𝑥𝑗) | 𝑧𝑘] − 𝑞]T} = 1𝑘 + 1
⋅ 𝑘∑
𝑗=0

{[𝑥̂𝑗+1 − 𝑥̂𝑗+1|𝑗] [𝑥̂𝑗+1 − 𝑥̂𝑗+1|𝑗]T}

𝑟̂𝑘+1 = 1𝑘 + 1
𝑘∑
𝑗=0

{𝑧𝑗+1 − 𝐸 [ℎ𝑗+1 (𝑥𝑗+1) | 𝑧𝑘]}

𝑅̂𝑘+1 = 1𝑘 + 1
𝑘∑
𝑗=0

{[𝑧𝑗+1 − 𝐸 [ℎ𝑗+1 (𝑥𝑗+1) | 𝑧𝑘] − 𝑟]
⋅ [𝑧𝑗+1 − 𝐸 [ℎ𝑗+1 (𝑥𝑗+1) | 𝑧𝑘] − 𝑟]T} = 1𝑘 + 1
⋅ 𝑘∑

𝑗

{[𝑧𝑗+1 − 𝑧̂𝑗+1|𝑗] [𝑧𝑗+1 − 𝑧̂𝑗+1|𝑗]T}

(30)

where 𝑓𝑘(𝑥𝑘)|𝑥𝑘←󳨀𝑥̂𝑘
= 𝐸[𝑓𝑘(𝑥𝑘) | 𝑧𝑘] andℎ𝑘+1(𝑥𝑘+1)|𝑥𝑘+1←󳨀𝑥̂𝑘+1|𝑘

= 𝐸[ℎ𝑘+1(𝑥𝑘+1) | 𝑧𝑘].

Accordingly, the random weighted estimations of 𝑞𝑘+1,
𝑄𝑘+1, 𝑟𝑘+1, and 𝑅𝑘+1 can be represented as

𝑞̂∗𝑘+1 = 𝑘∑
𝑗=0

𝜆𝑗 {𝑥̂𝑗+1 − 𝐸 [𝑓𝑗 (𝑥𝑗) | 𝑧𝑘]}

𝑄̂
∗

𝑘+1 = 𝑘∑
𝑗=0

𝜆𝑗 {[𝑥̂𝑗+1 − 𝐸 [𝑓𝑗 (𝑥𝑗) | 𝑧𝑘] − 𝑞]
⋅ [𝑥̂𝑗+1 − 𝐸 [𝑓𝑗 (𝑥𝑗) | 𝑧𝑘] − 𝑞]T}
= 𝑘∑

𝑗=0

𝜆𝑗 {[𝑥̂𝑗+1 − 𝑥̂𝑗+1|𝑗] [𝑥̂𝑗+1 − 𝑥̂𝑗+1|𝑗]T}

𝑟̂∗𝑘+1 = 𝑘∑
𝑗=0

𝜆𝑗 {𝑧𝑗+1 − 𝐸 [ℎ𝑗+1 (𝑥𝑗+1) | 𝑧𝑘]}

𝑅̂
∗

𝑘+1 = 𝑘∑
𝑗=0

𝜆𝑗 {[𝑧𝑗+1 − 𝐸 [ℎ𝑗+1 (𝑥𝑗+1) | 𝑧𝑘] − 𝑟]
⋅ [𝑧𝑗+1 − 𝐸 [ℎ𝑗+1 (𝑥𝑗+1) | 𝑧𝑘] − 𝑟]T}
= 𝑘∑

𝑗=0

𝜆𝑗 {[𝑧𝑗+1 − 𝑧̂𝑗+1|𝑗] [𝑧𝑗+1 − 𝑧̂𝑗+1|𝑗]T}

(31)

where 𝜆𝑗 (j = 1, 2, . . . , k) are the random weighting factors.

5.2. Determination of Random Weighting Factors. Suppose
the estimation and prediction of the state at epoch 𝑘 − 𝑗 (𝑗 =1, 2, . . . , 𝑛) are 𝑥̂𝑘−𝑗 and 𝑥̂𝑘−𝑗/𝑘−1−𝑗, respectively. The residual
vector of the prediction is assumed to be Δ𝑥𝑘−𝑗, which is
expressed as

Δ𝑥𝑘−𝑗 = 𝑥̂𝑘−𝑗 − 𝑥̂𝑘−𝑗/𝑘−1−𝑗 (𝑗 = 1, 2, . . . , 𝑛) (32)

The residual vector of the measurement is expressed as

Δ𝑧𝑘−𝑗 = 𝑧̂𝑘−𝑗 − 𝑧𝑘−𝑗 (𝑗 = 1, 2, . . . , 𝑛) (33)

where 𝑧̂𝑘−𝑗 = ℎ𝑘(𝑥̂𝑘−𝑗).
When the statistics of the system process noise are

changed, the contribution of the state prediction 𝑥̂𝑘−𝑗/𝑘−1−𝑗
to the state estimate will decrease, leading the prediction to
be biased. As a result, the magnitude of the residual vector
of the state prediction Δ𝑥𝑘−𝑗 will increase. Similarly, when
the statistics of the measurement noise are changed, the
measurement residualΔ𝑧̂𝑘−𝑗 will be biased and its magnitude
will increase.

In order to capture the changes of the system noises, the
random weighting factors are required to satisfy

𝜆𝑗 ∝ 󵄩󵄩󵄩󵄩󵄩Δ𝑥𝑘−𝑗󵄩󵄩󵄩󵄩󵄩 ⋅ 󵄩󵄩󵄩󵄩󵄩Δ𝑧𝑘−𝑗󵄩󵄩󵄩󵄩󵄩 (𝑗 = 1, 2, . . . , 𝑛) (34)

where ‖Δ𝑥𝑘‖ = √Δ𝑥T
𝑘
⋅ Δ𝑥𝑘, ‖Δ𝑧𝑘‖ = √Δ𝑧T

𝑘
⋅ Δ𝑧𝑘, and the

symbol “∝” indicates the proportional operation.
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Equation (34) implies that the larger the value of ‖Δ𝑥𝑘‖ ⋅‖Δ𝑧𝑘‖ is, the larger the weighting factor is.
Therefore, the random weighting factors 𝜆𝑗 can be deter-

mined as follows.
Let

𝑤𝑗 = 󵄩󵄩󵄩󵄩󵄩Δ𝑥𝑘−𝑗󵄩󵄩󵄩󵄩󵄩 ⋅ 󵄩󵄩󵄩󵄩󵄩Δ𝑧𝑘−𝑗󵄩󵄩󵄩󵄩󵄩 (𝑗 = 1, 2, . . . , 𝑛) (35)

Normalizing 𝑤𝑗 (𝑗 = 1, 2, . . . , 𝑛), the random weighting
factors are obtained as

𝜆𝑗 = 𝑤𝑗∑𝑛
𝑗=1 𝑤𝑗

(𝑗 = 1, 2, . . . , 𝑛) (36)

The random weighted estimation of noise statistics enables
adaptively adjusting the weights of the cubature points to
improve the accuracy of the state prediction and measure-
ment prediction and further inhibit the interference of system
process noise and measurement noise on state estimation,
leading to improved filtering accuracy and reliability.

6. Adaptive Random Weighting Cubature
Kalman Filter

Assume the posterior density function at epoch 𝑘 − 1 is
𝑝(𝑥𝑘−1) = 𝑁(𝑥̂𝑘−1|𝑘−1,𝑃𝑘−1|𝑘−1). The ARWCKF algorithm
for the nonlinear system defined by (6) can be described as
follows.

(i) Initialize State Estimate 𝑥̂0 and Error Covariance 𝑃0

𝑥̂0 = 𝐸 [𝑥0]
𝑃0 = cov (𝑥0,𝑥T0 ) = 𝐸 [(𝑥0 − 𝑥̂0) (𝑥0 − 𝑥̂0)T] (37)

(ii) Time Update and Calculation of Cubature Points. Denote
the covariance of state prediction at time 𝑘−1 by 𝑃𝑘−1|𝑘−1. By
Cholesky decomposition [16, 17], 𝑃𝑘−1|𝑘−1 can be written as

𝑃𝑘−1|𝑘−1 = 𝑆𝑘−1|𝑘−1𝑆T𝑘−1|𝑘−1 (38)

and the cubature points can be calculated by

𝑥𝑖,𝑘−1|𝑘−1 = 𝑆𝑘−1|𝑘−1𝜉𝑖 + 𝑥̂𝑘−1|𝑘−1 (39)

where 𝑥𝑖,𝑘−1|𝑘−1 (𝑖 = 1, 2, . . . , 𝑚) is the system state of the 𝑖th
cubature point at epoch 𝑘−1, and 𝑆𝑘−1|𝑘−1 is a diagonalmatrix
at time 𝑘 − 1.

Then, the estimated state of the 𝑖th cubature point from
epoch 𝑘 to 𝑘 − 1 can be written as

𝑥∗𝑖,𝑘|𝑘−1 = 𝑓 (𝑥𝑖,𝑘|𝑘−1) (40)

(iii) State Prediction. Based on (40), the predicted state of the𝑖th cubature point from epoch 𝑘 − 1 to 𝑘 is

𝑥̂𝑘|𝑘−1 = 1𝑚
𝑚∑
𝑖=1

𝑥∗𝑖,𝑘|𝑘−1 + 𝑞̂𝑘−1 (41)

Accordingly, the random weighted estimation of 𝑥̂𝑘|𝑘−1
can be written as

𝑥̂∗𝑘|𝑘−1 = 𝑚∑
𝑖=1

𝜆𝑖𝑥
∗
𝑖,𝑘|𝑘−1 + 𝑞̂∗𝑘−1 (42)

The covariance of the state prediction 𝑃𝑘|𝑘−1 is described
by

𝑃𝑘|𝑘−1 = 1𝑚
𝑚∑
𝑖=1

𝑥∗𝑖,𝑘|𝑘−1𝑥
∗𝑇
𝑖,𝑘|𝑘−1 − 𝑥̂𝑘|𝑘−1𝑥̂𝑇𝑘|𝑘−1 + 𝑄̂𝑘−1 (43)

Accordingly, the random weighted estimation of 𝑃𝑘|𝑘−1
can be written as

𝑃∗𝑘|𝑘−1 = 𝑚∑
𝑖=1

𝜆𝑖𝑥
∗
𝑖,𝑘|𝑘−1𝑥

∗T
𝑖,𝑘|𝑘−1 − 𝑥̂𝑘|𝑘−1𝑥̂T𝑘|𝑘−1 + 𝑄̂∗𝑘−1 (44)

(iv) Measurement Prediction. The estimated measurement of
the 𝑖th cubature point from epoch 𝑘− 1 to 𝑘 can be written as

𝑧∗𝑖 ,𝑘|𝑘−1 = ℎ (𝑥𝑖,𝑘|𝑘−1) (45)

The predicted measurement of the 𝑖th cubature point
from epoch 𝑘 − 1 to 𝑘 can be expressed as

𝑧̂𝑘|𝑘−1 = 1𝑚
𝑚∑
𝑖=1

𝑧∗𝑖,𝑘|𝑘−1 + 𝑟̂𝑘 (46)

Accordingly, the random weighted estimation of 𝑧̂𝑘|𝑘−1
can be written as

𝑧̂∗𝑘|𝑘−1 = 𝑚∑
𝑖=1

𝜆𝑖𝑧
∗
𝑖,𝑘|𝑘−1 + 𝑟̂∗𝑘 (47)

The autocovariance of the measurement prediction
𝑃𝑧𝑧,𝑘|𝑘−1 is described by

𝑃𝑧𝑧,𝑘|𝑘−1 = 1𝑚
𝑚∑
𝑖=1

𝑧∗𝑖,𝑘|𝑘−1𝑧
∗T
𝑖,𝑘|𝑘−1 − 𝑧̂𝑘|𝑘−1𝑧̂T𝑘|𝑘−1 + 𝑅̂𝑘 (48)

Accordingly, the random weighting estimation for the
autocovariance of the measurement prediction is

𝑃∗𝑧𝑧,𝑘|𝑘−1 = 𝑚∑
𝑖=1

𝜆𝑖 (𝑧∗𝑖,𝑘|𝑘−1𝑧∗T𝑖,𝑘|𝑘−1) − 𝑧̂𝑘|𝑘−1𝑧̂T𝑘|𝑘−1 + 𝑅̂∗𝑘 (49)

The cross-covariance of the measurement prediction
𝑃𝑥𝑧,𝑘|𝑘−1 is

𝑃𝑥𝑧,𝑘|𝑘−1 = 1𝑚
𝑚∑
𝑖=1

𝑥∗𝑖,𝑘|𝑘−1𝑧
∗T
𝑖,𝑘|𝑘−1 − 𝑥̂𝑘|𝑘−1𝑧̂T𝑘|𝑘−1 (50)

Accordingly, the random weighting estimation for the
cross-covariance of the measurement prediction is

𝑃∗𝑥𝑧,𝑘|𝑘−1 = 𝑚∑
𝑖=1

𝜆𝑖 (𝑥∗𝑖,𝑘|𝑘−1𝑧∗T𝑖,𝑘|𝑘−1) − 𝑥̂𝑘|𝑘−1𝑧̂T𝑘|𝑘−1 (51)
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(v) State Update. The filter gain at epoch 𝑘 is

𝐾𝑘 = 𝑃∗𝑥𝑧,𝑘|𝑘−1 (𝑃∗𝑧𝑧,𝑘|𝑘−1)−1 (52)

The state estimation at epoch 𝑘 is

𝑥̂𝑘|𝑘 = 𝑥̂∗𝑘|𝑘−1 +𝐾𝑘 (𝑧𝑘 − 𝑧̂∗𝑘|𝑘−1) (53)

The covariance estimation of the state error at epoch 𝑘 is

𝑃∗𝑘|𝑘 = 𝑃∗𝑘|𝑘−1 −𝐾𝑘𝑃∗𝑧𝑧,𝑘|𝑘𝐾T𝑘 (54)

From the above, it can be seen that the proposed
ARWCKF incorporates random weighting factors in CKF,
enabling us to adaptively refrain from the disturbances of
system noises by online adjusting randomweights to improve
the accuracy of state estimation. The ARWCKF algorithm is
shown in Figure 1.

7. Performance Evaluation and Discussion

Simulation trials were conducted to evaluate the effectiveness
of the proposed ARWCKF for a SINS/SRS (strap-down iner-
tial navigation system/spectrum red-shift) integrated navi-
gation system. The comparison analysis with CKF was also
conducted to demonstrate the improved performance of the
proposed ARWCKF for the SINS/SRS integrated navigation
system.

7.1. System State Model. Due to the high accuracy in the
velocity of SRS, the velocity error of SRS is much smaller
than that of SINS. Therefore, the velocity error of SRS is
assumed as a Gaussian white noise to reduce the dimension
of the SINS/SRS integrated navigation system. Accordingly,
the state vector of the SINS/SRS integrated navigation system
consists of SINS errors only.

The SINS/SRS integrated navigation system adopts the
inertial coordinate frame as the navigation frame. Its system
state vector is defined as

𝑋 (𝑡) = [𝛿V𝑥 𝛿V𝑦 𝛿V𝑧 𝛿𝑃𝑥 𝛿𝑃𝑦 𝛿𝑃𝑧 𝜓𝑥 𝜓𝑦 𝜓𝑧 𝜃𝑥 𝜃𝑦 𝜃𝑧 𝜁𝑥 𝜁𝑦 𝜁𝑧]T (55)

where (𝛿V𝑥, 𝛿V𝑦, 𝛿V𝑧), (𝛿𝑃𝑥, 𝛿𝑃𝑦, 𝛿𝑃𝑧), and (𝜓𝑥, 𝜓𝑦, 𝜓𝑧) are
the errors in velocity, position, and attitude from SINS;(𝜃𝑥, 𝜃𝑦, 𝜃𝑧) is the constant bias of the gyros; and (𝜁𝑥, 𝜁𝑦, 𝜁𝑧)
is the zero bias of the accelerometers.

The system state equation of the SINS/SRS integration is
described by

𝑋̇ (𝑡) = 𝑓 (𝑋 (𝑡)) + 𝐺 (𝑡)𝑊 (𝑡) (56)

where 𝑓(⋅) is the nonlinear function given by (57),𝑋(𝑡) is the
system state vector, and𝑊(𝑡) is the system noise.

𝑓 (𝑋 (𝑡))

=

[[[[[[[[[[[[[[[[[[[[[
[

𝐶−1𝜔 [(𝐼 − 𝐶𝑐𝑛) 𝜔̂𝑛
𝑖𝑛 + 𝐶𝑐𝑛𝛿𝜔𝑛

𝑖𝑛 − 𝐶𝑐𝑏𝛿𝜔𝑏
𝑖𝑏]

[𝐼 − (𝐶𝑐𝑛)T]𝐶𝑐𝑏𝑓̂𝑏𝑠𝑓 + (𝐶𝑐𝑛)T 𝐶𝑐𝑏𝛿𝑓𝑏𝑠𝑓− (2𝛿𝜔𝑛
𝑖𝑒 + 𝛿𝜔𝑛

𝑒𝑛) ×𝑉 − (2𝜔̂𝑛
𝑖𝑒 + 𝜔̂𝑛

𝑒𝑛) × 𝛿𝑉
+ (2𝜔𝑛

𝑖𝑒 + 𝜔𝑛
𝑒𝑛) × 𝛿𝑉 + 𝛿𝑔

V𝑦𝑅𝑀 + ℎ − (V𝑦 − 𝛿V𝑦)(𝑅𝑀 − 𝛿𝑅𝑀) + (ℎ − 𝛿ℎ)
V𝑥sec𝜑𝑅𝑁 + ℎ − (V𝑥 − 𝛿V𝑥) sec (𝜑 − 𝛿𝜑)(𝑅𝑁 − 𝛿𝑅𝑁) + (ℎ − 𝛿ℎ)𝛿V𝑧

01×7

]]]]]]]]]]]]]]]]]]]]]
]

(57)

where 𝐶𝜔 is the Euler platform error angle matrix; 𝐶𝑐𝑛 is the
transformation matrix from the navigation (𝑛) to computer
(𝑐) frames in terms of attitude; 𝐶𝑐𝑏 is the transformation
matrix from the body (𝑏) to computer (𝑐) frames in terms
of attitude; 𝜔̂𝑛

𝑖𝑒 and 𝜔𝑛
𝑖𝑒 are the projections of the actual and

ideal angular velocities from the Earth coordinate system (𝑒)
to the inertial coordinate system (𝑖) into the navigation frame
(𝑛); 𝛿𝜔𝑛

𝑖𝑛 and 𝛿𝜔𝑏
𝑖𝑏 are the calculation errors of 𝜔𝑛

𝑖𝑛 and 𝜔𝑏
𝑖𝑏;

𝑓̂
𝑏

𝑠𝑓 and 𝛿𝑓𝑏𝑠𝑓 are the real force and its associated error of
the accelerometer; 𝑉 and 𝛿𝑉 are the real velocity and its
associated error; 𝛿𝑔 is the error of gravity acceleration; 𝜑 andℎ are the latitude and altitude values; and 𝑅𝑀 and 𝑅𝑁 are the
radii of curvatures of local meridian and prime vertical.

The noise coefficient matrix is defined as

𝐺 (𝑡) = [[
[
𝐶𝑐𝑏(3×3) 0(3×3)
0(3×3) 𝐶𝑐𝑏(3×3)
0(9×3) 0(9×3)

]]
](15×6)

(58)

The system noise is described by 𝑊(𝑡) =[𝑤𝜀𝑥
𝑤𝜀𝑦

𝑤𝜀𝑧
𝑤∇𝑥

𝑤∇𝑦
𝑤∇𝑧

]T(6×1), where (𝑤𝜀𝑥
, 𝑤𝜀𝑦

, 𝑤𝜀𝑧
)

and (𝑤∇𝑥
, 𝑤∇𝑦

, 𝑤∇𝑧
) are the gyro and accelerometer random

noise, respectively.

7.2. Measurement Model. In order to overcome the drawback
that the velocity error of SINS is accumulated in time series,
the velocity information from SRS is used to correct the
velocity error of SINS. Further, a radar altimeter is used
to provide the altitude information to correct the altitude
channel of SINS.

The measurement of the SINS/SRS integrated navigation
system can be chosen as the difference in velocity between
SINS and SRS as well as the difference in altitude between the
radar altimeter and SINS.
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Figure 1: ARWCKF algorithm.

Suppose the velocities obtained by SRS and SINS are
𝑉𝑆𝑅𝑆 = (V𝑆𝑥, V𝑆𝑦, V𝑆𝑧) and 𝑉𝑆𝐼𝑁𝑆 = (V𝑥, V𝑦, V𝑧). The difference
in velocity between SRS and SINS is defined as

Δ𝑍V = [
[
Δ𝑍𝑆1Δ𝑍𝑆2Δ𝑍𝑆3

]
] = [

[
V𝑥 − V𝑆𝑥
V𝑦 − V𝑆𝑦
V𝑧 − V𝑆𝑧

]
] = 𝐻V𝑋 (𝑡) +𝑉V (𝑡) (59)

where𝑉V is the velocitymeasurement noisematrix, and𝐻V =[𝐼3×3 03×12]T is the measurement matrix.
Further, the difference in altitude between the radar

altimeter and SINS can be described as

Δ𝑍ℎ = [ℎ𝑆𝐼𝑁𝑆 − ℎ𝐻] = 𝐻ℎ𝑋 (𝑡) +𝑉ℎ (𝑡) (60)
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Table 1: The orbit parameters of the spacecraft.

Orbit Parameters Value
Semi-major axis 6865.112418km
Eccentricity 0.001248
Orbit inclination 29.059∘

Right ascension of ascending node 338.82∘

Argument of perigee 351.167∘

True anomaly 229.46∘

Orbit cycle 50076s
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Figure 2: Flight trajectory of the spacecraft.

where ℎ𝑆𝐼𝑁𝑆 and ℎ𝐻 are the altitudes obtained by SINS and
the radar altimeter; 𝑉ℎ(𝑡) is the measurement noise matrix
in altitude; and 𝐻ℎ = [01×5 1 01×9]T is the measurement
matrix.

Combining (59) with (60), the measurement equation of
the SINS/SRS integration subsystem is established as

Δ𝑍1 (𝑡) = [𝐻V

𝐻ℎ

]𝑋 (𝑡) + [𝑉V (𝑡)
𝑉ℎ (𝑡)]

= 𝐻1 (𝑡)𝑋 (𝑡) +𝑉1 (𝑡)
(61)

7.3. Simulation and Analysis. Assume the spacecraft orbits
the earth, where the orbit parameters are described in Table 1.
A flight period of 4000s was selected for the simulation test,
where the initial position was “6359800m, 3076100m,
-6268900m,” and the end position was “4550800m,
5222600m, -4356700.” The flight trajectory is shown in
Figure 2.

In the simulation, the SINS gyro drift is 0.05(∘)/h, the
randomwalk of the gyro is 0.005(∘)/√h, and the zero bias and
randomdrift of the accelerator are 1×10−3𝑔 and 1×10−4𝑔/√s.
The SINS initial alignment error is 0󸀠.The initial position and
velocity errors of the spacecraft are 10m, 10m, and 10m and
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Figure 3: Position and velocity errors by CKF and ARWCKF.

0.2m/s, 0.2m/s, and 0.2m/s. The sampling period of SINS is
0.01s, the data measurement frequency of SRS is 1Hz, and
the velocity error of SRS is 0.05m/s. The noises of the system
state model and measurement model are set as 0.01 and 0.02,
respectively. The unscented transformation parameters are𝛼 = 0.5 and 𝛽 = 2.

The position error is defined as

𝛿𝑃 = √(𝛿𝑃𝑥)2 + (𝛿𝑃𝑦)2 + (𝛿𝑃𝑧)2 (62)

The velocity error is defined as

𝛿𝑉 = √(𝛿V𝑥)2 + (𝛿V𝑦)2 + (𝛿V𝑧)2 (63)

For comparison analysis, 100 Monte Carlo simulation
trials were conducted under the same conditions by CKF and
ARWCKF, respectively.

Figure 3 shows the estimation errors in position and
velocity by both CKF and ARWCKF. It can be seen that the
position and velocity errors are within “-165m, 145m” and “-
1.72m/s, 1.68m/s.” This poor estimation accuracy is because
CKF does not have the capability to inhibit the disturbance
of system noises. In contrast, as shown in Figure 4, ARWCKF
can effectively estimate the noise statistics of the system
state and measurement models to inhibit the disturbances of
system noises, leading to the significantly improved accuracy.
As shown in Figure 3, the resultant position and velocity
errors by ARWCKF are within “-30m, 32m” and “-0.31m/s,
0.35m/s.” Table 2 summaries the means of the root mean
square errors (RMSEs) in terms of position and velocity
by both methods as well as the RMSEs of the estimated
noises by the proposedARWCKF for the SINS/SRS integrated
navigation system.
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Table 2: RMSEs of CKF and ARWCKF.

Filtering algorithms Position RMSEs (m) Velocity RMSEs (m/s) Estimation RMSEs
𝑞 𝑟

CKF 39.629 0.357 - -
ARWCKF 11.289 0.068 3.811 × 10−4 3.782 × 10−4
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Figure 4: The estimations of system noise statistics by ARWCKF.

The performance evaluation was further analyzed in
terms of average normalized estimation error squared
(ANEES). Figure 5 shows the ANEES values in terms of
position and velocity errors for both CKF and ARWCKF. It
can be seen that there are significant oscillations involved in
the ANEES curves of CKF. This means that a considerable
portion of the error covariance matrices obtained by CKF
are unreliable due to the existence of system noises. How-
ever, the ANEES values of ARWCKF are small during the
entire simulation test, showing the estimation consistency of
ARWCKF is not affected by system noises. Table 3 summaries
the ANEES values of both CKF and ARWCKF. The results
in terms of ANEES demonstrate the covariance matrices
obtained by ARWCKF are much more reliable than those of
CKF.

The above results demonstrate that the proposed
ARWCKF can effectively inhibit the disturbances of system
noises for spacecraft navigation, leading to the improved
accuracy and robustness in comparison with CKF.

8. Conclusions

This paper presents a new ARWCKF for state estimation in
nonlinear systems. It adopts the concept of randomweighting

Table 3: ANEESs of the CKF and ARWCKF algorithms.

Filtering algorithm Position ANEESs Velocity ANEESs
CKF 0.5∼22.3 0.4∼20.6
ARWCKF 0.08∼1.12 0.07∼1.08

0 500 1000 1500 2000 2500 3000 3500 4000
0

10

20

30

A
N

EE
Ss

 fo
r p

os
iti

on
 er

ro
r

CKF
ARWCKF

0

10

20

30

A
N

EE
Ss

 fo
r v

elo
ci

ty
 er

ro
r

CKF
ARWCKF

500 1000 1500 2000 2500 3000 3500 40000
t (s)

Figure 5: ANEESs of CKF and ARWCKF.

for the first time to address the problem that the CKF per-
formance is sensitive to system noise. The proposed method
incorporates random weights in CKF to estimate system
noise statistics as well as predicted state and measurement
together with their associated covariances. Based on this,
it adaptively adjusts random weights of cubature points to
inhibit the disturbances of system noises on state estima-
tion, leading to improved filtering accuracy and robust-
ness. Simulations and comparison analysis demonstrate that
the proposed ARWCKF is superior to CKF for spacecraft
navigation.

Future work will focus on improvement of the pro-
posed ARWCKF. By combining the proposed ARWCKFwith
advanced artificial intelligence techniques such as deep learn-
ing neural networks, swarming algorithms, and fuzzy logic,
it is expected to develop an intelligent filtering algorithm for
automatic estimation of system noise statistics from various
error sources in practical engineering applications.



Mathematical Problems in Engineering 11

Appendix

A. Proof of q̂𝑘+1 in (27)

From (24), we readily have

ln 𝐽 = −𝑘 + 12 ln |𝑄| − 𝑘 + 12 ln |𝑅|
− 12

𝑘∑
𝑗=0

󵄩󵄩󵄩󵄩󵄩𝑥𝑗+1 − 𝑓𝑗 (𝑥𝑗) − 𝑞󵄩󵄩󵄩󵄩󵄩2𝑄−1
− 𝑘∑

𝑗=0

󵄩󵄩󵄩󵄩󵄩𝑧𝑗+1 − ℎ𝑗+1 (𝑥𝑗+1) − 𝑟󵄩󵄩󵄩󵄩󵄩2𝑅−1 + ln𝐶
(A.1)

Taking the partial derivatives of 𝑞 on both sides of (A.1)
yields

𝜕 ln 𝐽𝜕𝑞
= -0-0

+ 12
𝑘∑
𝑗=0

[𝑄−1 + (𝑄−1)T] (𝑥𝑗+1 − 𝑓𝑗 (𝑥𝑗) − 𝑞) -0
+ 0

(A.2)

Let

𝜕 ln 𝐽𝜕𝑞
= 12 [𝑄−1 + (𝑄−1)T] 𝑘∑

𝑗=0

(𝑥𝑗+1 − 𝑓𝑗 (𝑥𝑗) − q)
𝑞=𝑞̂𝑘+1

= 0
(A.3)

Since (1/2)[𝑄−1 + (𝑄−1)T] ̸= 0, we have
𝑘∑
𝑗=0

(𝑥𝑗+1 − 𝑓𝑗 (𝑥𝑗) − 𝑞)󵄨󵄨󵄨󵄨󵄨𝑞=𝑞̂𝑘+1 = 0 (A.4)

i.e.,

𝑘∑
𝑗=0

[𝑥𝑗+1 − 𝑓𝑗 (𝑥𝑗)] − (𝑘 + 1) 𝑞󵄨󵄨󵄨󵄨󵄨𝑞=𝑞̂𝑘+1 = 0 (A.5)

Thus,

𝑞̂𝑘+1 = 1𝑘 + 1
𝑘∑
𝑗=0

[ 𝑥̂𝑗+1|𝑘+1 − 𝑓𝑗 (𝑥𝑗)󵄨󵄨󵄨󵄨󵄨𝑥𝑗←󳨀𝑥̂𝑗|𝑘+1
] (A.6)

The proof of 𝑞̂𝑘+1 is completed.

B. Proof of Q̂𝑘+1 in (27)

Suppose we have the following conditions:

A 𝑄 and 𝑅 are symmetric matrices; i.e., 𝑄T = 𝑄 and
𝑅T = 𝑅

B 𝜕 ln |𝐴|/𝜕𝐴 = 1/|𝐴| ⋅ 𝐴∗ = 𝐴−1(𝜕|𝐴|/𝜕𝐴 = 𝐴∗)
C 𝜕𝐴−1/𝜕𝐴 = −𝐴−𝑇 × 𝐴−1

where |𝐴| is the determinant of 𝐴.
Taking the partial derivatives of 𝑄 on both sides of (A.1)

yields

𝜕 ln 𝐽𝜕𝑄
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑥𝑗=𝑥̂𝑗|𝑗+1 ,𝑥𝑗+1=𝑥̂𝑗+1|𝑗+1

𝑄=𝑄̂𝑘+1

= [
[−𝑘 + 12 ⋅ 𝜕 ln |𝑄|𝜕𝑄 − 12

⋅ 𝑘∑
𝑗=0

󵄩󵄩󵄩󵄩󵄩𝑥𝑖+1 − 𝑓𝑗 (𝑥𝑗) − 𝑞󵄩󵄩󵄩󵄩󵄩2 𝑄−1𝜕𝑄 ]
]
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑥𝑗=𝑥̂𝑗|𝑗+1 ,𝑥𝑗+1=𝑥̂𝑗+1|𝑗+1

𝑄=𝑄̂𝑘+1

= {{{−𝑘 + 12 𝐴−1 − 12
𝑘∑
𝑗=0

[𝑥𝑖+1 − 𝑓𝑗 (𝑥𝑗) − 𝑞]
× [𝑥𝑖+1 − 𝑓𝑗 (𝑥𝑗) − 𝑞]T × (−𝐴−𝑇

× 𝐴−1)}}}
𝑥𝑗=𝑥̂𝑗|𝑗+1 ,𝑥𝑗+1=𝑥̂𝑗+1|𝑗+1

𝑄=𝑄̂𝑘+1

= 0

(B.1)

Equation (B.1) can be rewritten as

𝑘 + 12 𝑄̂−1𝑘+1 = 12
𝑘∑
𝑗=0

[𝑥𝑖+1 − 𝑓𝑗 (𝑥𝑗)󵄨󵄨󵄨󵄨󵄨𝑥𝑗←󳨀𝑥̂𝑗|𝑘+1
− 𝑞]

⋅ [𝑥𝑖+1 − 𝑓𝑗 (𝑥𝑗)󵄨󵄨󵄨󵄨󵄨𝑥𝑗←󳨀𝑥̂𝑗|𝑘+1
− 𝑞]T

⋅ (𝑄̂−𝑇𝑘+1 ⋅ 𝑄̂−1𝑘+1)
(B.2)

Multiplying both sides of (B.2) by 𝑄̂𝑘+1 yields

𝑘 + 12 I = 12
𝑘∑
𝑗=0

[𝑥𝑖+1 − 𝑓𝑗 (𝑥𝑗)󵄨󵄨󵄨󵄨󵄨𝑥𝑗←󳨀𝑥̂𝑗|𝑘+1
− 𝑞]

⋅ [𝑥𝑖+1 − 𝑓𝑗 (𝑥𝑗)󵄨󵄨󵄨󵄨󵄨𝑥𝑗←󳨀𝑥̂𝑗|𝑘+1
− 𝑞]T ⋅ 𝑄̂−𝑇𝑘+1

(B.3)

Substituting 𝑄̂−𝑇𝑘+1 = 𝑄̂−1𝑘+1 into (B.3), we have
𝑄̂𝑘+1 = 1𝑘 + 1

𝑘∑
𝑗=0

{[ 𝑥̂𝑗+1|𝑘+1 − 𝑓𝑗 (𝑥𝑗)󵄨󵄨󵄨󵄨󵄨𝑥𝑗←󳨀𝑥̂𝑗|𝑘+1
− 𝑞]

⋅ [ 𝑥̂𝑗+1|𝑘+1 − 𝑓𝑗 (𝑥𝑗)󵄨󵄨󵄨󵄨󵄨𝑥𝑗←󳨀𝑥̂𝑗|𝑘+1
− 𝑞]T}

(B.4)

The proof of 𝑄̂𝑘+1 is completed.
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C. Proof of r̂𝑘+1 in (29)

Taking the partial derivatives of 𝑟 on both sides of (A.1) yields

𝜕 ln𝑔𝜕𝑟 = -0-0 + 𝑘∑
𝑗=0

[𝑅−1 + (𝑅−1)T]
⋅ (𝑧𝑗+1 − ℎ𝑗+1 (𝑥𝑗+1) − 𝑟)󵄨󵄨󵄨󵄨󵄨𝑟=𝑟̂𝑘+1 -0 + 0

(C.1)

Let
𝜕 ln𝑔𝜕𝑟 = [𝑅−1 + (𝑅−1)T]

⋅ 𝑘∑
𝑗=0

(𝑧𝑗+1 − ℎ𝑗+1 (𝑥𝑗+1) − 𝑟)󵄨󵄨󵄨󵄨󵄨𝑟=𝑟̂𝑘+1 = 0 (C.2)

Since 𝑅−1 + (𝑅−1)T ̸= 0, we have
𝑘∑
𝑗=0

(𝑧𝑗+1 − ℎ𝑗+1 (𝑥𝑗+1) − 𝑟)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥𝑗+1←󳨀𝑥̂𝑗+1|𝑘+1
𝑟=𝑟̂𝑘+1

= 0 (C.3)

i.e.,
𝑘∑
𝑗=0

[𝑧𝑗+1 − ℎ𝑗+1 (𝑥𝑗+1)󵄨󵄨󵄨󵄨󵄨𝑥𝑗+1←󳨀𝑥̂𝑗+1|𝑘+1
] − (𝑘 + 1) 𝑟|𝑟=𝑟̂𝑘+1

= 0
(C.4)

Thus,

𝑟̂𝑘+1 = 1𝑘 + 1
𝑘∑
𝑗=0

[ 𝑧̂𝑗+1 − ℎ𝑗+1 (𝑥𝑗+1)󵄨󵄨󵄨󵄨󵄨𝑥𝑗+1←󳨀𝑥𝑗+1|𝑘+1
] (C.5)

The proof of 𝑟̂𝑘+1 is completed.

D. Proof of R̂𝑘+1 in (29)

Assume we have the same conditions as in Appendix B.
Taking the partial derivatives of𝑅on both sides of (A.1) yields

𝜕 ln𝑔𝜕𝑅
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑧𝑗+1=𝑧̂𝑗+1|𝑗+1 ,𝑥𝑗+1=𝑥̂𝑗+1|𝑗+1

𝑅=𝑅̂𝑘+1

= [
[−𝑘 + 12 ⋅ 𝜕 ln |𝑅|𝜕𝑅

− 𝑘∑
𝑗=0

󵄩󵄩󵄩󵄩󵄩𝑧𝑗+1 − ℎ𝑗+1 (𝑥𝑗+1) − 𝑟󵄩󵄩󵄩󵄩󵄩2

⋅ 𝑅−1𝜕𝑅 ]
]
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑧𝑗+1=𝑧̂𝑗+1|𝑗+1 ,𝑥𝑗+1=𝑥̂𝑗+1|𝑗+1

𝑅=𝑅̂𝑘+1

= {{{−𝑘 + 12 𝐴−1 − 12
⋅ 𝑘∑
𝑗=0

[𝑧𝑗+1 − ℎ𝑗+1 (𝑥𝑗+1) − 𝑟] × [𝑧𝑗+1 − ℎ𝑗+1 (𝑥𝑗+1)

− 𝑟]T × (−𝐴−𝑇 × 𝐴−1)}}}
𝑧𝑗+1=𝑧̂𝑗+1|𝑗+1 ,𝑥𝑗+1=𝑥̂𝑗+1|𝑗+1

𝑅=𝑅̂𝑘+1

= 0

(D.1)

According to the second equal sign in the above formula, we
can get

𝑘 + 12 𝑅̂−1𝑘+1 = 12
⋅ 𝑘∑
𝑗=0

[𝑧𝑗+1 − ℎ𝑗+1 (𝑥𝑗+1)󵄨󵄨󵄨󵄨󵄨𝑥𝑗+1←󳨀𝑥̂𝑗+1|𝑘+1
− 𝑟]

⋅ [𝑧𝑗+1 − ℎ𝑗+1 (𝑥𝑗+1)󵄨󵄨󵄨󵄨󵄨𝑥𝑗+1←󳨀𝑥̂𝑗+1|𝑘+1
− 𝑟]T

⋅ (𝑅̂−𝑇𝑘+1 ⋅ 𝑅̂−1𝑘+1)

(D.2)

Multiplying both sides of the above formula by 𝑅̂𝑘+1 yields𝑘 + 12 I = 12
⋅ 𝑘∑
𝑗=0

[[𝑧𝑗+1 − ℎ𝑗+1 (𝑥𝑗+1)󵄨󵄨󵄨󵄨󵄨𝑥𝑗+1←󳨀𝑥̂𝑗+1|𝑘+1
− 𝑟]]

⋅ [[𝑧𝑗+1 − ℎ𝑗+1 (𝑥𝑗+1)󵄨󵄨󵄨󵄨󵄨𝑥𝑗+1←󳨀𝑥̂𝑗+1|𝑘+1
− 𝑟]]T ⋅ 𝑅̂−𝑇𝑘+1

(D.3)

Substituting 𝑅̂−𝑇𝑘+1 = 𝑅̂−1𝑘+1 into the above formula yields

𝑅̂𝑘+1 = 1𝑘 + 1
⋅ 𝑘∑
𝑗=0

{[𝑧𝑗+1 − ℎ𝑗+1 (𝑥𝑗+1)󵄨󵄨󵄨󵄨󵄨𝑥𝑗+1←󳨀𝑥̂𝑗|𝑘+1
− 𝑟]

⋅ [𝑧𝑗+1 − ℎ𝑗+1 (𝑥𝑗+1)󵄨󵄨󵄨󵄨󵄨𝑥𝑗+1←󳨀𝑥̂𝑗|𝑘+1
− 𝑟]T}

(D.4)

The proof of 𝑅̂𝑘+1 is completed.
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