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This paper proposes an effective hybrid optimization algorithm for multiobjective optimization design of a compliant rotary
positioning stage for indentation tester. The stage is created with respect to the Beetle’s profile. To meet practical demands of
the stage, the geometric parameters are optimized so as to find the best performances. In the present work, the Taguchi method
is employed to lay out the number of numerical experiments. Subsequently, the finite element method is built to retrieve the
numerical data. The mathematical models are then established based on the response surface method. Before conducting the
optimization implementation, the weight factor of each response is calculated exactly. Based on the well-established models, the
multiple performances are simultaneously optimized utilizing the teaching learning-based optimization.The results found that the
weight factors of safety factor and displacement are 0.5995 (59.95%) and 0.4005 (40.05%), respectively. The results revealed that
the optimal safety factor is about 1.558 and the optimal displacement is 2.096 mm.The validations are in good agreement with the
predicted results. Sensitivity analysis is carried out to identify the effects of variables on the responses. Using the Wilcoxon’s rank
signed test and Friedman test, the effectiveness of the proposed hybrid approach is better than that of other evolutionary algorithms.
It ensures a good effectiveness to solve a complex multiobjective optimization problem.

1. Introduction

Nanoindentation tester is designed to provide low loads
with depth measurements in the nanometer scale for the
measurement of hardness, elastic modulus, and creep. The
system can be used to characterize organic, inorganic, hard,
and soft materials. With the unique top surface referencing
technique, an indentation measurement can be made in less
than 3 minutes without waiting for thermal stabilization.
Hence, the positioning process has to be with high accuracy.
Materials can be tested, including hard and soft types from
tissue, biological cell, nanomaterial, optics, material science,

semiconductor, biomechanics, microelectromechanical sys-
tems, and electronics [1–3]. During the indentation process,
the multiple microscopes are used to record the image of
sample before and after indenting test to characterize the
curve of displacement versus load while a material sample
is brought in front of microscope. In order to achieve a
good image quality, a precise positioning stage is essential.
It means that a positioning stage is an important mecha-
nism for the nanoindentation tester. In commercialization,
the current positioning stage is difficult to allow a high
position precision because of the unfavorable influences of
backlash, friction, and wear existing in rigid kinematic joints.
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To overcome the disadvantages of traditional technologies,
the compliant micropositioning rotary stage is proposed to
enhance resolution because of their essential merits such
as no wear, no backlash, free friction, light weight, low
cost, no lubricant, monolithic structure, high precision, and
compact structure [4–8]. Similar to various applications, the
indentation system also needs large strokes with a high safety
factor for positioning tasks. This is strongly dependent on the
proposed stage.

A few recent years, researchers centered on development
for large working platforms [9, 10]. Zhu et al. designed an
amplifier combining the Scott-Russell mechanism and half-
bridge mechanism for XY nanopositioning stage [11]. Kim
et al. used a double amplification mechanism for 3-DOFs
flexure-based positioning system [12]. Besides, compliant
rotary stage with large angle was proposed [13]. However,
a positioning stage for nanoindentation tester, which is
transferring a translation to rotation, lacks interest.

In order to meet the practical requirements of advanced
material sciences, the capability of a large positioning space
and long working life of the proposed stage should be
enhanced further. Generally, a lever amplifier or a bridge
one is widely utilized to improve the working travel of the
platform. In this study, in order to obtain a good stroke, the
four-lever amplifier is monolithically integrated in the stage.
Even though the amplifier can improve the working travel, it
is still limited. Therefore, a multiple objective optimization
design is conducted in this study so as to enhance overall
the static performances, simultaneously. For structural opti-
mization, topology, size, or shape optimization is used. Topol-
ogy permits the connectivity of the domain while the size
optimization denotes design [10, 17–20]. Shape optimization
gives a suitable configuration. In the present work, the size
optimization is chosen while the shape configuration of pro-
posed stage is designed based on the designer’s experiences.
Due to the fact that mathematical models for the stage are
relatively complicated, an optimization solution may not be
accurate. Commonevolutionary algorithms often require ini-
tially controllable parameters, for instance, genetic algorithm
[21, 22], partial swarm optimization [23–26], and differential
evolution algorithm [27]. In contrast, the teaching learning-
based optimization algorithm (TLBO) [28–31] can optimize
rapidlymulticriteria andminimize calculating effort with less
controllable parameters. Meanwhile, the application of the
TLBO algorithm for the rotary positioning stage has not been
interested yet. To improve the convergence speed and achieve
more accuracy, a combination of the Taguchi method (TM),
finite element method (FEM), response surface method
(RSM), and teaching learning-based optimization (TLBO)
was proposed to solve multiobjective optimization based on
advantages of these methods. The TM utilizes the most suit-
able orthogonal arrays based on the combination of factors to
build the number of experiments [32, 33]. Such data-driven
multiple optimization approach can limit the undesired
errors from the analyticalmethods. Individually, the FEMhas
been widely used in various engineering fields [34–36]. In
this research, the FEM is utilized to retrieve the two quality
responses of the stage based on the number of experiments.
Moreover, the RSM [37] can establish the regression models

to find relationship between the parameters and quality
responses before implementing an optimization problem by
the TLBO. An integration of hybrid algorithm has not been
investigated for the stage yet.

As a result, the proposed hybrid algorithm is developed to
solve multiobjective optimization design in the present work,
simultaneously. As known, multiple objectives often conflict
each other. In order to seek a balance among them, a weight
factor (WF) should be assigned for each response. The WF
is almost determined relying on the priority of responses or
designer’s experiences. Unlike previous studies, prior to an
optimization, mathematical models are built to determine
exactly the WF.

The main goal of this paper is to develop a new hybrid
optimization approach for solving the multiobjective opti-
mization design of compliant rotary positioning stage in
terms of good static characteristics in order to balance con-
flicted performances of the two quality responses and reduce
the time computing with less controllable parameters. The
sensitivity analysis is then analyzed based on the statistical
method. The data are collected using an integration of TM
and FEM. The equations are formed by RSM. The WF is
computed, and the optimization solutions are sought through
TLBO. Next, the verifications are conducted to validate the
predicted results. At last, a few statistical analyses are carried
out to compare the hybrid approach with other methods.

2. Design of Compliant Rotary
Positioning Stage

2.1. Kinetic Structure. A lot of compliant micropositioning
stages from one degree of freedom (DOF) [14], 2 DOFs
[15], and 3 DOFs [16] were illustrated in Figures 1(a)–1(c),
respectively. However, a compliant rotary positioning stage
(CRPS) for indentation device has been less researched. In
this study, a linear motion would be transferred to a rotation
to locate the sample material for testing by indenter and
monitoring by microscope before and after indentation. If a
rotary platform was directly designed by only pure rotation,
a further controller is complicated. Meanwhile, from the
translation to rotation, the proposed stage could be controlled
easily by solving the linear end. Summarily, the operation
principle of the proposed CRPS was moved from a linear
movement to rotary motion, as given in Figure 1(d).

2.2. Hybrid Displacement Amplifier. The lever mechanism is
still a useful structure to amplify the load or the displacement.
Structure of the lever includes a beam or rigid rod placed
on a fixed hinge, or fulcrum, as illustrated in Figure 2. Point
O is considered a rotation center of the lever, A is the input
end, and B is the output end. The operation principle of lever
mechanism is described as follows: when locating a vertical
displacement Δ𝑙1 on the input point A, the lever will rotate
an 𝛾 angle relative to the z-axis. As a result, the point Bmoves
to B’ and the output displacement Δ𝑙2 can gain in the vertical
direction (y-axis). Firstly, one levermechanism can be used to
amplify output displacement, as depicted in Figure 3(a) (Case
1). However, this mechanism creates easily a large parasitic
motion. Moreover, in order to amplify more large output
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Figure 1: Various micropositioning stages: (a) 1 DOF micropositioning stage, (b) 2 DOF micropositioning stage, and (c) 3 DOF
micropositioning stage.

ΔＦ2 (output) ΔＦ1 (input)

(a)

＂

Δ
Ｆ 2 Δ
Ｆ 1

B

Ｆ2 Ｆ1


O ！

A

y

x

fixed input

(b)

Figure 2: Schematics of (a) the operation principle of lever mechanism and (b) analysis of amplification ratio.

displacement and generate linearmotion based on symmetric
structure, four-lever displacement amplifier is proposed so
as to gain more large displacement and linear displacement,
as depicted in Figure 3(b) (Case 2). Thanks to the structural
characteristics of the amplifier, the amplification ratio can be
approximately achieved by

𝑟𝑙𝑒V𝑒𝑟 = Δ𝑙2Δ𝑙1 =
𝑙2𝑙1 . (1)

The equation of multilever displacement amplifier is
assumed as follows:

𝑟𝑙𝑒V𝑒𝑟 = 𝑁 × 𝑙2𝑙1 . (2)

A finite element analysis (FEA) in ANSYS software was
used to model and compare the amplification ratio between
case 1 and case 2. Boundary conditions for both cases were
given in Figures 3(a) and 3(b). The value of input displace-
ment was assigned within the range from 0.1 mm to 0.24
mm.The Yold and Ynew representing the output displacement
of case 1 and case 2 along the Y-axis, respectively, were
retrieved. The amplification ratios for the case 1 and case 2
were computed as Rold and Rnew, respectively, in Tables 1 and
2. An improvement of the amplification ratio is about 221.6
%, as given in Table 3 and Figure 4.

Table 1: Amplification ratio for case 1.

Input (mm) Yold (mm) Rold

0.1 0.443 4.43
0.12 0.532 4.43
0.14 0.620 4.43
0.16 0.709 4.43
0.18 0.797 4.43
0.2 0.886 4.43
0.22 0.975 4.43
0.24 1.063 4.43

3. Compliant Rotary Positioning Stage

The operating principle of CRPS was based on the elastic
deformation of the material. The CRPS was used for locating
the sample during nanoindentation testing. A basic applica-
tion for nanoindentation tester was proposed in Figure 5.The
material Al 7075 was selected for the proposed CRPS because
of its high yield strength of 503 MPa, Young’s modulus of E
= 71700 MPa, a light density of 2770 kg/m3, and Poisson’s
ratio of 0.33. Specification of rotary stage assumed that
input displacement was 0.19 mm. The CRPS was proposed,
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Figure 3: Model of lever amplifiers: (a) case 1: one lever mechanism and (b) case 2: four-lever mechanism.
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Figure 4: Input displacement vs. output displacement for case 1 and
case 2.

Table 2: Amplification ratio for case 2.

Input (mm) Ynew (mm) Rnew

0.1 1.425 14.25
0.12 1.710 14.25
0.14 1.995 14.25
0.16 2.280 14.25
0.18 2.564 14.25
0.2 2.849 14.25
0.22 3.134 14.25
0.24 3.419 14.25

as seen in Figure 6. It was designed based on the Beetle’s
profile to get a good compliance. It consisted of elements
as follows: (i) sixteen fixed holes were utilized to locate the
platform on an unvibration table and (ii) a piezoelectric
actuator (PZT) (locating at the input displacement position)
was used to create the input displacement for the stage
by connecting directly with the beetle-like structure and
rotary mechanism. The total dimension of the model was
approximately 280mm×376mm×6mm.Theproposed rotary
stage was designed to create a linear displacement, and a
large rotary angle for indentation testing would be increased
accordingly. Geometrical parameters of the proposed rotary

stage were given in Figure 7 and Table 4. Among the geo-
metrical parameters, factors A, B, C, and D were selected as
the design variables because they had a large effect on the
responses. Meanwhile, the others were chosen as constant.

4. Formulation of Multiobjective
Optimization Problem

In this study, the CRPS needs to fulfill responses such as the
following. (i): Safety factor (F1) should be as large as possible
to increase the long fatigue life and avoid plastic failure of the
material. (ii) Large y-axis displacement (F2) should be large
to expand working travel. The optimization problem for the
rotary stage can be summarized as follows.

Find the design variables: X = [𝐴, 𝐵, 𝐶,𝐷]
Maximize safety factor as

𝐹1 (𝐴, 𝐵, 𝐶,𝐷) ≥ 1.5, (3)

Maximize the displacement (F2) as

𝐹2 (𝐴, 𝐵, 𝐶,𝐷) ≥ 1.55mm, (4)

Subject to constraints

51mm ≤ 𝐴 ≤ 53mm,
1mm ≤ 𝐵 ≤ 1.2mm,
0.5mm ≤ 𝐶 ≤ 0.7mm,
0.5mm ≤ 𝐷 ≤ 0.7mm,

(5)

where F1 and F2 are the objective responses. A, B, C, and
D are the length of first lever, thickness of flexure hinge
(lever amplifier), thickness of flexure hinge (beetle’s legmech-
anism), and thickness of flexure hinge (rotary mechanism),
respectively.

5. Methodology

Regarding the multiple response optimization problem, a
hybrid approach was proposed in the present work. In this
study, a large displacement is expected to expand a range
of working travel and meet a wide application and a safety
factor is desired to enhance a fatigue life for the structure.



Mathematical Problems in Engineering 5

Nanoindentation
tester

Column

Motor

Material sample

Proposed rotary stage

Base

Multiple
microscopes

Figure 5: Nanoindentation testing system.

Flexure hinge

Fix holes

Input displacement (PZT)

Output displacement

Cartwheel hinge

Platform

Base

Base

Flexure hinge

Figure 6: Model of beetle-inspired stage.

Table 3: Comparison between the amplification ratios of case 1 and case 2.

Input (mm) Rold Rnew Improvement (%)
0.1 4.43 14.25 221.6
0.12 4.43 14.25 221.6
0.14 4.43 14.25 221.6
0.16 4.43 14.25 221.6
0.18 4.43 14.25 221.6
0.2 4.43 14.25 221.6
0.22 4.43 14.25 221.6
0.24 4.43 14.25 221.6
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Table 4: Geometrical parameters of the rotary stage (unit: mm).

Parameters Value Parameters Value Parameters Value
a 6.84 m 222 x 30
b 20 n 230 y 280
c 8 o 70 z 376
d 30 p 30 A 51≤A≤53
e 76 q 70 B 1≤B≤1.2
f 6 r 65 C 0.5≤C≤0.7
g 5 t 10 D 0.5≤D≤0.7
h 102
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Figure 7: Design parameters for the compliant rotary positioning
stage.

However, a large displacement is always conflicted with a
high safety factor. A hybrid approach of TM, FEM, RSM, and
TLBO was developed so as to solve a trade-off between the
displacement and safety factor.The hybrid approach included
the following main steps. (1)TheTMwas utilized to establish
the number of experiments. (2)TheFEMwas utilized to build
3Dmodel and retrieve the displacement and safety factor. (3)
The RSM was used to establish the number of experiments.(4) Finally, the optimal solutions were determined by using
the TLBO algorithm. A flowchart of the proposed hybrid
approach was illustrated in Figure 8. It consisted of several
phases and substeps as follows.

Phase 1 (computer-aided engineering design). Along with
efficient support from a high performance computer, thou-
sands of computational analyses per second can be done well.
In order to optimize the CRPS, a CAEDwas conducted by the
following steps.

Step 1 (define optimal problem). The CRPS was designed to
serve as a positioning platform in an indentation system.
A PZT was utilized to give the input motion for the CRPS

but PZT’s travel was limited. Therefore, the purpose of this
study is to optimize geometric parameters of the stage. The
first quality objective is to maximize safety factor and the
second objective is to maximize the displacement. Multiob-
jective optimization problem for the CRPS was conducted to
enhance both quality performances.

Step 2 (mechanical structure). A few draft models were
designed based on beetle animal to make a good compliant
structure and to describe the initial operations of the stage.
An eventual model was selected.

Step 3 (design variables and quality responses). The length of
first lever A, thickness of flexure hinge B, thickness of flexure
hinge C, and thickness of flexure hinge D were determined
as design variables for achieving the best quality objectives.
The reason was that these parameters affect significantly the
performances of the CRPS. These variables can be seen as
Figure 7. To meet the practical requirements of customers, a
large working stroke and a high safety factor can be fulfilled
by optimizing simultaneously.

Step 4 (build 3D-FEM model). A 3D-FEM model was
designed so as to serve for computational analysis, and the
quality characteristics were retrieved.

Step 5 (evaluate initial quality characteristics). The 3D-FEM
model was analyzed. If the stage’s specifications were not
satisfied according to the designer’s requirements, the process
would return to Step 2. Otherwise, it would move to Phase 2.

Phase 2 (response surface method and regression model). In
order to conduct optimal process, a number of experiments
were generated and numerical data were collected. Later
on, the regression models were established to map design
variables and the quality responses.

Step 6 (design of experiment). Firstly, the TM was used to
determine an orthogonal array to establish the number of
numerical experiments because it allowed a small number
of experiments. In addition, analysis of variance (ANOVA)
was employed to find the significant contribution of design
variables.

Step 7 (generate data). The numerical experimentations were
retrieved based on a hybrid integration of FEM and RSM,
using a 3D-FEM model which was designed in Step 4.
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Subsequently, the results of both quality responses were
retrieved.

Step 8 (establish regression models). Secondly, the RSM is
applied to establish the linear and nonlinear multivariate
relationships between the design variables and the output
responses. Because these relations were almost nonlinear, a
full quadratic form was a suitable model for the CRPS as
follows:

𝐹𝑗 = 𝛽0 + 𝑛∑
𝑖=1

𝛽𝑖x𝑖 + 𝑛∑
𝑖=1

𝛽𝑖𝑗x2𝑖 + 𝑛−1∑
𝑖=1

𝑛∑
𝑗=𝑖+1

𝛽𝑖𝑗x𝑖x𝑗 + 𝜀𝑖 (6)

where the 𝛽𝑖 (i=0, 1, 2, . . ., n) are unknown regression coffi-
cients, 𝛽𝑖𝑗 (𝑖 < 𝑗) are interaction coefficients, x1, x2,. . .,xn are
a set of n predictors believed to be related to a response F jth,
and 𝜀 is a random error.

These objective functions were used for the TLBO algo-
rithm.

Phase 3 (optimization using TLBO). Based on the objective
functions which were determined in Step 8, the optimization
process was implemented by TLBO algorithm. TLBO has

been widely used [28–31] but it has been applied for the pro-
posed stage. Operation principle of this algorithm imitates
the teaching-learning ability of the teacher and learners in
a classroom. The expected learning outcome of TLBO was
the grades results of students which depended on the ability
of teacher. It forecasted that a high quality student is the
result of good training given by a good teacher. Moreover,
besides learning from the teacher, the students can learn other
knowledge from different classmates to improve their grades.
Courses were considered design variables and the student’s
results were similar to the fitness value of the optimization
process.The algorithm includes two phases: (i) teacher phase
where candidates were randomly distributed over the search
space and the best solution was defined and (ii) leaner phase
where solutions tried to get new knowledge from interacting
with other students.

Phase 4 (determine weight factor). In this paper, a high safety
factor and a large displacement were expected. Hence, the
signal to noise (S/ N) ratio for both responses was calculated
as

𝜂 = −10 log(1𝑞
𝑞∑
𝑖=1

1𝑓2𝑖 ) , (7)
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where f i denotes the quality response ith, e the experiment
number, and q the number of replicates of experiment ith.

In this work, a large displacement is conflicted with a
high safety factor. Generally, the trial-error method is used
to find satisfaction between them but it needs a lot of time
and cost and depends on the expert experience. To overcome
the struggles, another alternative is to convert the multiple
objectives into a single objective bymultiplying each objective
with a corresponding weight factor (WF) [38]. Commonly,
the WF is determined based on the priority, expert experi-
ence, the direct assignment method, an eigenvector method,
an empty method, a minimal information method, and
a random determination and customer’s demands but an
optimal solution is very sensitive and of varying weight
factor. If the WF should be calculated accurately and the
optimal safety factor, output displacement could be exactly
retrieved accordingly. Therefore, we followed the methods
of Dao et al. [39] to calculate the WF for each response.
In this study, based on the well-established mathematical
equations, the WF was assigned for the safety factor and
output displacement, respectively.

There were two objective functions in this paper; the sum
weighted objective function was expressed by

𝑓 = 𝑤1𝑓1 + 𝑤2𝑓2, (8)

where𝑓1, 𝑓2 and 𝑓 are safety factor, displacement, and sum
weighted objective function, respectively. 𝑤1, and 𝑤2 indi-
cated the weight values of f 1 and f 2, respectively. Therein,0 ≤ 𝑤𝑖 ≤ 1 and ∑2𝑖=1𝑤𝑖 = 1. The sum of weight is assumed
to be a convex combination of the objectives. Each single
optimization goal can be determined by a single optimal
solution on the Pareto front.

The proposed scheme for determining the WF used
the normalized sensitivity of each parameter for different
objectives. The advantage of this method was the easiness
to calculate the weighting values and it allowed an accurate
adjustment of the weight value so that the optimal solution
confirmed to the design goals. The calculation principle of
this proposed method was described as follows.

Based on the TM, the optimal level of design parameters
is corresponding to the highest S/N ratio value. Alternatively,
according to the response table of average S/N ratios, the
optimized solution is defined. The mean deviation between
the minimum S/N ratio and the maximum S/N ratio of
each level is calculated, as shown in the response table. This
deviation is considered a mean range (max-min) for each
level of each parameter. If the deviation is higher, the effect
grade of each level of each parameter on each objective
becomes larger. In other respects, if the mean range (max-
min) for a level of a parameter is equal to zero, we can
summarize that the parameter is not associated with the
response. Alternatively, if the objective does not vary when
the level of the parameter is changed, this shows that there
is no correlation between the parameter and the response.
We can summarize that both the WF and the S/N ratio have
the significantly important effects on the responses, whereas,
when the WF or the S/N ratio changes, the optimal solution
is also varied.

So, the contribution grade of each parameter on each
response can be regarded by the mean range (max-min) of
S/N ratio. The mean range can be inspected as a quantity
value of the contribution grade for each objective. Later on,
the ratio of quantity value of each response is defined as a
criterion in order to compute the WF. Because the unit of the
safety factor and the output displacement (mm) is different,
the mean S/N ratio of each level of each response has to be
normalized as 𝑧𝑖 (0 ≤ 𝑧𝑖 ≤ 1)through the below so as to
eliminate the influence of utilizing various units and decrease
the difference. The aim of the normalization is to modify the
values measured on various scales to a general scale.The nor-
malized values of the mean S/N ratio change between 0 and
1.

The higher the better was utilized for both objectives;
the normalized mean value of S/N ratios was normalized as
follows:

𝑧𝑖 = 𝜂𝑖 −min 𝜂𝑖
max 𝜂𝑖 −min 𝜂𝑖 , (9)

where 𝑧𝑖 is the normalized mean S/N value for the ith
response (i = 1, 2, . . ., n), n is the number of responses, and 𝜂𝑖
illustrates the estimated S/N value from the TM. max 𝜂𝑖 and
min 𝜂𝑖 are the largest and smallest values of 𝜂𝑖, respectively.

The mean range (max-min) of the normalized mean
S/N ratio for each level of each parameter was computed as
follows:

𝑟𝑖𝑗 = max {𝑧𝑖,𝑗,1, 𝑧𝑖,𝑗,2, . . . , 𝑧𝑖,𝑗,𝑟}
−min {𝑧𝑖,𝑗,1, 𝑧𝑖,𝑗,2, . . . , 𝑧𝑖,𝑗,𝑟} , (10)

where 𝑟𝑖𝑗 is the mean range (max-min) of the normalized
mean S/N ratio for each level of each design parameter𝑗 = 1, 2, . . . , 𝑞, 𝑞 is the number of design parameters,𝑟 = 1, 2, . . . , 𝑙, 𝑙 is the number of experimental level of
each objective, and 𝑧𝑖,𝑗,𝑟 is the normalized mean value of
S/N for the 𝑖th response of the parameter 𝑗th at the 𝑘th
experiment.

TheWF was computed by the following equation:

𝑤𝑖 = ∑
𝑞
𝑗=1 𝑟𝑖𝑗∑𝑛𝑖=1 ∑𝑞𝑗=1 𝑟𝑖𝑗 , (11)

where𝑤𝑖 is the weight factor of ith objective and 𝑤𝑖 ≥ 0.
The sum weight factors for total objectives have to be

equal to one:
𝑛∑
𝑖=1

𝑤𝑖 = 1. (12)

Phase 5 (statistical analysis for the proposed hybrid algo-
rithm). In order to evaluate the behavior of the proposed
hybrid algorithm, the Wilcoxon’s rank signed test, which
was a nonparametric statistical analysis, was applied. For
details about this technique, the readers can refer to [40,
41]. A comparison of evolutionary algorithms was aimed to
discover the significant difference between them with the
hybrid algorithm.
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Table 5: Process parameters and their levels (unit: mm).

Factors Range Level 1 Level 2 Level 3
A 51-53 51 52 53
B 1-1.2 1 1.1 1.2
C 0.5-0.7 0.5 0.6 0.7
D 0.5-0.7 0.5 0.6 0.7

Table 6: Experimental results and responses.

No. A B C D Safety factor Displacement (mm)
1 51 1 0.5 0.5 1.5800 2.1726
2 51 1.1 0.6 0.6 1.5645 1.8280
3 51 1.2 0.7 0.7 1.5348 1.6166
4 52 1 0.6 0.7 1.5587 1.7421
5 52 1.1 0.7 0.5 1.4766 1.6637
6 52 1.2 0.5 0.6 1.5866 2.0411
7 53 1 0.7 0.6 1.4634 1.5807
8 53 1.1 0.5 0.7 1.4821 1.9220
9 53 1.2 0.6 0.5 1.5091 1.9174

6. Results and Discussion

6.1. Collection ofData andRegressionModels. Each factorwas
divided into three levels depending on specialized knowledge
and designer experience, as illustrated in Table 5. The L9 (3

4)
orthogonal array of TM was used to establish the number
of experiments. The safety factor (F1) and displacement (F2)
were collected, as shown in Table 6.

Later on, the ANOVA was applied to determine the
significant contribution of each parameter on the responses.
Based on the data in Table 6, the MINITAB 18 software was
used to analyze the experimental data.

The regression equations were gained as follows:

𝐹1 = −43.54 + 1.867𝐴 − 6.780𝐵 + 2.532𝐶 + 1.770𝐷
− 0.01832𝐴 ∗ 𝐴 + 3.103𝐵 ∗ 𝐵 − 2.352𝐶 ∗ 𝐶
− 1.462𝐷 ∗ 𝐷

(13)

𝐹2 = 29.39 − 0.437𝐴 − 2.03𝐵 − 47.92𝐶 − 0.419𝐷
− 0.019𝐴 ∗ 𝐵 + 0.757𝐴𝐶 + 5.856𝐵 ∗ 𝐶 (14)

Tables 7 and 8 show the ANOVA results of the safety
factor and displacement. This analysis was carried out at 5%
significance level and 95% confidence level. In Table 7, it
was observed that the contribution proportion on the safety
factor F1 of A and C and interaction between B and B were
more significant than other design parameters with 47.44%,
28.42%, and 10.86%, respectively. In contrast, its proportion
on the F1 of B andD, interaction between C andC, interaction
between A and A, and interaction between D and D were
very small with 0.76%, 0.09%, 6.24%, 3.78%, and 2.41%,
respectively. Therefore, to increase the safety factor, A and
C should be significantly controlled. Moreover, as given in
Table 8, the proportion on the displacement F2 of C was
highest with 84.34%, and its proportion ofDwas significantly

higher at 11.61%.Meanwhile, the other effect factors listed had
a much smaller contribution proportion. Its proportion of A
and B as well as interaction between A and B, interaction
between A and C, and interaction between B and C were
2.02%, 0.33%, 0.11%, 0.31%, and 1.25%, respectively. As a
result, in order to raise the value of F2, parameters C and D
should be significantly controlled. Besides, the contribution
percent of error was 0% and 0.03% for F1 and F2, respectively.

6.2. Sensitivity Analysis. Statistical technique was used to
identify the effect degree of variables on the quality responses.
As seen in Figure 9, factorA showed that, in the range from51
mm to 52 mm, this parameter caused a slight reduction to F1
and F2, but, in the range from52mm to 53m, it caused a sharp
reduction to F1 and a slight increase to F2. In addition, factor
B indicated that, in the range from 1mm to 1.1 mm, it affected
a dramatical decrease to F1 and caused a slight increase to F2;
however, from 1.1 mm to 1.2 mm, there was a sharp increase
to F1 and a gradual rise to F2.

As plottled in Figure 10, factor C revealed that, in the
range from 0.5 mm to 0.6 mm, it affected a gradual decrease
to F1 and caused a sharp decrease to F2, but, from 0.6 mm to
0.7 mm, there was a sharp increase to both F1 and F2. Finally,
factor D showed that, in the range from 0.5 mm to 0.6 mm,
it affected gradual increase to F1 and caused a slight increase
to F2; however, from 0.6 mm to 0.7 mm, there was a gradual
decrease to both F1 and F2.

In summary, overall effects of design variables were
illustrated, as in Figure 11. It gives an increase and decrease
range in each factor. From that, the designers could control
the factors so as to achieve the best design for the proposed
CRPS.

Based on the numerical results from Table 6, the S/N
ratio values (𝜂1 and 𝜂2) were computed by Eq. (9), as given
in Table 9. And, then, the mean values and mean range for
the normalized S/N ratios were computed for each level
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Figure 9: Effect diagram of 𝐴 and 𝐵 on (a) safety factor and (b) the output displacement.
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Figure 10: Effect diagram of 𝐶 and𝐷 on (a) safety factor and (b) the output displacement.

of each parameter by using Eq. (10) and the results were
illustrated in Table 10. Utilizing Eq. (11), the weight factor of
each response was computed. As shown in Tables 11 and 12,
the results indicated that the weight factors for safety factor
and displacement are 0.5995 (59.95%) and 0.4005 (40.05%),
respectively. These values were accurately determined based
on the set of established equations, and then they were
assigned for the further optimization process in the TLBO.
Therefore, it illustrates that the displacement had a significant
grade higher than that of the safety factor for the rotary stage.
This was in agreement with the author’s specialized knowl-
edge and design experiences in the compliant mechanism
area.

6.3. Optimal Results and Statistical Analysis. First of all, the
number of numerical experiments was laid out using the TM.
Next, a 3D FEMmodel was built and the numerical data were
retrieved. Based on this data, theRSMwas applied to establish
the mathematical equations for the displacement and safety
factor. And then, the WFs were determined using Equations
(9)-(12). Based on the well-established Equations (13) and
(14), the multiobjective optimization problem was solved
through the TLBO approach. The optimization process was
implemented using MATLAB 2017 software. The optimal
results were found at A = 51 mm, B = 1 mm, C = 0.5 mm,
D = 0.6674 mm, F1 = 1.558, and F2 = 2.096 mm. The results
revealed that the optimal displacement satisfied the initial
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Table 7: Analysis of variance for F1.

Source DF Seq SS Contribution Adj SS Adj MS P-Value
Model 8 0.017736 100.00% 0.017736 0.002217 Significant
Linear 4 0.013606 76.71% 0.013606 0.003401 Significant
A 1 0.008415 47.44% 0.008415 0.008415 Significant
B 1 0.000134 0.76% 0.000134 0.000134 Significant
C 1 0.005040 28.42% 0.005040 0.005040 Significant
D 1 0.000016 0.09% 0.000016 0.000016 Significant
Square 4 0.004130 23.29% 0.004130 0.001033 Significant
A∗A 1 0.000671 3.78% 0.000671 0.000671 Significant
B∗B 1 0.001926 10.86% 0.001926 0.001926 Significant
C∗C 1 0.001106 6.24% 0.001106 0.001106 Significant
D∗D 1 0.000427 2.41% 0.000427 0.000427 Significant
Error 0
Total 8 0.017736 100.00%

requirements and is suitable for the nanoindentation tester
system. In addition, the results found that the safety factor
is a relatively good value so as to guarantee a long working
efficiency and long fatigue life.

The next step is that the effectiveness of the proposed
algorithm was compared with other evolutionary algorithms
such as adaptive elitist differential evolution (AEDE) algo-
rithm [9]. The optimal parameters were utilized to build a
3D model for simulation validation in ANSYS software 18.2
in order to evaluate the error between the FEM and the
proposed hybrid approach. The process was conducted with
the same constraints and the same input displacement.

In order to evaluate the statistic behavior of the hybrid
optimization algorithm, a statistical analysis was used in this
study.TheWilcoxon’s rank signed test was applied to describe
the behavior of the proposed algorithm. The computational
simulations were conducted, 40 runs for each algorithm. The
Wilcoxon’s rank signed test was performed at 5% significant
level and 95% confidence intervals. The results of Wilcoxon’s
rank signed test were given in Tables 13 and 14.

As is known, a null hypothesis assumed that there is
no significant difference between mean values of the two
algorithms. As given in Tables 13 and 14, the results show
that the p-value is less than 0.05 (5% significance level) which
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Table 8: Analysis of variance for F2.

Source DF Seq SS Contribution Adj SS Adj MS P-Value
Model 7 0.320994 99.97% 0.320994 0.045856 0.036
Linear 4 0.315632 98.30% 0.120716 0.030179 0.043
A 1 0.006475 2.02% 0.000033 0.000033 0.667
B 1 0.001059 0.33% 0.004390 0.004390 0.096
C 1 0.270810 84.34% 0.076496 0.076496 0.023
D 1 0.037288 11.61% 0.001507 0.001507 0.161
2-Way Interaction 3 0.005362 1.67% 0.005362 0.001787 0.172
A∗B 1 0.000355 0.11% 0.000002 0.000002 0.910
A∗C 1 0.001007 0.31% 0.003340 0.003340 0.109
B∗C 1 0.004000 1.25% 0.004000 0.004000 0.100
Error 1 0.000101 0.03% 0.000101 0.000101
Total 8 0.321094 100.00%

Table 9: The experimental results and S/N ratios.

Trial No. f 1 f 2 (mm) 𝜂1 of f 1 (dB) 𝜂2 of f 2 (dB)
1 1.5800 2.1726 3.9731 6.7396
2 1.5645 1.8280 3.8875 5.2395
3 1.5348 1.6166 3.7210 4.1721
4 1.5587 1.7421 3.8553 4.8215
5 1.4766 1.6637 3.3853 4.4215
6 1.5866 2.0411 4.0093 6.1973
7 1.4634 1.5807 3.3073 3.9770
8 1.4821 1.9220 3.4176 5.6751
9 1.5091 1.9174 3.5744 5.6543

Table 10: The values of normalized S/N ratios (zi).

S/N ratios Normalized S/N ratios (zi)𝜂1 (dB) 𝜂2 (dB) z1 of 𝜂1 z2 of 𝜂2
3.9731 6.7396 0.9484 1.0000
3.8875 5.2395 0.8265 0.4570
3.7210 4.1721 0.5893 0.0706
3.8553 4.8215 0.7805 0.3057
3.3853 4.4215 0.1111 0.1609
4.0093 6.1973 1.0000 0.8037
3.3073 3.9770 0.0000 0.0000
3.4176 5.6751 0.1571 0.6147
3.5744 5.6543 0.3804 0.6071

Table 11: The weight factor for the safety factor.

Level The mean value of normalized S/N ratios at each level
A B C D

Level 1 0.7881 0.5764 0.7019 0.4800
Level 2 0.6306 0.3649 0.6625 0.6088
Level 3 0.1792 0.6566 0.2858 0.5090
Range 𝑟𝑖𝑗 0.6089 0.2917 0.4160 0.1288

Weight factor for the safety factor: w1 = 0.5995
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Table 12: The weight factor for the displacement.

Level The mean value of normalized S/N ratios at each level
A B C D

Level 1 0.5092 0.4352 0.8036 0.5893
Level 2 0.4234 0.4109 0.4202 0.4202
Level 3 0.4073 0.4938 0.2821 0.3303
Range 𝑟𝑖𝑗 0.1019 0.0830 0.5215 0.2590

Weight factor for the displacement: w2 = 0.4005

Table 13: Wilcoxon’s comparison of proposed algorithm vs AEDE for the safety factor.

Number for tests Estimated median p-value Wilcoxon statistic
40 0.0020 0.000 820

Table 14: Wilcoxon’s comparison of proposed algorithm vs AEDE for the displacement.

Sample for test Estimated median p-value Wilcoxon statistic
40 0.00175 0.000 820

is a strong evidence against the null hypothesis. It means
that there is a statistical difference between the proposed
algorithm and AEDE algorithm. It shows that the pro-
posed hybrid algorithm is better than the AEDE algorithm
in solving the multiobjective optimization design in this
paper.

Another way, the Friedman test [42] was the nonpara-
metric approach, being alternative to the one-way ANOVA
with repeated measures. This approach would determine
the difference between the proposed hybrid optimization
approach and the AEDE algorithm at significant level of 𝛼 =
0.05.The Friedman test for the safety factor and displacement
was conducted, separately. The computational simulations
were conducted, 40 runs for each algorithm. The results
showed that the p-value is less than 0.05. As a result, the
null hypothesis was rejected. It could be concluded that there
is a difference between the proposed hybrid optimization
approach and the AEDE, as given in Tables 15 and 16.

7. Validation

The optimal parameters (A = 51 mm, B = 1 mm, C = 0.5 mm,
D = 0.6674 mm, F1 = 1.558, and F2 = 2.096 mm) were used
to build a 3D model for simulation validation. The process
was performed with the same constraints and the same
input displacement. FEA model result was established from
the predicted result of the hybrid approach. The maximum
of deformation was about 2.096 mm and the minimum
of safety factor was approximately 1.558. Table 17 illustrates
that the error between predicted results and validations for
the displacement and safety factor are 6.82% and 0.3%,
respectively. It means that the predicted solutions are in good
agreement with the validated results.

Compared with the initial design, the optimal results
were better than the initial ones. An improvement after
optimizing for the safety factor was about 3.708% and for
the displacement was approximately 18.498%, as given in

Table 18. It shows that the proposed hybrid algorithm is an
efficient approach to multiobjective optimization design of
the CRPS.

8. Conclusions

This paper presented an efficient hybrid optimization algo-
rithm for the compliant rotary positioning stage for nanoin-
dentation tester. The CRPS imitated the biomechanical
behavior of beetle animal in order to reach a linear displace-
ment andmore flexibility. To enhance the working stroke and
safety factor, the geometric parameters of the proposed CRPS
were optimized via a hybrid algorithm of the TM, FEM, RSM,
and TLBO. The weight factors of displacement and safety
factor were calculated by establishing the sets of equations.

The result found that the WFs of safety factor and
displacement are 0.5995 (59.95%) and 0.4005 (40.05%),
respectively. These WF’s values were assigned into the TLBO
algorithm to solve the multiobjective optimization problem.
The sensitivity analysis and ANOVA were carried out to
determine the effects and significant contributions of design
variables to the quality responses. The results indicated that
the optimal parameters were found at A = 51 mm, B = 1 mm,
C = 0.5 mm, and D = 0.6674 mm. Moreover, the results indi-
cated that the optimal safety factor is 1.558 and the optimal
displacement is approximately 2.096 mm. It showed that the
predicted results are in good agreement with the validations.
Based on the Wilcoxon’s rank signed test and Friedman test,
the proposed hybrid optimization algorithm was better than
the AEDE algorithm. The hybrid optimization is an efficient
approach to solve the multiobjective optimization problem
for complex design.

Data Availability

The authors state that the data used to support the findings of
this study are included within the article.
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Table 15: Friedman test for the safety factor.

Response Number of tests Median Sum of Ranks
Safety factor by proposed method 40 1.5586 80.0
Safety factor by AEDE 40 1.5566 40.0
Overall 80 1.5576
DF Chi-Square P-Value
1 40.00 0.000
Null hypothesis H0: All treatment effects are zero
Alternative hypothesis H1: Not all treatment effects are zero

Table 16: Friedman test for the displacement.

Response Number of tests Median Sum of Ranks
Safety factor by proposed method 40 2.096 80.0
Safety factor by AEDE 40 2.094 40.0
Overall 80 2.095
DF Chi-Square P-Value
1 40.00 0.000
Null hypothesis H0: All treatment effects are zero
Alternative hypothesis H1: Not all treatment effects are zero

Table 17: Error between predicted result and validations.

Responses Prediction Validation Error (%)
F1 1.558 1.5533 0.30
F2 (mm) 2.096 1.9621 6.82

Table 18: Improvement between initial design and optimal design.

Performances Initial design Optimal design Improvement (%)
F1 1.5023 1.558 3.708
F2 (mm) 1.7688 2.096 18.498

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this article.

Acknowledgments

The authors are thankful for the financial support from the
HCMC University of Technology and Education, Vietnam,
under Grant No. T2019-06TÐ.

References

[1] Z. Hu, K. J. Lynne, S. P. Markondapatnaikuni, and F. Delfanian,
“Material elastic-plastic property characterization by nanoin-
dentation testing coupled with computer modeling,” Materials
Science and Engineering: A Structural Materials: Properties,
Microstructure and Processing, vol. 587, pp. 268–282, 2013.

[2] J. Nohava, N. X. Randall, and N. Conté, “Novel ultra nanoin-
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