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The theory of interval-valued intuitionistic fuzzy sets (IVIFSs) has been an impactful and convenient tool in the construction
of advanced multiple attribute group decision making (MAGDM) models to counter the uncertainty in the developing complex
decision support system. To satisfy much more demands from fuzzy decision making problems, we propose a method to solve
the MAGDM problem in which all the information supplied by the decision makers is expressed as interval-valued intuitionistic
fuzzy decision matrices where each of the elements is characterized by an interval-valued intuitionistic fuzzy number, and the
information about the weights of both decision makers and attributes may be completely unknown or partially known. Firstly,
we introduce a consensus-based method to quantify the weights of all decision makers based on all interval-valued intuitionistic
fuzzy decision matrices. Secondly, we utilize the interval-valued intuitionistic fuzzy weighted arithmetic (IVIFWA) operator to
aggregate all interval-valued intuitionistic fuzzy decision matrices into the collective one. Thirdly, we establish an optimization
model to determine theweights of attributes depending on the collective decisionmatrix and the given attribute weight information.
Fourthly, we adopt the weighted correlation coefficient of IVIFSs to rank all the alternatives from the perspective of TOPSIS via
the collective decision matrix and the obtained weights of attributes. Finally, some examples are used to illustrate the validity and
feasibility of our proposed approach by comparison with some existing models.

1. Introduction

Atanassov [1] introduced intuitionistic fuzzy sets (IFSs) as an
extension of conventional fuzzy set proposed by Zadeh in
1965 [2]. Atanassov andGargov [3] further proposed interval-
valued intuitionistic fuzzy sets (IVIFSs) on the basis of IFSs.
After their pioneering work, both IFSs and IVIFSs are getting
more and more attention and have been hot research issues
in a number of fields, such as industrial control [4], pattern
classification [5, 6], system modeling [7, 8], and decision
making analysis [9–13]. It should be emphasized that multiple
attribute decision making (MADM) and multiple attribute
group decisionmaking (MAGDM) on IFSs/IVIFSs have been
two especially important branches of operations research. A
MAGDM problem on IVIFSs can be regarded as a common
human activity, which includes a group of experts (decision

makers, DMs) to participate in the process of decisionmaking
so as to rank all the alternatives on given attributes through
a number of decision making matrices provided by all DMs
and the weights of both DMs and attributes.

In general, a MAGDM model involves five key parts: (1)
quantization of all respective decision making matrices from
every DMs, (2) assessing the weights of DMs, (3) aggregat-
ing all decision making matrices into a collective one, (4)
determining the weights of attributes, and (5) ranking all
the alternatives. Up to now, most of relevant studies have
put emphasis on (3), (4), and (5). Concerning the topic of
(3), a number of aggregation operators on IVIFSs have been
successfully proposed in succession from different perspec-
tives [14–19]. For (4), it is desirable first to consider the con-
straint condition of the given attribute weight information.
In general, the given attribute weight information consists
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of three types, i.e., crisp values, partially known constraint
condition, and completely unknown constraint condition. As
described in [20, 21], the provided partially known constraint
condition may be constructed with the following forms: a
weak ranking, a strict ranking, a ranking with multiples,
an interval form, a ranking of differences, and an interval-
valued intuitionistic fuzzy numbers. Some models, such as
multiple-objective programming model [20, 22], fractional
programming method [23], nonlinear programming model
[24], linear programming model [25], and grey relational
analysis [21], have been successfully developed from different
perspectives to determine the weight vector of attributes. For
more relevant models, please refer to [15, 26, 27].The primary
methods of ranking alternatives include ranking functions
[14], TOPSIS-based methods [24], and VIKOR-based meth-
ods [28]. On the topic of determining the weights of DMs,
Ye [29] presented a method using the ranking functions
on IFSs to determine the DMs’ weights for MAGDM with
completely unknown weight information on DMs. However,
this method produces incorrect weight vector of DMs which
may lead to unreasonable decision making results. Gupta et
al. [30] developed an optimization model to determine DMs’
weights where the weight information of DMs is expressed by
IVIFNs. Compared with numerous methods on determining
attributes weights, the research on assessing the DMs’ weights
in MAGDM is still in its infancy and remains to be devel-
oped.

In view of the above analysis, we shall focus on the
issue of MAGDM under interval-valued intuitionistic fuzzy
environment where all the information provided by the DMs
is characterized by IVIFNs, the information about DMs is
completely unknown, and the information about attributes is
partially known. The main contributions of this work can be
summarized as follows:

(i) A consensus-basedmethod is developed to determine
the weights of DMs.

(ii) A multiobjective optimization model is proposed to
determine the weights of attributes.

(iii) A TOPSIS-based MAGDM model under interval-
valued intuitionistic fuzzy environment is established
via the aggregation operator, the weights of DMs, and
the weights of attributes.

Overall, in light of the above three aspects, the proposed
method delivers a new vision of modeling uncertain group
decision making problems from application fields.

The remainder of this paper is organized as follows. In
Section 2, we recall some basic concepts and operations.
Section 3 proposes a method to solve those MAGDM prob-
lems under interval-valued intuitionistic fuzzy environment
where all the information provided by the DMs is character-
ized by IVIFNs, the information about DMs is completely
unknown, and the information about attributes is partially
known. An example is employed in Section 4 to prove the
performance of the proposed method by comparison with
some existing algorithms. Section 5 draws a conclusion of this
study.

2. Basic Concepts and Operations

2.1. Basic Concepts

Definition 1 (see [1, 3]). Let 𝑋 be a set and 𝐷[0, 1] be the set
of all closed subintervals of the interval; an IVIFS 𝐴 on 𝑋
has the form 𝐴 = {(𝑥, 𝜇𝐴(𝑥), ]𝐴(𝑥)) | 𝑥 ∈ 𝑋}, where 𝜇𝐴 :𝑋 → 𝐷[0, 1], ]𝐴 : 𝑋 → 𝐷[0, 1] are two maps satisfying
sup𝜇𝐴(𝑥)+ sup ]𝐴(𝑥) ≤ 1 for all 𝑥 ∈ 𝑋. For each IVIFS on𝑋,𝜋𝐴(𝑥) = [1− sup𝜇𝐴(𝑥)− sup ]𝐴(𝑥), 1− inf 𝜇𝐴(𝑥)− inf ]𝐴(𝑥)]
is an intuitionistic index of 𝑥 in 𝐴. 𝜇𝐴(𝑥), ]𝐴(𝑥), and 𝜋𝐴(𝑥)
denote the membership degree, the nonmembership degree,
and the hesitant degree, respectively.

Remark 2. When sup 𝜇𝐴(𝑥) = inf 𝜇𝐴(𝑥) and sup ]𝐴(𝑥) =
inf ]𝐴(𝑥), the IVIFS 𝐴 reduces to an IFS. If 𝜋𝐴(𝑥) = 0, then
an IFS becomes a fuzzy set. In the following part, we utilize(𝜇, ], 𝜋) (or (𝜇, ])) to denote an interval-valued intuitionistic
fuzzy number (IVIFN) or an intuitionistic fuzzy number
(IFN).

2.2. Operations

Definition 3 (see [31]). Let 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} be the
finite universal set and 𝐴, 𝐵 ∈ IVIFS(𝑋) be given by 𝐴 ={(𝑥𝑖, 𝜇𝐴(𝑥𝑖), ]𝐴(𝑥𝑖)) | 𝑥𝑖 ∈ 𝑋} and 𝐵 = {(𝑥𝑖, 𝜇𝐵(𝑥𝑖), ]𝐵(𝑥𝑖)) |𝑥𝑖 ∈ 𝑋} (𝑖 = 1, 2, . . . , 𝑛), where IVIFS(𝑋) denotes all the
IVIFSs on 𝑋. The correlation coefficient between 𝐴 and 𝐵 is
defined by 𝑐 (𝐴, 𝐵) = 𝛾 (𝐴, 𝐵)(𝛾 (𝐴, 𝐴) , 𝛾 (𝐵, 𝐵))1/2 , (1)

where𝛾 (𝐴, 𝐵) = 𝑛∑
𝑖=1

𝑤𝑖 (𝜇𝐴𝐿 (𝑥𝑖) ⋅ 𝜇𝐵𝐿 (𝑥𝑖) + 𝜇𝐴𝑈 (𝑥𝑖)⋅ 𝜇𝐵𝑈 (𝑥𝑖) + ]𝐴𝐿 (𝑥𝑖) ⋅ ]𝐵𝐿 (𝑥𝑖) + ]𝐴𝑈 (𝑥𝑖) ⋅ ]𝐵𝑈 (𝑥𝑖)+ 𝜋𝐴𝐿 (𝑥𝑖) ⋅ 𝜋𝐵𝐿 (𝑥𝑖) + 𝜋𝐴𝑈 (𝑥𝑖) ⋅ 𝜋𝐵𝑈 (𝑥𝑖)) .
(2)

Theweight vector𝑤 = [𝑤1, 𝑤2, . . . , 𝑤𝑛]𝑇 of 𝑥𝑖 (𝑖 = 1, 2, . . . , 𝑛)
satisfies 𝑤𝑖 ≥ 0 (𝑖 = 1, 2, . . . , 𝑛) and ∑𝑛𝑖=1𝑤𝑖 = 1.
Remark 4. Note that the correlation coefficient satisfies the
following conditions: (1) 𝑐(𝐴, 𝐵) = 𝑐(𝐵,𝐴); (2) 0 ≤ 𝑐(𝐴, 𝐵) ≤1; and (3) 𝐴 = 𝐵 if and only if 𝑐(𝐴, 𝐵) = 1. When 𝐴 and 𝐵
reduce to IFSs, the correlation coefficient can be described as𝑐 (𝐴, 𝐵) = 𝛾 (𝐴, 𝐵)(𝛾 (𝐴, 𝐴) ⋅ 𝛾 (𝐵, 𝐵))1/2 , (3)

where 𝛾(𝐴, 𝐵) = ∑𝑛𝑖=1𝑤𝑖[𝜇𝐴(𝑥𝑖)𝜇𝐵(𝑥𝑖) + ]𝐴(𝑥𝑖)]𝐵(𝑥𝑖) +𝜋𝐴(𝑥𝑖)𝜋𝐵(𝑥𝑖)].
Following Definition 3, we introduce a correlation coeffi-

cient between two IVIF matrices.
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Definition 5. Let 𝐷1 = [𝛼𝑗𝑘]𝐽×𝐾 and 𝐷2 = [𝛽𝑗𝑘]𝐽×𝐾 be
two interval-valued intuitionistic fuzzy matrices, where the
elements of both 𝐷1 and 𝐷2 are expressed by IVIFNs. Then
the correlation coefficient between 𝐷1 and 𝐷2 is defined by

𝐶 (𝐷1, 𝐷2) = 1𝐽𝐾 𝐽∑𝑗=1 𝐾∑𝑘=1𝑐 (𝛼𝑗𝑘, 𝛽𝑗𝑘) , (4)

where 𝑐(𝛼𝑗𝑘, 𝛽𝑗𝑘) is the correlation coefficient between 𝛼𝑗𝑘
and 𝛽𝑗𝑘 (see Definition 3).

Clearly, the above correlation coefficient satisfies the fol-
lowing theorem.

Theorem 6. For two interval-valued intuitionistic fuzzy
matrices𝐷1 = [𝛼𝑗𝑘]𝐽×𝐾 and𝐷2 = [𝛽𝑗𝑘]𝐽×𝐾, where the elements
of both𝐷1 and𝐷2 are expressed by IVIFNs,𝐶(𝐷1, 𝐷2) satisfies
the three conditions:

(i) 𝐶(𝐷1, 𝐷2) = 𝐶(𝐷2, 𝐷1);
(ii) 0 ≤ 𝐶(𝐷1, 𝐷2) ≤ 1;
(iii) 𝐷1 = 𝐷2 if and only if 𝐶(𝐷1, 𝐷2) = 1.

Definition 7 (see [14]). Let 𝛼𝑖 (𝑖 = 1, 2, . . . , 𝑛) be 𝑛 IVIFNs,
where 𝛼𝑖 = ([𝑎𝑖, 𝑏𝑖], [𝑐𝑖, 𝑑𝑖]), 0 ≤ 𝑎𝑖, 𝑏𝑖, 𝑐𝑖, 𝑑𝑖 ≤ 1, 𝑏𝑖 + 𝑑𝑖 ≤ 1,
and 1 ≤ 𝑖 ≤ 𝑛. Then the interval-valued intuitionistic fuzzy
weighted arithmetic (IVIFWA) operator has the following
form:

IVIFWA𝑤 (𝛼1, 𝛼2, . . . , 𝛼𝑛) = 𝑤1𝛼1 ⊕ 𝑤2𝛼2 ⊕ ⋅ ⋅ ⋅ 𝑤𝑛𝛼𝑛= ([1 − 𝑛∏
𝑖=1

(1 − 𝑎𝑖)𝑤𝑖 , 1 − 𝑛∏
𝑖=1

(1 − 𝑏𝑖)𝑤𝑖] ,
[ 𝑛∏
𝑖=1

𝑐𝑤𝑖𝑖 , 𝑛∏
𝑖=1

𝑑𝑤𝑖𝑖 ]) , (5)

where 𝑤𝑖 (𝑖 = 1, 2, . . . , 𝑛) is the weight of 𝛼𝑖 satisfying 𝑤𝑖 ≥ 0
and ∑𝑛𝑖=1𝑤𝑖 = 1.
2.3. Review of TOPSIS. TOPSIS is a multicriteria decision
analysis method, which was firstly introduced by Hwang and
Yoon in 1981 [32] with further developments by Yoon in 1987
[33] and Hwang, Lai, and Liu in 1993 [34]. TOPSIS is based
on the concept that the chosen alternative should have the
shortest geometric distance from the positive ideal solution
(PIS) and the longest geometric distance from the negative
ideal solution (NIS) [33, 34]. After their pioneering work,
TOPSIS has been extensively employed to establish various
uncertain decision making models, especially in MADM on
IFS/IVIFS.

Concerning TOPSIS within the framework of IVIFS, the
maximal IVIFN and the minimum IVIFN are defined by([1, 1], [0, 0]) and ([0, 0], [1, 1]), respectively.

D1 D2 DI

IVIFWA operator

The collective decision 
making matrix

The weight information 
on attributes

TOPSIS

Ranking results

Optimization model

The DMs’ weights

The weights of attributes

Consensus-based method

Figure 1: Block diagram of our MAGDMmodel

3. MAGDM under Interval-Valued
Intuitionistic Fuzzy Environment

3.1. Our Proposed MAGDMModel. For a MAGDM problem
under interval-valued intuitionistic fuzzy environment, every
DM assesses all the alternatives 𝐴𝑗 (𝑗 = 1, 2, . . . , 𝐽) on
attributes 𝑥𝑘 (𝑘 = 1, 2, . . . , 𝐾) through a decision making
matrix 𝐷𝑖 (𝑖 = 1, 2, . . . , 𝐼) as

𝐷𝑖 = (
(

𝛼(𝑖)11 𝛼(𝑖)12 ⋅ ⋅ ⋅ 𝛼(𝑖)1𝐾𝛼(𝑖)21 𝛼(𝑖)22 ⋅ ⋅ ⋅ 𝛼(𝑖)2𝐾... ... d
...𝛼(𝑖)𝐽1 𝛼(𝑖)𝐽2 ⋅ ⋅ ⋅ 𝛼(𝑖)𝐽𝐾
)
)

(6)

where 𝛼(𝑖)𝑗𝑘 = (𝜇(𝑖)𝑖𝑗 , ](𝑖)𝑖𝑗 ) is an IVIFN. Assume that the weight
vector of all 𝐼 DMs is 𝜔 = [𝜔1, 𝜔2, . . . , 𝜔𝐼] and the weight
vector of attributes is 𝑤 = [𝑤1, 𝑤2, . . . , 𝑤𝐾], where 𝜔𝑖 ≥ 0,∑𝐼𝑖=1 𝜔𝑖 = 1, 𝑤𝑘 ≥ 0, ∑𝐾𝑘=1𝑤𝑘 = 1, 𝑖 ∈ {1, 2, . . . , 𝐼}, and 𝑘 ∈{1, 2, . . . , 𝐾}. In this paper, suppose that the information on
DMs is completely unknown and the weight information on
attributes has the form of linear constraint condition Λ. The
block diagram of our MAGDM model is shown as Figure 1.
The following part will clearly illustrate this model.

Step 1 (determine the weights of DMs). From the perspective
of the majority criterion and consensus [27], those DMs
whose decision making matrices have greater consensus with
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others should be given larger values.Thus, theweights ofDMs
can be defined as follows:𝜔𝑖 = 𝜃𝑖∑𝐼𝑖=1 𝜃𝑖 , (7)

where 𝜃𝑖 has the form𝜃𝑖 = 𝐼∑
𝑖=1,𝑖 ̸=𝑖

𝐶 (𝐷𝑖, 𝐷𝑖) . (8)

Remark 8. By comparison with the majority criterion, all
DMs’ importance levels have been fully considered and
reflected through the obtained weights. This step lays good
foundation for making reasonable decision.

Step 2 (calculate the collective decision making matrix𝐷). Depending on all 𝐼 decision making matrices 𝐷𝑖 and
their relative weights 𝜔𝑖, we employ the IVIFWA aggrega-
tion operator to get the collective decision making matrix𝐷.

Let

𝐷 = (𝛼11 𝛼12 ⋅ ⋅ ⋅ 𝛼1𝐾𝛼21 𝛼22 ⋅ ⋅ ⋅ 𝛼2𝐾... ... d
...𝛼𝐽1 𝛼𝐽2 ⋅ ⋅ ⋅ 𝛼𝐽𝐾). (9)

Take 𝛼𝑗𝑘 (𝑗 = 1, 2, . . . , 𝐽; 𝑘 = 1, 2, . . . , 𝐾) as an example. 𝛼𝑗𝑘
is calculated by 𝛼𝑗𝑘 = IVIFWA𝜔(𝛼(1)𝑗𝑘 , 𝛼(2)𝑗𝑘 , . . . , 𝛼(𝐼)𝑗𝑘 ).
Step 3 (determine the weight vector of attributes). From the
standpoint of TOPSIS and the concept of IVIFS, the positive
ideal solution (PIS) can be defined by 𝐴+ = {𝛼+1 , . . . , 𝛼+𝐾},
where 𝛼𝑘 equals ([1, 1], [0, 0]) for 𝑘 ∈ {1, 2, . . . , 𝐾}. If
we consider certain alternative 𝐴𝑗 (𝑗 = 1, 2, . . . , 𝐽) with
the highest priority, it is easy to establish the following
optimization model:

max 𝑐 (𝐴𝑗, 𝐴+) ,
s.t. 𝑤 ∈ Λ,

𝐾∑
𝑘=1

𝑤𝑘 = 1,𝑤𝑘 ≥ 0,
(10)

where 𝐴𝑗 is the collective value on 𝑋 for 𝐴𝑗 (𝑗 = 1, 2, . . . , 𝐽).
Clearly, the bigger the 𝑐(𝐴𝑗, 𝐴+), the better the alternative𝐴𝑗. Solving this model, we can get the optimal solution𝑤(𝑗) =[𝑤(𝑗)1 𝑤(𝑗)2 ⋅ ⋅ ⋅ 𝑤(𝑗)𝐾 ]𝑇. This process is repeated until all the

corresponding 𝑤(𝑗) is determined. To fully consider all the
alternatives as a whole, we define the weight matrix 𝑊 as
follows:

𝑊 = ((
(

𝑤(1)1 𝑤(2)1 ⋅ ⋅ ⋅ 𝑤(𝐽)1𝑤(1)2 𝑤(2)2 ⋅ ⋅ ⋅ 𝑤(𝐽)2... ... d
...𝑤(1)𝐾 𝑤(2)𝐾 ⋅ ⋅ ⋅ 𝑤(𝐽)𝐾
))
)

. (11)

Moreover, we calculate Γ = (𝐸𝑊)𝑇(𝐸𝑊), where 𝐸 is defined
by

𝐸 = (
(

𝑐(𝛼11, 𝛼+) 𝑐 (𝛼12, 𝛼+) ⋅ ⋅ ⋅ 𝑐 (𝛼1𝐾, 𝛼+)𝑐 (𝛼21, 𝛼+) 𝑐 (𝛼22, 𝛼+) ⋅ ⋅ ⋅ 𝑐 (𝛼2𝐾, 𝛼+)... ... d
...𝑐 (𝛼𝐽1, 𝛼+) 𝑐 (𝛼𝐽2, 𝛼+) ⋅ ⋅ ⋅ 𝑐 (𝛼𝐽𝐾, 𝛼+)

)
)

, (12)

𝛼+ = ([1, 1] , [0, 0]) . (13)

Let 𝜌 be the normalized eigenvector of Γ. Then 𝑤 is deter-
mined by 𝑤 = 𝑊𝜌. (14)

Remark 9. As stated above, this optimization model has
been established using TOPSIS from the perspective of the
criterion of realism decision rule. Thus the attributes’ effects
have been fully considered and balanced.

Step 4 (calculate 𝑐(𝐴𝑗, 𝐴+) (𝑗 = 1, 2, . . . , 𝐽)). Based on the
obtained 𝐴𝑗, 𝐴+ and the weight vector of attributes 𝑤,
calculate 𝑐(𝐴𝑗, 𝐴+) (𝑗 = 1, 2, . . . , 𝐽) via (1).
Step 5 (rank all the alternatives). Depending on the obtained𝑐(𝐴𝑗, 𝐴+) (𝑗 = 1, 2, . . . , 𝐽), rank all the values in ascending
order, which corresponds to the order of all the alterna-
tives.

3.2. Comparison between Our Proposed Method and Ye’s
Method. Since the problem of determining the weights of
MAGDM under interval-valued intuitionistic fuzzy environ-
ment with completely unknown weight information about
DMs has been discussed and solved by Ye’s method [29], we
shall make a comparison between our proposed method and
Ye’s method.

Here we consider a MAGDM problem which includes
three experts, who present their decisions of four alternatives𝐴𝑗 (𝑗 = 1, 2, 3, 4) on five attributes 𝑥𝑘 (𝑘 = 1, 2, 3, 4, 5)
through the following three interval-valued intuitionistic
fuzzy decision making matrices:𝐷1,𝐷2, and𝐷3. Assume that
the weights of three DMs are completely unknown for this
decision making problem.
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𝐷1
= (
(

([0, 0.2] , [0.5, 0.5]) ([0.3, 0.3] , [0.7, 0.7]) ([0.4, 0.6] , [0.4, 0.4]) ([0.2, 0.2] , [0.8, 0.8]) ([0.4, 0.4] , [0.4, 0.6])([0.1, 0.1] , [0.7, 0.9]) ([0.2, 0.2] , [0.6, 0.8]) ([0, 0.2] , [0.5, 0.7]) ([0.3, 0.3] , [0.5, 0.7]) ([0.4, 0.4] , [0.4, 0.6])([0, 0.2] , [0.5, 0.7]) ([0.1, 0.1] , [0.9, 0.9]) ([0.1, 0.3] , [0.5, 0.7]) ([0.2, 0.2] , [0.8, 0.8]) ([0.4, 0.4] , [0.4, 0.6])([0.2, 0.2] , [0.7, 0.7]) ([0, 0] , [1, 1]) ([0.2, 0.4] , [0.4, 0.6]) ([0.1, 0.3] , [0.7, 0.7]) ([0.6, 0.6] , [0.4, 0.4])))
,

𝐷2
= ( ([0.5, 0.7] , [0, 0.2]) ([0.3, 0.7] , [0, 0.2]) ([0, 0.8] , [0, 0]) ([0.5, 0.7] , [0, 0.2]) ([0.6, 0.8] , [0, 0.2])([0.6, 0.6] , [0, 0.2]) ([0.6, 0.8] , [0.2, 0.2]) ([0.7, 0.9] , [0.1, 0.1]) ([0.6, 0.8] , [0, 0]) ([0.9, 0.9] , [0.1, 0.1])([0.8, 0.8] , [0.2, 0.2]) ([0.5, 0.7] , [0.3, 0.3]) ([0.4, 0.8] , [0, 0.2]) ([0.3, 0.5] , [0.3, 0.5]) ([0.2, 0.6] , [0.1, 0.3])([0.6, 0.8] , [0.1, 0.1]) ([0.7, 0.9] , [0, 0]) ([1, 1] , [0, 0]) ([0.5, 0.7] , [0.1, 0.1]) ([0.7, 0.9] , [0.1, 0.1])),
𝐷3
= (([0.5, 0.7] , [0.2, 0.2]) ([0.4, 0.6] , [0.3, 0.3]) ([0.3, 0.5] , [0.4, 0.4]) ([0.4, 0.6] , [0.2, 0.4]) ([0.5, 0.7] , [0.1, 0.3])([0.5, 0.5] , [0, 0.4]) ([0.4, 0.6] , [0.3, 0.3]) ([0, 0.6] , [0.4, 0.4]) ([0.5, 0.5] , [0.2, 0.4]) ([0.6, 0.6] , [0.4, 0.4])([0.4, 0.6] , [0.3, 0.3]) ([0.6, 0.6] , [0, 0.4]) ([0.3, 0.5] , [0.2, 0.4]) ([0.2, 0.4] , [0.4, 0.6]) ([0.3, 0.5] , [0.4, 0.4])([0.4, 0.6] , [0.1, 0.3]) ([0.6, 0.8] , [0.2, 0.2]) ([0, 0.6] , [0.3, 0.3]) ([0.4, 0.6] , [0.1, 0.3]) ([0.5, 0.7] , [0.3, 0.3])) .

(15)

In what follows, we utilize Ye’s method [29] and our
proposed method to determine the weights of three DMs,
respectively.

Case 1 (determine the weights of DMs via Ye’s method [29]).
Firstly, we get the score matrices 𝑆𝑖 (𝑖 = 1, 2, 3) of 𝐷𝑖 as
follows:

𝑆1 = (−0.4 −0.4 0.1 −0.6 −0.1−0.7 −0.5 −0.5 −0.3 −0.1−0.5 −0.8 −0.4 −0.6 −0.1−0.5 −1.0 −0.2 −0.5 0.2 ),
𝑆2 = (0.5 0.4 0.4 0.5 0.60.5 0.5 0.7 0.7 0.80.6 0.3 0.5 0 0.20.6 0.8 1.0 0.5 0.7),
𝑆3 = (0.4 0.2 0 0.2 0.40.3 0.2 −0.1 0.2 0.20.2 0.4 0.1 −0.2 00.3 0.5 0 0.3 0.3).

(16)

Secondly, we get the average score matrix 𝑆∗ based on 𝑆1,𝑆2, and 𝑆3 as below:𝑆∗
= (0.1667 0.0667 0.1667 0.0333 0.30000.0333 0.0667 0.0333 0.2000 0.30000.1000 −0.0333 0.0667 −0.2667 0.03330.1333 0.1000 0.2667 0.1000 0.4000) . (17)

Thirdly, we get the weights of three DMs𝜔 = [−0.1677 0.6190 0.5487] . (18)

Case 2 (determine the weights of DMs via our proposed
method). By applying our proposed method to determine
the weights of DMs, we get𝜔 = [0.2908 0.3304 0.3787] . (19)

Remark 10. As indicated in this example, 𝜔1 equals −0.1677
which completely contradicts the condition of Ye’s approach,
i.e., 𝜔𝑖 ≥ 0 (𝑖 = 1, 2, 3) [29]. This example implies that our
method can overcome the deficiencies from [29].

4. Illustrative Example

Here we consider a problem concerning a manufacturing
company from [29]. The objective of this problem is to
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determine the best global supplier for one of its most critical
parts used in assembling process. There are four alternatives𝐴𝑗 (𝑗 = 1, 2, 3, 4) for choice. Four experts (DMs) provide
their own decision making information of four alternatives
on five attributes, namely, 𝑥1 (cost), 𝑥2 (quality), 𝑥3 (service),

𝑥4 (supplier’s profile), and 𝑥5 (risk factor), through the
following four matrices: 𝐷𝑖 (𝑖 = 1, 2, 3, 4). The constraint
conditions of attributeweights can be described byΛ = {0.1 ≤𝑤1 ≤ 0.3, 0.1 ≤ 𝑤2 ≤ 0.3, 0.2 ≤ 𝑤3 ≤ 0.4, 0.2 ≤ 𝑤4 ≤0.4, 0.1 ≤ 𝑤5 ≤ 0.3}.

𝐷1
= (
(

([0.5, 0.6] , [0.2, 0.3]) ([0.3, 0.5] , [0.4, 0.5]) ([0.6, 0.7] , [0.2, 0.3]) ([0.5, 0.7] , [0.1, 0.2]) ([0.1, 0.4] , [0.3, 0.5])([0.3, 0.4] , [0.4, 0.6]) ([0.1, 0.3] , [0.2, 0.4]) ([0.3, 0.4] , [0.4, 0.5]) ([0.2, 0.4] , [0.5, 0.6]) ([0.7, 0.8] , [0.1, 0.2])([0.4, 0.5] , [0.3, 0.5]) ([0.7, 0.8] , [0.1, 0.2]) ([0.5, 0.8] , [0.1, 0.2]) ([0.4, 0.6] , [0.2, 0.3]) ([0.5, 0.6] , [0.2, 0.3])([0.3, 0.5] , [0.4, 0.5]) ([0.1, 0.2] , [0.7, 0.8]) ([0.1, 0.2] , [0.5, 0.8]) ([0.2, 0.3] , [0.4, 0.6]) ([0.2, 0.3] , [0.5, 0.6])))
,

𝐷2
= (
(

([0.4, 0.5] , [0.2, 0.4]) ([0.3, 0.4] , [0.4, 0.6]) ([0.6, 0.7] , [0.1, 0.2]) ([0.5, 0.6] , [0.1, 0.3]) ([0.1, 0.3] , [0.3, 0.5])([0.3, 0.5] , [0.4, 0.5]) ([0.1, 0.3] , [0.3, 0.7]) ([0.3, 0.4] , [0.4, 0.5]) ([0.2, 0.3] , [0.6, 0.7]) ([0.6, 0.8] , [0.1, 0.2])([0.4, 0.6] , [0.3, 0.4]) ([0.6, 0.8] , [0.1, 0.2]) ([0.7, 0.8] , [0.1, 0.2]) ([0.4, 0.6] , [0.3, 0.4]) ([0.5, 0.6] , [0.2, 0.4])([0.3, 0.4] , [0.4, 0.6]) ([0.1, 0.2] , [0.6, 0.8]) ([0.1, 0.2] , [0.7, 0.8]) ([0.3, 0.4] , [0.4, 0.6]) ([0.2, 0.4] , [0.5, 0.6])))
,

𝐷3
= (
(

([0.4, 0.7] , [0.1, 0.2]) ([0.3, 0.5] , [0.3, 0.4]) ([0.6, 0.7] , [0.1, 0.2]) ([0.5, 0.6] , [0.1, 0.3]) ([0.3, 0.5] , [0.4, 0.5])([0.4, 0.5] , [0.2, 0.4]) ([0.2, 0.4] , [0.4, 0.5]) ([0.4, 0.5] , [0.3, 0.4]) ([0.1, 0.2] , [0.7, 0.8]) ([0.6, 0.7] , [0.2, 0.3])([0.2, 0.4] , [0.3, 0.4]) ([0.6, 0.8] , [0.1, 0.2]) ([0.5, 0.7] , [0.1, 0.3]) ([0.5, 0.7] , [0.2, 0.3]) ([0.6, 0.8] , [0.1, 0.2])([0.3, 0.4] , [0.2, 0.4]) ([0.1, 0.2] , [0.6, 0.8]) ([0.1, 0.3] , [0.5, 0.7]) ([0.2, 0.3] , [0.5, 0.7]) ([0.1, 0.2] , [0.6, 0.8])))
,

𝐷4
= (
(

([0.6, 0.7] , [0.2, 0.3]) ([0.3, 0.4] , [0.3, 0.4]) ([0.7, 0.8] , [0.1, 0.2]) ([0.5, 0.6] , [0.1, 0.3]) ([0.1, 0.2] , [0.5, 0.7])([0.4, 0.5] , [0.4, 0.5]) ([0.1, 0.2] , [0.2, 0.3]) ([0.3, 0.4] , [0.5, 0.6]) ([0.2, 0.3] , [0.4, 0.6]) ([0.6, 0.7] , [0.1, 0.2])([0.4, 0.5] , [0.3, 0.4]) ([0.6, 0.7] , [0.1, 0.3]) ([0.5, 0.8] , [0.1, 0.2]) ([0.4, 0.5] , [0.2, 0.3]) ([0.5, 0.6] , [0.3, 0.4])([0.3, 0.4] , [0.4, 0.5]) ([0.1, 0.3] , [0.6, 0.7]) ([0.1, 0.2] , [0.5, 0.8]) ([0.2, 0.3] , [0.4, 0.5]) ([0.3, 0.4] , [0.5, 0.6])
)
)

.

(20)

In what follows, we utilize the proposed method to solve this
problem.

Step 1. Using (7), we get𝜔 = [0.2523 0.2503 0.2478 0.2496] . (21)

Step 2. On the basis of the known 𝜔 and four decision
matrices 𝐷𝑖 (𝑖 = 1, 2, 3, 4), we get the aggregated deci-
sion making matrix 𝐷 through IVIFWA operator as fol-
lows:

𝐷
= ((
(

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5𝐴1 ([0.4821, 0.6334] , [0.1684, 0.2916]) ([0.3000, 0.4523] , [0.3467, 0.4684]) ([0.6277, 0.7289] , [0.1191, 0.2215]) ([0.5000, 0.6280] , [0.1000, 0.2708]) ([0.1543, 0.3596] , [0.3660, 0.5438])𝐴2 ([0.3517, 0.4765] , [0.3369, 0.4954]) ([0.1259, 0.3034] , [0.2628, 0.4526]) ([0.3262, 0.4265] , [0.3938, 0.4951]) ([0.1763, 0.3041] , [0.5380, 0.6697]) ([0.6280, 0.7553] , [0.1187, 0.2211])𝐴3 ([0.3557, 0.5053] , [0.3000, 0.4232]) ([0.6280, 0.7787] , [0.1000, 0.2213]) ([0.5600, 0.7789] , [0.1000, 0.2211]) ([0.4265, 0.6062] , [0.2214, 0.3224]) ([0.5269, 0.6631] , [0.1864, 0.3133])𝐴4 ([0.3000, 0.4270] , [0.3369, 0.4952]) ([0.1000, 0.2262] , [0.6238, 0.7738]) ([0.1000, 0.2260] , [0.5439, 0.7740]) ([0.2263, 0.3265] , [0.4227, 0.5956]) ([0.2033, 0.3301] , [0.5231, 0.6443])
))
)

. (22)
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Step 3. According to the decision making matrix 𝐷, we get

𝐸 = (0.8434 0.6081 0.9339 0.8417 0.40080.6517 0.3362 0.6054 0.3496 0.93580.6917 0.9342 0.9048 0.8008 0.87120.5862 0.2174 0.2216 0.4315 0.3944) ,
𝑊 = ((

(
0.2000 0.2000 0.1000 0.30000.1000 0.1000 0.3000 0.10000.4000 0.2000 0.3000 0.20000.2000 0.2000 0.2000 0.30000.1000 0.3000 0.1000 0.1000

))
)

.
(23)

Moreover, we get

Γ = (1.8150 1.7727 1.7459 1.78191.7727 1.7474 1.7042 1.74231.7459 1.7042 1.6854 1.71201.7819 1.7423 1.7120 1.7539) . (24)

From Γ, we have 𝜌 = [0.0002 0.0009 0.0018 0.9971]𝑇.
Finally, we get𝑤 = [0.2995 0.1004 0.2002 0.2997 0.1002]𝑇 . (25)

Step 4. Based on the matrix 𝐸 and the attribute weight vector𝑤, we get 𝑐 (𝐴1, 𝐴+) = 0.7931,𝑐 (𝐴2, 𝐴+) = 0.5487,𝑐 (𝐴3, 𝐴+) = 0.8094,𝑐 (𝐴4, 𝐴+) = 0.4106.
(26)

Since 𝑐(𝐴3, 𝐴+) > 𝑐(𝐴1, 𝐴+) > 𝑐(𝐴2, 𝐴+) > 𝑐(𝐴4, 𝐴+), the
ranking order of four alternatives is𝐴3 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴4 and
the most desirable one is 𝐴3.

By applying the methods from [18, 20, 29, 30, 35–37] to
solve the above MAGDM problem, the decision results are
shown as Table 1. (Note that determining the weights of both
DMs and attributes has been partially or not been considered
in [18, 30, 36, 37]; we employ the weights derived from our
proposed method to these models for the above decision
problem.)

Remark 11. As shown in Table 1, seven methods get the
same decision results except for [18]. The reason is that this
method utilizes a different aggregation operator which plays
an important role in the process of decision making. What
is more, the validity and feasibility of our proposed method
have been verified by comparison with seven existing models.

Table 1: Decision results with different models.

Models Decision results
[18] 𝐴1 ≻ 𝐴3 ≻ 𝐴2 ≻ 𝐴4
[20] 𝐴3 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴4
[29] 𝐴3 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴4
[30] 𝐴3 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴4
[35] 𝐴3 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴4
[36] 𝐴3 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴4
[37] 𝐴3 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴4
Our proposed method 𝐴3 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴4
5. Conclusions and Discussions

In this paper, we have proposed a method to solve the
MAGDM problem in which all the information supplied
by the decision makers is expressed as interval-valued intu-
itionistic fuzzy decision matrices where each of the elements
is characterized by an interval-valued intuitionistic fuzzy
number, and the information about the weights of both
decision makers and attributes may be completely unknown
or partially known. The main merits of this method cover
three aspects. Firstly, the problem of determining the weights
of DMs and attributes has been solved by the proposed
consensus-based method and the proposed multiobjective
model, respectively. Secondly, a complete mathematical for-
mulation of MAGDM has been established, and its advan-
tages have been proved by two examples. In addition, we
have defined the correlation coefficient between two interval-
valued intuitionistic fuzzy matrices which develops basic
theories on IVIFSs.

It should be noted that we just consider the situation
where the information about DMs is completely unknown. In
the future, we will consider the situations where the weights
information about both DMs and attributes is expressed with
various constraint conditions. Meanwhile, we will employ the
proposed method to model some uncertain decision making
problems from some concrete applied fields, such as medical
decision making, social economic, and financial assessment.
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