RETRACTED
Mathematical Problems in Engineering has retracted the article titled “The HSABA for Emergency Location-Routing Problem” [1] due to substantial similarity with the equations presented in a previously published article that also modelled the emergency location-routing problem, which were not cited [2].
The similarities are as follows:(1)The two-stage model in [1], from Equation (1) to Equation (23), on page 4 and 5 is directly taken from the two-stage model on page 165 of [2](2)The linearization technique in [1], from Equation (24) to Equation (29), on page 5 is directly taken from Equation (23) to Equation (28) on page 166 in [2](3)The converted single-stage model in [1], from Equation (30) to Equation (59), on pages 5 and 6 is directly taken from Equation (29) to Equation (59) on page 167 in [2](4)The parameters and variables in Tables 1 and 2 in [1] are the same as those on page 164 in [2]
The authors apologized for the unattributed reuse of this model. They said they used the hybrid self-adaptive bat algorithm (HSABA), a nature-inspired algorithm, to this location-routing problem, a hard optimization problem. The HSABA with self-adaptation mechanism and hybridization mechanism effectively improves the defect of the original BA, i.e., easily being trapped in local optima. Moreover, they changed the traveling time function and used the function of the Bureau of Public Roads (BPR). In their model, they not only considered the total costs, including the operational costs of vehicles and the resettlement cost of warehouses, but also considered the total delivery time including the traveling time from the supply location to the demand point, the routing time between warehouses, and the shipping time from external supply location to warehouse. They also simplified some constraints of the previous model that may induce the mistakes in the program, running faster and not falling into local optima.
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Abstract. 
This article presents a Location-Routing Problem (LRP) model to assist decision makers in emergency logistics. The model attempts to consider the relationship between the location of warehouses and the delivery routes in order to maximize the rescue efficiency. The objective function of the minimization of time and cost is established in the single-stage LRP model considering different scenarios. The hybrid self-adaptive bat algorithm (HSABA) is an improved nature-inspired algorithm for solving this LRP model, hard optimization problem. The HSABA with self-adaptation mechanism and hybridization mechanism effectively improves the defect of the original BA, that is, trapping into the local optima easily. An example is provided to prove the effectiveness of our model. The studied example shows that the single-stage LRP model can effectively select supply locations and plan rescue routes faced with different disasters and the HSABA outperforms the basic BA.

1. Introduction
The 21st century is a period of the rapid development of human information technology. It is also a period of a surge of public social problems such as population, environment, and resources, which has led to a gradual increase in the number of public and natural disasters. The global economic losses are more than $3 trillion. Only in May 2017, all kinds of natural disasters have impacted 11.093 million people in China resulting in an economic loss of 10.13 billion RMB. Whatever natural disasters or human accidents, emergencies can easily cause a significant loss of personnel and property. If the effective rescue is not achieved, the consequences of these secondary disasters will be even more serious. As the most important part of the emergency management system, emergency logistics has received widely attention from everyone. In order to improve efficiency in emergency management and rescue processes, it is critical to select the emergency supply locations and the path between the warehouses and the affected areas. Therefore, the study of Location-Routing Problem (LRP) emerges. The goal of this paper is to study single-stage LRP to provide theoretical support for the practical work of emergency management and emergency logistics.
The research of emergency logistics is relatively early, and most scholars have studied from the aspects of emergency logistics management, site selection of emergency supplies storage, etc., by establishing mathematical models, and gradually form a complete systematic research topic. Kemballcook and Stephenson proposed the application of logistics management for emergency activities for the first time in the refugee relief operation in Somalia and developed that the logistics should first be centralized into a single organization in the event of a major emergency, which improves the transportation efficiency of emergency supplies [1]. Better understanding the unexpected events and incident management operations, Tufekci and Wallace not only emphasized the importance of policies, but also applied advanced communication and computer technology to build an emergency logistics mathematical model [2]. F Fiedrich et al. developed a dynamic optimization model for how to find available resources and how to distribute them after strong earthquakes and presented detailed descriptions of the available resources and operational areas [3]. Altay and Green summarized the previous literatures to find out the potential research directions on the issue of disaster operations and provided a starting point to the researchers [4]. R Oloruntoba et al. applied the idea of customer service in international emergency relief chain management and verified that the customer service played an important role in the operation strategies [5]. Nahleh et al. made predisaster plans using an integrated forecasting method and established a predictive tool with regard to the best fit probability distribution of four variables: number of disasters, number of deaths, number of people affected, and economic loss [6]. In the paper of Liu and Ye, a multistage humanitarian logistics planning model based on Bayesian Group Information Update (GIU) was stated. This approach was verified that it can allocate emergency supplies well according to the latest information [7]. Later, Y Ye et al. developed their previous study and discussed the loss of resources allocation and the loss of emergency logistics time. A two-stage scheduling method considering stochastic demand and travel time was proposed. Meanwhile, a deployment approach based on Bayesian GIU was proposed considering the incompleteness and lack of information of the actual situations [8].
Regarding the research of LRP, it was recorded that Von Boventer first studied the relationship between the cost of facility location and transportation cost in 1961 [9]. Due to the complexity of the problem, LRP research was developed quite slowly. Until the late 1980s, with the emergence of integrated logistics management concepts and the urgent need for effective distribution systems in international trade, LRP has received extensive attention from the academic community. S. Belardo et al. presented a local set coverage model to determine oil spill emergency equipment for fire scene, which can evaluate the relative probability of fire and the impact after the various types of leakage [10]. Barbaroso et al. combined the vehicle routes with helicopter mission assignment to establish a mathematical model of helicopter mission planning during disaster relief. A multicriteria analysis method was developed through conflicting multiobjectives in the hierarchy. The top decision makers worked together to design an interactive program to evaluate the preferences of alternative nondominated solutions [11]. L. Özdamar et al. studied the multicommodity network flow and vehicle routing in order to integrate the process of transporting materials into decision support system and formulated the logistics planning model under natural disasters on the basis of above study that solved by Lagrangian relaxation [12]. G. Barbaroso et al. proposed a two-stage stochastic programming model for the complexity of emergency rescue supplies to the disaster area after analyzing the system uncertainty and information asymmetry caused by the vulnerability of the transportation system [13]. B. Balcik et al. studied the location selection decision of the humanitarian relief chain in response to sudden disasters, established a variant model based on the largest coverage location model, and discussed its management significance [14]. A. M. Caunhye et al. developed a location configuration model to locate alternative medical facilities and designed a stochastic assignment scheme in a catastrophic radiation event primarily considering the factor of the choice of therapeutic methods and automatic evacuation [15]. Y. Rahmani et al. addressed mixed integer linear model for the secondary location and route selection including multiproduct and transportation and used the Cplex solver to solve this small-scale problem [16]. Jiahong Zhao and Ke studied the environmental risks of explosive waste management from the aspect of facility location, inventory level, multiwarehouse vehicle past, etc. [17]. In Jiahong Zhao and Ginger Y. Ke study [17], they formulated a solution based on TOPSIS method with reasonable calculation time to test their approach’s effectiveness.
Throughout the above researches on emergency logistics and emergency LRP, we can find that (1) most scholars divide LRP into a two-stage issue, that is, site selection and route planning, and apply them to the different situations without making full use of the relation of LAP and VRP. (2) The use of classical algorithms is too rampant, and classical algorithms have many shortcomings. Many new algorithms are more effective than classical algorithms. (3) Most of scholars focus on one scenario; however, they do not formulate a model that can be used in multiple context settings.
In view of the above problems, we consider that the location of the warehouse and the route of the delivery vehicle have strong dependence in the emergency logistics system. Therefore, a single-stage LRP model with the minimum rescue time and the lowest cost is established.
LRP is a typical NP-hard problem, which needs an optimization algorithm inspired by nature. In 2010, Yang [18] developed the bat algorithm (BA) that mimics the microbats behaviors of echolocation for orientation and prey seeking. It has received much attention, since the BA is simpler and has fewer parameters than other swarm intelligence algorithms. However, like other collective intelligence, the original BA is also easy to fall into local extremum and it is slow convergence at a later stage. Therefore, much of the effort in the bat algorithm research focuses on the improvement of the BA performance.
He et al. [19] introduced both simulated annealing and Gaussian perturbations into the original BA and called the new method as the simulated annealing Gaussian bat algorithm (SAGBA). This new algorithm inherits the simplicity and efficiency of the original BA and speeds up the global convergency rate for the global optimality. However, as the search iterations continue, the temperature is reduced, so the SAGBA maintains the standard BA’s characteristics.
Gandomi and Yang presented a chaotic bat algorithm (CBA) and applied deterministic chaotic signals in place of constant values. The results suggest that the new algorithm can improve the reliability of global optimality [20]. Jordehi also proposed a chaotic-based bat algorithm, which can diversify the bats and mitigate premature convergence problem by the ergodicity and nonrepetitious nature of chaotic functions [21]. Jun et al. introduced a double subgroup with a dynamic transition strategy into the standard BA to improve global exploring ability [22]. This double-subpopulation Lévy flight bat algorithm (DLBA) outperforms other algorithms in most of their experiments. Ramli et al. improved the phenomenon of slow convergence rate and low accuracy by modifying the dimensional size and providing inertia weight [23]. From simulations, the new algorithm proves to be more effective than the standard BA in terms of searching for a solution. Hong et al. forecasted the motion of a floating platform by a support vector regression model with a hybrid kernel function and proposed chaotic efficient bat algorithm based on the chaotic, niche search, and evolution mechanisms to improve the reliability and effectiveness of the basic BA [24].
Fister et al. developed self-adaptation bat algorithm (SABA) from differential evolution and tested on ten benchmark functions from publications [25]. Fister Jr. et al. [26] proposed the Hybrid Bat Algorithm (HBA) to improve the original bat algorithm by developing new variant with differential evolution (DE) strategy. The DE strategy maintains a population of candidate solutions and creates new candidate solutions that have the best score or fitness to optimize the problem. However, if these two solutions are in the same local optimal region, the cross-generation is not easy to get rid of the local optima.
In the paper by Fister [27], a novel Hybrid Self-Adaptive Bat Algorithm (HSABA) is proposed, which enables a self-adaptation of its control parameters and the DE strategy. The results proved that the HSABA outperforms the results of the basic BA and the SABA.
In this paper, we use HSABA to solve the single-stage LRP problem. The HSABA not only uses the self-adaptation mechanism, but exploits the standard “rand/1/bin” DE strategy to modify the local search of the original BA.
The remainder of this paper is organized as follows. In the next section, we simply summarize and analyze the characteristics of emergency LRP. A two-stage LRP model with the minimum time and the lowest cost is formulated, and then we integrated this two-stage model into a single-stage model by analyzing their objective functions and constraints. In Section 3, the basic bat algorithm is improved and the HSABA is used to solve the LRP model. In Section 4, we randomly select 20 emergency demand points and 4 supply locations from the Solomon test data under three different scenarios to verify our LRP model and solve the model by the HSABA. In Section 5, the paper summarizes the contents of the full text and draws conclusions. At the same time, it points out the shortcomings of this paper and the direction for future research.
2. Problem Formulation
LRP is the combination of LAP and VRP, but compared to these two problems, it is more complex and closer to the actual situation of modern emergency logistics. In order to effectively ship emergency resources to the demand points, we need to consider several factors about LRP.(1)Rescue time is the most urgent factor in emergency LRP.(2)The sudden occurrence of emergencies can cause the great need for a large number of emergency supplies, which may lead to a shortage of supplies.(3)Emergency supply network is a multilevel and complex network.(4)When a serious sudden event occurs, it is likely to cause the isolation of the road network near the disaster sites, making it impossible for the vehicle to connect with the emergency supply point.(5)In the process of emergency supplies distribution, the transportation infrastructures are also being repaired at the same time; thus the road environment is dynamically changing.
In summary, the emergency LRP have the characteristics of time optimality, dynamic variability, environmental complexity, and diversity of supplies. Therefore, this paper aims to establish the corresponding planning model by combining the objective function of the shortest time and the lowest cost.
Different from most scholars to distinguish between LAP and VRP, we set up the main objective function and the secondary objective function to comprehensively consider these two problems. The first step is to select emergency supply locations before the disaster occurs, and the second step is to determine the vehicle routes under various disaster scenarios.
2.1. Model Hypothesis
Since emergency LRP involves too many problems, this paper makes the following assumptions before establishing our LRP model:(1)The supply locations store sufficient emergency resources at the time of the emergency, and it can meet the demand of the affected areas to a certain extent.(2)The starting and ending points of the route of the emergency transportation vehicle are the same emergency supply location.(3)A disaster site is provided emergency resources by an emergency supply point.(4)The quantity of the batch of the supplies is fixed between emergence supply locations.(5)We ignore the disaster areas that require the rescue of aircraft, railway, and water transportation, and we only consider the road network around disaster areas.
2.2. General Definitions
To propose emergency LRP model, we need to establish the model parameters (Table 1) and variables (Table 2).
Table 1: The parameters of the LRP model.
	

		Set of all the warehouses 
		Set of demand node .
		Set of emergency vehicle 
		Set of scenario 
		Set of all nodes 
		Consistency parameter
		The resettlement cost of warehouse 
		Transportation time from zone  to zone  under the scenario 
		Free flow travel time from zone  to zone  under the scenario 
		Traffic flow from zone  to zone  under the scenario 
		Traffic capacity from zone  to zone  under the scenario 
		External supply transportation time of the warehouse  under the scenario 
		Number of total available supply.
		Upper bound of external supply under the scenario 
		Inventory capacity of warehouse 
		Demand of zone  under the scenario 
		Minimum required percentage of meeting demand under the scenario 
		Penalty factor that does not meet the demand point  under the scenario 
		Capability of vehicle
		Amount of a supply transfer
	



Table 2: The variables of the LRP model.
	

		Inventory level of warehouse 
		If , warehouse  can provide emergency supplies; or , warehouse  cannot provide them.
		Shipment batch from warehouse  to warehouse  under the scenario .
		Amount of external supply of warehouse  under the scenario 
		Amount of unfulfilled demand point  under the scenario 
		If , demand point  is arranged to depot  to provide emergency supplies under the scenario ; or , depot  does not allocate supplies to demand point .
		If , it means vehicle  transport supplies from zone  to zone  under the scenario ; or , otherwise.
		Number of shipments to demand point  under the scenario 
	



Shipment time  and traffic flow  meet the road resistance function of Bureau of Public Road (BPR) [28]: , where  is correction parameter.
2.3. The LRP Model
In this part, we select the emergency supply location at first, which includes the inventory level of every warehouse without exceeding the capacity of the warehouse itself. The purpose of the first step is as follows: when the various types of incidents occur, the model can balance the total cost of the warehouse and minimize the worst impact. In the second step, we consider the uncertain factors, that is, transportation time and demand for supplies, which aims to determine the number of transshipment between emergency supply points, the demand of emergency resources, and the vehicles routes.
With the parameters and variables previously defined, the following LRP model is proposed:
Objective function 1:
The objective function (1) has two terms: the resettlement cost of warehouse and the time of shipment. In order to promise the consistency of these two terms, we add a positive parameter  to convert the cost item to the time item.
Constraint (2) states the emergency supplies are not allowed to exceed the storage of warehouse. Constraint (3) limits the capacity of supply location. Constraint (4) presents the Boolean type of the state variable of emergency supply point. Constraint (5) indicates the inventory level is nonnegative.
Objective function 2:
The objective function (6) has four terms: the total travel time of rescue vehicles; the total time of shipping supplies from external depot; the total travel of moving vehicles between warehouses; the penalty time of unfulfilled demand because of uncertain accidents.
Constraint (7) ensures that each disaster area corresponds to a path. Constraint (8) stipulates the loading capacity of emergency vehicles is within the specified range. Constraints (9) and (10) assure the continuity of the rescue route and assure that every vehicle can return to its departure warehouse. The emergency supply location will allocate supplies to the demand points only when two demand points are connected, which is guaranteed by constraint (11). It is forbidden to remove the total supply from the emergency supply point beyond its net inventory level through constraints (12) and (13). Constraint (14) indicates that when the emergency supply point is in the receiving and storing state, its inventory cannot exceed its storage capacity. Constraint (15) sets the upper bound of the external supplies. The minimum level of satisfaction for each scenario is stipulated by constraint (16). Constraint (17) states the amount of demand that has not been met at the disaster site. Constraints (18) and (19) define the Boolean type of the emergency supply allocation variable and the path selection variable. Constraints (20), (21), (22), and (23) illustrate the nonnegative nature of these variables and the integer requirements of the transport variables.
This model is essentially a nonlinear and mixed integer model. Constraints (8) and (12) are nonlinear, so we need to convert them to a linear function by defining a new nonnegative variable:  = , , , ,  and , . Meanwhile, we need to add the following constraints:
where  is a big number. Constraints (24)-(29) illustrate the mathematical constraints when the original nonlinear LRP model converts into the linear model.
Thus, we integrate the objective functions in the two steps. The single-stage model is as follows:
where  is a very small positive number.
The objective function (30) is to minimize the resettlement cost of warehouse and the time of shipment. Constraint (31) states the emergency supplies are not allowed to exceed the storage of warehouse. Constraint (32) limits the capacity of supply location. Constraint (33) ensures that each disaster area corresponds to a path. Constraint (34) stipulates the loading capacity of emergency vehicles is within the specified range. Constraints (35) and (36) assure the continuity of the rescue route and assure that every vehicle can return to its departure warehouse. The emergency supply location will allocate supplies to the demand points only when two demand points are connected, which is guaranteed by constraint (37). It is forbidden to remove the total supply from the emergency supply point beyond its net inventory level through constraints (38) and (39). Constraint (40) indicates that when the emergency supply point is in the receiving and storing state, its inventory cannot exceed its storage capacity. Constraint (41) sets the upper bound of the external supplies. The minimum level of satisfaction for each scenario is stipulated by constraint (42). Constraint (43) states the amount of demand that has not been met at the disaster site.
Constraints (44)-(49) are the mathematical constraints to assure this LRP model is a linear model. Constraint (50) presents the Boolean type of the state variable of emergency supply point. Constraint (51) indicates the inventory level is nonnegative. Constraints (52) and (53) define the Boolean type of the emergency supply allocation variable and the path selection variable. Constraints (54)-(59) illustrate the nonnegative nature of these variables and the integer requirements of the transport variables.
3. Solution Approach
The LRP is a typical NP problem. Usually, we use swarm intelligence algorithm inspired by nature to solve NP problem. Most of the collective intelligence algorithms mimic biology behaviors. The bat algorithm (BA) is one of the members of the intelligent algorithm family. In terms of accuracy and effectiveness, the BA is more advantageous than over algorithms. In addition, the BA has fewer adjustable parameters, which can be used for solving NP-problem in different fields. Therefore, we use the BA for the single-stage LRP problem.
However, BA is similar to many collective intelligence algorithms, and it is prone to the following shortcomings:(1)When there are many bats, BA will fall into local optima.(2)As the calculation progresses, the accuracy of BA in the later stage is lower.(3)As the dimension increases, it is difficult for BA to obtain the global optimal solution in a limited time.
According to the above shortcomings, this paper exploits the HSABA to solve this model.
3.1. The Basic BA
For the BA, this nature-inspired algorithm mimics the bat behaviors including the echolocation for direction and hunting prey. The original bat algorithm makes some approximations, as follows [18]:
(1) All bats can use the echolocation to sense the distance and differences between prey and barriers.
(2) Every bat flies randomly with the velocity  at the position  with a varied frequency  with a varying wavelength  to search for food.  is the loudness. Bats automatically adjust their frequency and loudness based on their distance from the prey.
(3) The loudness can vary from the maximum  to the minimum .
3.1.1. Movement of Virtual Bats
In the d-dimensional search place, the new position  and speed  of a bat can be updated by the formulas (60), (61), and (62). 
where  is a varying frequency and the range is .  is a uniformly distributed random vector drawn.  is the position of the current optimal solution.
When performing a local search, it will select a solution among the current best solutions, and the location is as shown in formula (63).
where  is the average loudness at time .  is a random number.
3.1.2. Loudness and Pulse Emission
The loudness and pause emission of the BA are updated with iteration. When the bat is homing for its food, the loudness  will decrease and the pulse emission  will increase. If , it means bat finds the prey so that it can pause the sound. The update formulas for loudness and pulse emission are as follows:
where  is the loudness attenuation coefficient in order to control the loudness. Let  denote the pulse emissivity increase coefficient to control the pause emission.
3.2. The Hybrid Self-Adaptive Bat Algorithm (HSABA)
Although the BA is efficient and fewer parameters than other swarm intelligence algorithms, it is easy to trap into the local optima in the higher dimensions. In order for this algorithm to prevail, we use the HSABA instead of the original BA.
The HSABA includes two significant mechanisms, that is, self-adaptation mechanism [26] and hybridization mechanism [27]. Self-adaption of control parameters can be changed during the run to better suit the exploration. The hybridization mechanism compensates the domain-specific knowledge [29].
In the control process, the input variables  are widened by the control parameters  and  as formula (66). 
where  is the population size. The control parameters are modified as follows:
where  and  are the learning rates and  is generated random value. These modified parameters can be changed by the candidate solutions and the fitness values in order to improve the best solution of the original BA.
In addition, the HSABA is hybridized by differential evolution (DE) strategies [30, 31] that optimizes a problem by keeping a population of candidate solutions and creating new solutions to obtain the best result. This heuristic approach minimizes possibly nondifferentiable space functions and makes the convergence faster. The DE strategies are toward the current best solution during the process of mutation and crossover.
In the paper, we use the “rand/1/bin”, one of the most popular DE strategies. “rand/1/bin” illustrates the best vector is randomly selected, 1 vector difference is added to it, and the number of modified parameters follows a binomial distribution [26].
The output is trial solution . The DE strategies modify the trial solution as follows:
In (69),  is the jth evaluated generator and  controls some parameters in the trail vector.  assures the trail vector differs from the original solution.
The DE_strategy function is expressed as follows:
where  is the generation and  denotes the scaling factor which controls the amplification of the differential vector variation .  are random chosen vectors.
4. Case Study
We use the Solomon classic test data and randomly extract 20 coordinate data sets as the demand points, 4 coordinate data sets as emergency supply points by random function, and set 3 scenarios. This study stipulated that uniform vehicles are used to perform tasks in the shipment process. Due to the limitations of the test data itself, this article does not consider the situation of road blocking. Assume that the entire vehicle is maintained at 30 km/h during operation and the transportation cost for the specified unit mileage is 5 RMB/km. Geographical coordinates and demand for each demand point are shown in Table 3 and emergency supply point capacity and the fixed open cost are shown in Table 4.
Table 3: Geographical coordinates and demand for each demand point.
	

	Demand point	X-axis	Y-axis	cenario 1	cenario 2	cenario 3
	

	1	35	35	1	5	10
	2	25	30	3	15	30
	3	30	25	2	10	20
	4	45	65	7	35	70
	5	35	40	4	20	40
	6	65	55	1	5	10
	7	42	7	1	5	10
	8	13	52	2	10	20
	9	63	23	5	25	50
	10	24	58	5	25	50
	11	37	47	5	25	50
	12	49	42	3	15	30
	13	14	37	6	30	60
	14	31	67	2	10	20
	15	25	21	2	10	20
	16	55	20	1	5	10
	17	20	65	7	35	70
	18	5	30	1	5	10
	19	55	5	3	15	30
	20	11	31	6	30	60
	



Table 4: Emergency supply location capacity and fixed open cost.
	

	Emergency supply location	Capacity	Fixed open cost
	

	21	200	1200
	22	250	1500
	23	100	1000
	24	300	2000
	



The BA and HSABA parameters are set as follows: the loudness , the pulse rate , minimum frequency , maximum frequency , the loudness attenuation coefficient , the pulse emissivity increase coefficient , and the pulse emissivity increase coefficient . The values for loudness are drawn from interval  and the pulse rate . The population size of the HSABA is 100. The results of selected supply locations and their corresponding demand points under three scenarios can be seen in Table 5. The distribution of supply locations and demand points is shown in Figure 1. The route chart of cenarios 1, 2, and 3 is shown in Figures 2, 3, and 4. We also obtain the distance chart between supply locations and demand points in Table 6 and the optimal solution chart under 3 scenarios in Table 7.
Table 5: The result of selected supply location and their corresponding demand points under three scenarios.
	

	Emergency supply location	cenario 1	cenario 2	cenario 3
	

	21	18,20,13,2,3,15	15,3,2,13,18,20	18,20,2,3,15
	22	8,10,14,17	17,14,10,8	8,13,5,11,10,14,17
	23	4,11,5,1,12,6	12,5,11,4	4,1,12,6
	24	19,9,6,7	19,16,9,6,1,7	16,9,19,7
	



Table 6: The distance chart between supply locations and demand points.
	

	 	1	2	3	4	5	…	18	19	20	21	22	23	24
	

	1	0.00	50.25	60.21	40.31	35.36	…	60.75	18.60	46.10	55.90	20.62	45.28	21.02
	2	50.25	0.00	35.36	65.19	32.02	…	17.46	40.26	56.57	7.07	31.62	68.01	29.27
	3	60.21	35.36	0.00	50.00	25.00	…	22.47	42.20	35.36	31.62	51.48	50.25	45.79
	4	40.31	65.19	50.00	0.00	33.54	…	64.85	29.68	15.81	67.08	51.48	5.00	46.87
	5	35.36	32.02	25.00	33.54	0.00	…	32.25	17.20	25.00	33.54	30.41	36.06	24.33
	6	25.00	31.62	35.36	35.36	11.18	…	37.48	9.00	31.62	35.36	20.00	39.05	14.04
	7	25.00	38.08	36.06	28.28	11.18	…	42.01	6.40	25.50	41.23	25.50	32.02	19.92
	8	65.19	30.41	11.18	60.21	31.62	…	14.14	48.33	46.10	25.00	53.15	60.82	48.08
	9	39.05	28.28	21.21	38.08	5.00	…	27.29	21.47	28.28	29.15	31.62	40.31	25.64
	10	71.06	50.25	15.00	52.20	36.06	…	36.06	52.50	36.40	46.10	65.00	50.99	59.09
	11	32.14	59.48	48.66	8.25	28.86	…	61.00	22.02	18.38	62.03	43.57	13.15	39.20
	12	42.11	8.25	37.12	59.82	27.80	…	23.43	33.25	52.80	14.76	23.41	63.03	21.10
	13	54.57	60.61	34.54	22.20	30.46	…	54.41	38.05	8.54	60.11	58.42	19.70	52.61
	14	50.00	9.22	26.17	59.03	25.50	…	11.40	37.01	49.04	8.06	33.84	61.40	29.97
	15	45.80	25.55	15.26	43.97	12.17	…	20.88	28.64	32.45	24.76	36.25	45.69	30.53
	16	50.45	38.47	13.04	37.01	15.65	…	30.81	31.89	22.80	37.01	45.61	37.48	39.56
	17	27.29	23.02	40.25	48.17	21.10	…	34.48	19.42	44.38	28.64	11.40	52.01	6.71
	18	60.75	17.46	22.47	64.85	32.25	…	0.00	46.39	52.77	11.18	45.22	66.48	41.18
	19	18.60	40.26	42.20	29.68	17.20	…	46.39	0.00	30.02	44.28	21.93	34.00	17.20
	20	46.10	56.57	35.36	15.81	25.00	…	52.77	30.02	0.00	57.01	50.99	15.00	45.35
	21	55.90	7.07	31.62	67.08	33.54	…	11.18	44.28	57.01	0.00	38.08	69.46	35.17
	22	20.62	31.62	51.48	51.48	30.41	…	45.22	21.93	50.99	38.08	0.00	55.90	6.08
	23	45.28	68.01	50.25	5.00	36.06	…	66.48	34.00	15.00	69.46	55.90	0.00	51.11
	24	21.02	29.27	45.79	46.87	24.33	…	41.18	17.20	45.35	35.17	6.08	51.11	0.00
	



Table 7: The optimal solutions of three scenarios.
	

	Scenario No	Location	Total distance	Time objective function	Cost objective function
	

	1	(10,10)	108.7	20	2000
	2	(15,60)	100.4	19.7	1890
	3	(50,55)	110.8	21.5	1650
	







	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
		
		
		
		
			
		
			
		
			
		
	


Figure 1: The distribution of supply locations and demand points.






	
	
		
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
		
		
		
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
		
			
		
			
		
			
		
	


Figure 2: The route chart of cenario 1.






	
	
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
		
		
		
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
		
			
		
			
		
			
		
	


Figure 3: The route chart of cenario 2.






	
	
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
		
		
		
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
		
			
		
			
		
			
		
	


Figure 4: The route chart of cenario 3.


In this paper, we allocate the corresponding vehicles and routes to emergency supply location and get the optimal solution in the end. Since the capacity of the vehicle exceeds the capacity of the total demand points, every emergency supply location has only one route, starting from the emergency supply location to demand point and then returning to the emergency supply location to form a ring route. When the route distance is smallest, the corresponding travel time is minimal. In every scenario, the amount of demand at the disaster site determines which warehouse is to schedule resources within their capabilities.
In Figure 5, the convergence curve can illustrate the differences between the BA and the HSABA in terms of the characteristics of convergence and the ability to escape from the local optima. The population size of the basic BA and the HSABA is 100. These two algorithms are in the same experiment situation. It can be seen in Figure 5 that the HSABA outperforms the basic BA. The HSABA quickly converges to the optimal solution and the accuracy also increases obviously. Compared with the original BA, the curve of HSABA is more smooth, which illustrates HSABA can escape from the local optima.




	
	
		
		
			
		
		
			
		
		
			
		
		
			
		
		
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
		
			
		
			
			
		
		
		
	


Figure 5: The convergence curve of the BA and the HSABA.


5. Conclusion
LRP plays a key role in the decision support system for preemptive prevention, allocation of emergency resources in the event, selection of the best rescue route, and post-event improvement in all aspects of the emergency. This paper analyzes the research status of LRP, finds the shortcomings, and establishes a single-stage LRP model with the shortest time and lowest cost. Meanwhile, we use the HSABA to solve this NP problem instead of the basic BA. In the case study, there are 20 demand points, 4 supply locations randomly selected from Solomon test data. Assuming the three scenarios, the single-phase LRP model is verified by the optimal solutions of warehouse locations and shipment routes. Our model not only considers the different disaster scenes, but also integrates the selection of supply locations and routes as one issue to ensure that the needs for each demand point are met within the shortest time. In terms of the characteristics of convergence and the ability to escape from the local optima, the HSABA with self-adaptive mechanism and hybridization mechanism outperforms the original BA.
Several avenues present themselves as direction for further work. In this paper, although we have considered the road situation, in the case study, due to the limitation of Solomon test data, we cannot add this factor to the model to verify. In addition, as far as we know, some natural disasters are destructive. Thus, some emergency supply locations will temporarily expire, which is another factor we need to consider. What is more, Solomon test data is used in the case study, but it still has a certain gap with the actual data. Because of the difficulty and confidentiality of the collection of actual data, we can only use Solomon test data to verify our model.
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