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This article is committed to𝐻∞ filtering for linear discrete-time systems with time-varying delay. The novelty of the paper comes
from the consideration of the newWirtinger-based inequality with double accumulation terms and the idea of delay-partitioning,
which guarantees a better asymptotic stability and is less conservative than the celebrated free-weighting matrix or Jensen’s
inequality methods. In combination with the improved Wirtinger-based inequality to handle the modified Lyapunov-Krasovskii
(L-K) functionals, a new delay-dependent bound real lemma (BRL) is gained. In the light of the derived𝐻∞ performance analysis
results, the𝐻∞ filter will be designed in response to linear matrix inequality (LMI). The validness of the proposed methods will be
expressed via some numerical examples by the comparison of existing results.

1. Introduction

Concerning the design of the 𝐻∞ filter for control systems,
a large number of results were investigated in the literature
(see, for example, [1–13] and reference therein). As we all
know, one of its goals is to design a more suitable and stable
filter to make the maximum ratio of noise signal to estimated
error less than a certain positive value, thus ensuring that
the 𝐻∞ norm from the interference input to the estimated
error output is minimized. Because the classical Kalman
filter provides the optimal estimation with the minimum
root mean square error as the objective function and makes
idealized assumptions in the filtering process, for example,
the systemmodel or systemdisturbance is available.However,
in practical engineering applications, when problems such as
model uncertainty and noise assumptions are not clear, the
Kalman filter becomes incapable. Therefore, in order to cope
with model uncertainty and parameter uncertainty, robust
Kalmanfiltering and adaptive Kalman filtering have emerged,
respectively. But the results are not satisfactory. Afterwards,
researchers began to explore more realistic filters from the

perspective of robustness, including the 𝐻∞ filter we have
mentioned earlier. Compared with𝐻2 and Kalman filter, the𝐻∞ filter merely requires the noise energy to be limited
without statistical information or the prior knowledge of
noise. Obviously, 𝐻∞ filter has better robustness and it is
more suitable for practical engineering applications.

In addition, time delay is common and inevitable phe-
nomenon existing in control systems, which often makes our
systems property decline or even course instability. How-
ever, the results show that the stability condition of delay-
dependent filter is less conservative than delay-independent
filter [14–18]. In order to reduce the conservativeness of the
results obtained, many pieces of literature have studied the
bounding techniques for cross-terms and model transforma-
tion and selected the appropriate Lyapunov-Krasovskii (L-
K) functionals deeply in [19–28]. As mentioned in [29, 30],
for delay-dependent 𝐻∞ filter design for discrete-time sys-
tems, the authors had proposed using delay-partitioning idea
[30, 31] to divide the constant lower bound 𝑑𝑚 into m partial
intervals. As a result, this delay-partitioning method was
included in the newly defined L-K functionals, which means
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the results acquired also rely on the number of divisions m for
the lower bound 𝑑𝑚.Therefore, the idea of delay-partitioning
plays an important role in reducing the conservativeness
of time-delay systems. Furthermore, in combination with
some conventional methods, such as free-weighting matrix
[32], Jensen’s inequality [33], and Wirtinger-based integral
inequality with single summation [34], to deal with the
chosen L-K functionals, we gained efficient stability analysis
criteria for discrete-time systemswith time-delay. In the latest
article, researchers have proposed Wirtinger-based integral
inequality with double summation [35] and reciprocally
convex combination inequality [36], which have been applied
in practice. And we note that the novel Wirtinger-based
integral inequality also has a significant effect in dealing
with some nonlinear systems. For example, in [37], Wei
and Qiu skillfully combine the newWirtinger-based integral
inequality with the improved reciprocally convex approach
and S-processes to obtain a novel 𝐻∞ performance anal-
ysis criterion for the underlying closed-loop system. Thus,
it effectively reduces the conservativeness of the original
results. As the same, for the nonlinear systems with time-
varying delays, choosing the appropriate L-K functional
and combining an improved Wirtinger-based inequality to
handle with the quadratic accumulation term encountered
in the derivation of L-K functional are equally effective,
as in [38]. Accordingly, this novel summation inequality
is more effective than the routine methods—free-weighting
matrix, Jensen’s inequality, and Wirtinger-based inequality
with single summation, which has introduced more system
elements while adding a quadratic accumulation term. Thus,
we can grasp more systematic information to achieve the
purpose of reducing the conservativeness of the original
results.

Inspired by the abovementioned, the main contribution
of this paper is to further improve the stability criteria for
discrete-time systems with time-varying delay and we work
on reducing the conservativeness of the stability results.
By introducing the new quadratic summation term, more
system information is added to our consideration as much
as possible in order to make full use of the novel Wirtinger-
based inequality to deal with the integral term in L-K
functional. For the effective means delay-partitioning and a
novel summation inequality, an improved delay-dependent𝐻∞ filter design for discrete-time systems with a state delay
will be presented, importantly, utilizing the new Wirtinger-
based inequality with double summation to further pro-
cess the modified L-K functional, which can acquire a
lower conservativeness contrast to what we have mentioned
above. Finally, some elaborate numerical examples will be
given to prove the effectiveness and the advantage of our
ways.

Throughout our paper, the superscript “𝑇” represents the
matrix transposition, N denotes the set of nonnegative, R𝑛
expresses the n-dimensional Euclidean space, R𝑚×𝑛 means
the set of all 𝑚 × 𝑛 real matrices, 0𝑚×𝑛 stands for 𝑚 ×𝑛 zero matrix, I and 0 indicate an identity matrix and a
zero matrix with appropriate dimension, respectively, and𝑃 > 0 (≥ 0) is used to denote the matrix 𝑃 is positively
defined and symmetric. Moreover, the 𝑠𝑦𝑚{𝑋} shows𝑋+𝑋𝑇,

and diag{. . .} means a block-diagonal matrix. And in the
symmetric matrix, the symmetric term is defined as, e.g.,

[𝐴 𝐵
∗ 𝐶 ] = [ 𝐴 𝐵

𝐵𝑇 𝐶 ] . (1)

2. System Description and Problem Analysis

Define the following linear time-invariant discrete-time sys-
tem with a state delay:

𝑥 (𝑡 + 1) = 𝐴𝑥 (𝑡) + 𝐴𝑑𝑥 (𝑡 − 𝜏 (𝑡)) + 𝐵𝜔 (𝑡) ,
𝑦 (𝑡) = 𝐶𝑥 (𝑡) + 𝐶𝑑𝑥 (𝑡 − 𝜏 (𝑡)) + 𝐷𝜔 (𝑡) ,
𝑧 (𝑡) = 𝐻𝑥 (𝑡) + 𝐻𝑑𝑥 (𝑡 − 𝜏 (𝑡)) + 𝐿𝜔 (𝑡) ,
𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 = −𝜏, −𝜏 + 1, . . . , 0,

(2)

where 𝑥(𝑡) ∈ R𝑛 stands for the state vector; 𝑦(𝑡) ∈ R𝑞

represents the measured output; 𝑧(𝑡) ∈ R𝑝 means the signal
to be measured; 𝜔(𝑡) ∈ R𝑙 is the noise input content 𝜔 ≜{𝜔(𝑡)} ∈ 𝑙2[0,∞); 𝑥(𝑡) = 𝜙(𝑡), 𝑡 =−𝜏, −𝜏 + 1, . . . , 0, is a given
initial condition sequence; 𝜏(𝑡) expresses the time delay and
we assume that it satisfies

1 ≤ 𝜏 ≤ 𝜏 (𝑡) ≤ 𝜏, 𝑡 = 1, 2, . . . , (3)

and besides, 𝜏 and 𝜏 indicate the known lower bounds and
upper bounds of time delay, respectively. At the same time,𝐴,𝐴𝑑, 𝐵, 𝐶, 𝐶𝑑, 𝐷,𝐻,𝐻𝑑, and 𝐿 are known constant systems
matrices.

Given system (2), we are committed to design a linear
time-invariant filter to guarantee the 𝑧𝐹(𝑡) (output of the
filter) tracks the original 𝑧(𝑡) to be estimated. Consider a
linear full-order filter described by

𝑥𝐹 (𝑡 + 1) = 𝐴𝐹𝑥𝐹 (𝑡) + 𝐵𝐹𝑦 (𝑡) , 𝑥𝐹 (0) = 0,
𝑧𝐹 (𝑡) = 𝐶𝐹𝑥𝐹 (𝑡) + 𝐷𝐹𝑦 (𝑡) , (4)

where 𝑥𝐹(𝑡) ∈ R𝑛 is the filter state, and 𝐴𝐹, 𝐵𝐹, 𝐶𝐹, and 𝐷𝐹
are filer matrices to be determined.

Defining the augmented state vector 𝜁(𝑡) =𝑐𝑜𝑙[𝑥(𝑡), 𝑥𝐹(𝑡)], and the estimation error 𝑒𝑡 = 𝑧(𝑡) − 𝑧𝐹(𝑡), we
receive the following filtering error system:

𝜁 (𝑡 + 1) = 𝐴𝜁 (𝑡) + 𝐴𝑑𝐾𝜁 (𝑡 − 𝜏 (𝑡)) + 𝐵𝜔 (𝑡) ,
𝑒 (𝑡) = 𝐶𝜁 (𝑡) + 𝐶𝑑𝐾𝜁 (𝑡 − 𝜏 (𝑡)) + 𝐷𝜔 (𝑡) ,
𝜁 (𝑡) = [𝜙𝑇 (𝑡) , 0]𝑇 , 𝑡 = −𝜏, −𝜏 + 1, . . . , 0,

(5)

where

𝐴 = [ 𝐴 0
𝐵𝐹𝐶 𝐴𝐹] ,

𝐴𝑑 = [ 𝐴𝑑𝐵𝐹𝐶𝑑] ,
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𝐵 = [ 𝐵
𝐵𝐹𝐷] ,

𝐶 = [𝐻 − 𝐷𝐹𝐶 −𝐶𝐹] ,
𝐶𝑑 = 𝐻𝑑 − 𝐷𝐹𝐶𝑑,
𝐷 = 𝐿 − 𝐷𝐹𝐷,
𝐾 = [𝐼 0] .

(6)

Owing to the fact that the original system model has
no control input, to prove the asymptotic stability of the
filtering error system, we need to assume that system (2) is
asymptotically stable.

The propose of our paper is to design a stable full-
order filter of the form (4) and meet the following two
points: Firstly, the filter error system (5) is asymptomatically
stable and secondly, the filtering error system in (5) has a
prescribed level 𝛾 of 𝐻∞ noise attenuation, and under zero-
initial condition, ‖𝑒‖2 ≤ 𝛾‖𝜔‖2 is satisfied for all nonzero𝜔 ∈ 𝑙2[0,∞).

Before entering the next section, a vital lemma will be
introduced to be used in the derivation of our conclu-
sion. Then, for any sequence of discrete-time variable 𝑥 in[𝛼, 𝛽] → R𝑛, we define 𝑙 = 𝛽 − 𝛼, 𝜅1 = (1/(𝑙 + 1))∑𝛽𝑖=𝛼 𝑥(𝑖),𝜅2 = (2/(𝑙 + 1)(𝑙 + 2))∑𝛽𝑖=𝛼∑𝛽𝑗=𝑖 𝑥(𝑗).
Lemma 1 (see [35, 39]). For any sequence of discrete-time
variable 𝑥 in [𝛼, 𝛽] → R𝑛, matrices 𝑅 > 0, 𝐿 𝑖 ∈ R4𝑛×𝑛,𝑖 ∈ {0, 1, 2}, and an arbitrary vector𝛿, the following summation
inequality holds:

−𝛽−1∑
𝑖=𝛼

𝑦𝑇 (𝑖) 𝑅𝑦 (𝑖) ≤ 𝛿𝑇𝜓0𝛿 + 𝑠𝑦𝑚{𝛿𝑇 �} , (7)

where

𝛿 ≜ 𝑐𝑜𝑙 {𝑥 (𝛽) , 𝑥 (𝛼) , 𝜅1, 𝜅2} ,
𝜓0 ≜ 𝜎0𝐿0𝑅−1𝐿𝑇0 + 𝜎1𝐿1𝑅−1𝐿𝑇1 + 𝜎2𝐿2𝑅−1𝐿𝑇2 ,
� ≜ 𝐿0�0 + 𝐿1�1 + 𝐿2�2,
𝜎0 = 𝑙,
𝜎1 = 𝑙 (𝑙 − 1)3 (𝑙 + 1) ,
𝜎2 = 𝑙 (𝑙 − 1) (𝑙 − 2)5 (𝑙 + 1) (𝑙 + 2) ,
�0 = 𝑥 (𝛽) − 𝑥 (𝛼) ,
�1 = 𝑥 (𝛽) + 𝑥 (𝛼) − 2𝜅1,
�2 = 𝑥 (𝛽) − 𝑥 (𝛼) + 6𝜅1 − 6𝜅2.

(8)

Remark 2. As Lemma 1 described, if (𝑙−1)/(𝑙+1) < 1 and (𝑙−1)(𝑙 − 2)/(𝑙 + 1)(𝑙 + 2) < 1, inequality (7) could be represented
into the following inequality:

−𝛽−1∑
𝑖=𝛼

𝑦𝑇 (𝑖) 𝑅𝑦 (𝑖) ≤ 𝛿𝑇𝜓1𝛿 + 𝑠𝑦𝑚{𝛿𝑇 �} , (9)

where

𝜓1 ≜ 𝜎0 (𝐿0𝑅−1𝐿𝑇0 + 13𝐿1𝑅−1𝐿𝑇1 + 15𝐿2𝑅−1𝐿𝑇2) . (10)

3. 𝐻∞ Performance Analysis

In this part, we will conduct𝐻∞ filtering stability analysis by
using aforementioned Lemma 1. Beforewe begin, considering
the idea of the delay-partitioning, we note that the lower
bound 𝜏 of time-varying delay will be described as 𝜏 =𝜇𝜆, where 𝜇 and 𝜆 are positive integers. Meanwhile, several
definitions are as follows:

𝜏𝑡 ≜ 𝜏 (𝑡) , 𝜏 = 𝜏 − 𝜏,
𝜏1 ≜ 𝜏𝑡 − 𝜏,
𝜏2 ≜ 𝜏 − 𝜏𝑡,
Γ (𝑡) ≜ 𝑐𝑜𝑙 {𝑥 (𝑡) , 𝑥 (𝑡 − 𝜆) , . . . , 𝑥 (𝑡 − (𝜇 − 1) 𝜆)} ,
𝜂1 (𝑡) ≜ 𝑐𝑜𝑙 {𝜁 (𝑡) , Γ (𝑡 − 𝜆) , 𝑥 (𝑡 − 𝜏𝑡) , 𝑥 (𝑡 − 𝜏)} ,
𝜂2 (𝑡) ≜ 𝑐𝑜𝑙{ 1𝜆 + 1

𝑡∑
𝑖=𝑡−𝜆

𝑥 (𝑖) , 1𝜏1 + 1
𝑡−𝜏∑
𝑖=𝑡−𝜏

𝑡

𝑥 (𝑖) , 1𝜏2 + 1
⋅ 𝑡−𝜏𝑡∑
𝑖=𝑡−𝜏

𝑥 (𝑖)} ,

𝜂3 (𝑡) ≜ 𝑐𝑜𝑙{{{
2(𝜆 + 1) (𝜆 + 2)

⋅ 𝑡∑
𝑖=𝑡−𝜆

𝑡∑
𝑗=𝑖

𝑥 (𝑗) , 2(𝜏1 + 1) (𝜏1 + 2)
⋅ 𝑡−𝜏∑
𝑖=𝑡−𝜏

𝑡

𝑡−𝜏∑
𝑗=𝑖

𝑥 (𝑗) , 2(𝜏2 + 1) (𝜏2 + 2)
𝑡−𝜏
𝑡∑

𝑖=𝑡−𝜏

𝑡−𝜏
𝑡∑
𝑗=𝑖

𝑥 (𝑗)}}}
,

𝜂 (𝑡) ≜ 𝑐𝑜𝑙 {𝜂1 (𝑡) , 𝜂2 (𝑡) , 𝜂3 (𝑡)} ,
𝜂∗ (𝑡) ≜ 𝑐𝑜𝑙 {𝜂 (𝑡) , 𝜔 (𝑡)} ,
𝑒𝑖 ≜ {0𝑛×(𝑖−1)𝑛 𝐼𝑛 0𝑛×(10+𝜇−𝑖)𝑛} , 𝑖 ∈ {1, . . . , 10 + 𝜇} ,
Π1 ≜ 𝑐𝑜𝑙 {𝑒1, 𝑒2} ,
Π2 ≜ 𝑐𝑜𝑙 {𝑒1, 𝑒3} ,
Π3 ≜ 𝑐𝑜𝑙 {𝑒2+𝑗} , 𝑗 ∈ {1, . . . , 𝜇} ,
Π4 ≜ 𝑐𝑜𝑙 {𝑒1, 𝑒3, 𝑒(2+𝜇)+3, 𝑒(2+𝜇)+6} ,
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Π5 ≜ 𝑒1 − 𝑒3,
Π6 ≜ 𝑒1 + 𝑒3 − 2𝑒(2+𝜇)+3,
Π7 ≜ 𝑒1 − 𝑒3 + 6𝑒(2+𝜇)+3 − 6𝑒(2+𝜇)+6,
Π8 ≜ 𝑐𝑜𝑙 {𝑒2+𝜇, 𝑒(2+𝜇)+1, 𝑒(2+𝜇)+4, 𝑒(2+𝜇)+7} ,
Π9 ≜ 𝑒2+𝜇 − 𝑒(2+𝜇)+1,
Π10 ≜ 𝑒2+𝜇 + 𝑒(2+𝜇)+1 − 2𝑒(2+𝜇)+4,
Π11 ≜ 𝑒2+𝜇 − 𝑒(2+𝜇)+1 + 6𝑒(2+𝜇)+4 − 6𝑒(2+𝜇)+7,
Π12 ≜ 𝑐𝑜𝑙 {𝑒(2+𝜇)+1, 𝑒(2+𝜇)+2, 𝑒(2+𝜇)+5, 𝑒(2+𝜇)+8} ,
Π13 ≜ 𝑒(2+𝜇)+1 − 𝑒(2+𝜇)+2,
Π14 ≜ 𝑒(2+𝜇)+1 + 𝑒(2+𝜇)+2 − 2𝑒(2+𝜇)+5,
Π15 ≜ 𝑒(2+𝜇)+1 − 𝑒(2+𝜇)+2 + 6𝑒(2+𝜇)+5 − 6𝑒(2+𝜇)+8.

(11)

Theorem 3. In view of system (2), we assume integers 𝜇 > 0
and 𝜆 > 0 with satisfying 𝜏 = 𝜇𝜆. For an admissible𝐻∞ filter
and a prescribed scalar 𝛾 > 0, the filtering error system (5) is
asymptomatically stable if there exist real matrices

𝑃 = 𝑃𝑇 > 0,
𝑄 = [𝑄1 𝑄2∗ 𝑄3] > 0,

𝑅𝑗 = 𝑅𝑇𝑗 > 0,
𝑆𝑗 = 𝑆𝑇𝑗 > 0,

𝑗 = 1, 2,
𝐺, 𝐹, 𝐿𝑞,𝑀𝑞, 𝑁𝑞, 𝑞 = 0, 1, 2,

(12)

such that following LMI

[[[[[[[[[[[[[[
[

𝜙4 𝜙𝑇1𝐺 𝜙𝑇2𝐹 𝜙𝑇3 𝜙𝐿 𝜙𝑀 (𝜏𝑡) 𝜙𝑁 (𝜏𝑡)∗ 𝜙5 0 0 0 0 0
∗ ∗ 𝜙6 0 0 0 0
∗ ∗ ∗ −𝐼 0 0 0
∗ ∗ ∗ ∗ −𝑆1𝑡 0 0
∗ ∗ ∗ ∗ ∗ −𝑆2𝑡 0
∗ ∗ ∗ ∗ ∗ ∗ −𝑆3𝑡

]]]]]]]]]]]]]]
]

< 0 (13)

holds for 𝜏𝑡 ∈ {𝜏, 𝜏}, where
𝜙1 = [𝐴Π1 𝐴𝑑𝑒(2+𝜇)+1 𝐵] ,
𝜙2 = [(𝐴 − 𝐼) 𝑒1 𝐴𝑑𝑒(2+𝜇)+1 𝐵] ,

𝜙3 = [𝐶Π1 𝐶𝑑𝑒(2+𝜇)+1 𝐷] ,
𝜙4 = [Ξ0 0

∗ −𝛾2𝐼] ,
𝜙5 = 𝑃 − 𝑋 − 𝑋𝑇,
𝜙6 = Ω − 𝐹 − 𝐹𝑇, Ω = 𝜆𝑆1 + 𝜏𝑆2,
𝜙𝐿 = 𝜆Π𝑇4 [𝐿0 𝐿1 𝐿2] ,
𝜙𝑀 (𝜏𝑡) = 𝜏1Π𝑇8 [𝑀0 𝑀1 𝑀2] ,
𝜙𝑁 (𝜏𝑡) = 𝜏2Π𝑇12 [𝑁0 𝑁1 𝑁2] ,
Ξ0

= −Π𝑇1𝑃Π1 + 𝑠𝑦𝑚{𝑒𝑇1𝑄2𝑒3} + 𝑒𝑇1𝑄𝑒1 + 𝑒𝑇3𝑄3𝑒3
− Π𝑇3𝑄Π3 + 𝑒𝑇1 (𝑅1 + (𝜏 + 1) 𝑅2) 𝑒1
− 𝑒𝑇(2+𝜇)+2𝑅1𝑒(2+𝜇)+2 − 𝑒𝑇(2+𝜇)+1𝑅2𝑒(2+𝜇)+1
+ 𝑠𝑦𝑚{Π𝑇4𝐿0Π5 + Π𝑇4𝐿1Π6 + Π𝑇4𝐿2Π7}
+ 𝑠𝑦𝑚{Π𝑇8𝑀0Π9 + Π𝑇8𝑀1Π10 + Π𝑇8𝑀2Π11}
+ 𝑠𝑦𝑚{Π𝑇12𝑁0Π13 + Π𝑇12𝑁1Π14 + Π𝑇12𝑁2Π15} ,

𝑆1 = diag {𝑆1, 3𝑆1, 5𝑆1} ,
𝑆2 = diag {𝑆2, 3𝑆2, 5𝑆2} ,
𝑆1𝑡 = diag {𝜆𝑆1, 3𝜆𝑆1, 5𝜆𝑆1} ,
𝑆2𝑡 (𝜏𝑡) = diag {𝜏1𝑆2, 3𝜏1𝑆2, 5𝜏1𝑆2} ,
𝑆3𝑡 (𝜏𝑡) = diag {𝜏2𝑆2, 3𝜏2𝑆2, 5𝜏2𝑆2} .

(14)

Proof. Now, considering the idea of a slack-variable [40] and
using the similar lines as in [29], the following LMI (15) is
equivalent to (13):

[[[[[[[[[[[[[[
[

𝜙4 𝜙𝑇1 𝑃 𝜙𝑇2Ω 𝜙𝑇3 𝜙𝐿 𝜙𝑀 (𝜏𝑡) 𝜙𝑁 (𝜏𝑡)∗ −𝑃 0 0 0 0 0
∗ ∗ −Ω 0 0 0 0
∗ ∗ ∗ −𝐼 0 0 0
∗ ∗ ∗ ∗ −𝑆1𝑡 0 0
∗ ∗ ∗ ∗ ∗ −𝑆2𝑡 0
∗ ∗ ∗ ∗ ∗ ∗ −𝑆3𝑡

]]]]]]]]]]]]]]
]

< 0. (15)

Then, we consider the modified L-K functional candidate
which contains the delay partitioning items:

𝑉(𝑡) ≜ 𝑉0 (𝑡) + 𝑉1 (𝑡) + 𝑉2 (𝑡) + 𝑉3 (𝑡) , (16)
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with

𝑉0 (𝑡) ≜ 𝜁𝑇 (𝑡) 𝑃𝜁 (𝑡) ,
𝑉1 (𝑡) ≜ 𝑡−1∑

𝑖=𝑡−𝜆

Γ𝑇 (𝑖) 𝑄Γ (𝑖) ,

𝑉2 (𝑡) ≜ 𝑡−1∑
𝑖=𝑡−𝜏

𝑥𝑇 (𝑖) 𝑅1𝑥 (𝑖)

+ −𝜏+1∑
𝑗=−𝜏+1

𝑡−1∑
𝑖=𝑡−1+𝑗

𝑥𝑇 (𝑖) 𝑅2𝑥 (𝑖) ,

𝑉3 (𝑡) ≜ −1∑
𝑖=−𝜆

𝑡−1∑
𝑗=𝑡+𝑖

𝜃𝑇 (𝑗) 𝑆1𝜃 (𝑗)

+ −𝜏−1∑
𝑖=−𝜏

𝑡−1∑
𝑗=𝑡+𝑖

𝜃𝑇 (𝑗) 𝑆2𝜃 (𝑗) .

(17)

And we note that 𝜃(𝑡) ≜ 𝑥(𝑡 + 1) − 𝑥(𝑡) = 𝜙2𝜂∗(𝑡), 𝑃 > 0,𝑄 > 0, 𝑅𝑗 > 0, 𝑆𝑗 > 0, 𝑗 = 1, 2. Then utilizing the previously
described 𝑉(𝑡), we will obtain the equation as follows:

Δ𝑉0 (𝑡) = 𝜁𝑇 (𝑡 + 1) 𝑃𝜁 (𝑡 + 1) − 𝜁𝑇 (𝑡) 𝑃𝜁 (𝑡) = 𝜂𝑇 (𝑡)
⋅ [Π𝑇1 (𝐴𝑇𝑃𝐴 − 𝑃)Π1
+ 𝑠𝑦𝑚(Π𝑇1𝐴𝑇𝑃𝐴𝑑𝑒(2+𝜇)+1)
+ 𝑒𝑇(2+𝜇)+1𝐴𝑑𝑇𝑃𝐴𝑑𝑒(2+𝜇)+1] 𝜂 (𝑡) ,

(18)

Δ𝑉1 (𝑡) = Γ𝑇 (𝑡) 𝑄Γ (𝑡) − Γ𝑇 (𝑡 − 𝜆)𝑄Γ (𝑡 − 𝜆)
= 𝜂𝑇 (𝑡) [Π𝑇2𝑄Π2 − Π𝑇3𝑄Π3] 𝜂 (𝑡) , (19)

Δ𝑉2 (𝑡) = 𝑥𝑇 (𝑡) 𝑅1𝑥 (𝑡) − 𝑥𝑇 (𝑡 − 𝜏) 𝑅1𝑥 (𝑡 − 𝜏)
+ −𝜏+1∑
𝑗=−𝜏+1

𝑥𝑇 (𝑡) 𝑅2𝑥 (𝑡) − 𝑡−𝜏∑
𝑗=𝑡−𝜏

𝑥𝑇 (𝑗) 𝑅2𝑥 (𝑗)
≤ 𝜂𝑇 (𝑡) [𝑒𝑇1 (𝑅1 + (𝜏 + 1) 𝑅2) 𝑒1
− 𝑒𝑇(2+𝜇)+2𝑅1𝑒(2+𝜇)+2 − 𝑒𝑇(2+𝜇)+1𝑅2𝑒(2+𝜇)+1] 𝜂 (𝑡) ,

(20)

Δ𝑉3 (𝑡) = 𝜃𝑇 (𝑡) (𝜆𝑆1 + 𝜏𝑆2) 𝜃 (𝑡) − 𝑡−1∑
𝑖=𝑡−𝜆

𝜃𝑇 (𝑖) 𝑆1𝜃 (𝑖)

− 𝑡−𝜏−1∑
𝑖=𝑡−𝜏

𝜃𝑇 (𝑖) 𝑆2𝜃 (𝑖) = 𝜂𝑇 (𝑡)
⋅ [𝑒𝑇1 (𝐴 − 𝐼)𝑇Ω (𝐴 − 𝐼) 𝑒1
+ 𝑠𝑦𝑚{𝑒𝑇1 (𝐴 − 𝐼)𝑇Ω𝐴𝑑𝑒(2+𝜇)+1}

+ 𝑒𝑇(2+𝜇)+1𝐴𝑇𝑑Ω𝐴𝑑𝑒(2+𝜇)+1] 𝜂 (𝑡) − 𝑡−1∑
𝑖=𝑡−𝜆

𝜃𝑇 (𝑖) 𝑆1𝜃 (𝑖)

− 𝑡−𝜏−1∑
𝑖=𝑡−𝜏

𝑡

𝜃𝑇 (𝑖) 𝑆2𝜃 (𝑖) −
𝑡−𝜏
𝑡
−1∑
𝑖=𝑡−𝜏

𝜃𝑇 (𝑖) 𝑆2𝜃 (𝑖) .
(21)

Applying inequality (9), to the summation terms in (21), and
we can set 𝛿 = 𝑐𝑜𝑙{𝑥(𝑡), 𝑥(𝑡−𝜆), (1/(𝜆+1))∑𝑡𝑖=𝑡−𝜆 𝑥(𝑖), (2/(𝜆+1)(𝜆 + 2))∑𝑡𝑖=𝑡−𝜆∑𝑡𝑗=𝑖 𝑥(𝑗)}, the following inequalities hold:

− 𝑡−1∑
𝑖=𝑡−𝜆

𝜃𝑇 (𝑖) 𝑆1𝜃 (𝑖) ≤ 𝜂𝑇 (𝑡) {𝜆Π𝑇4𝐿𝑗𝑆−11 𝐿𝑇𝑗Π4
+ 𝑠𝑦𝑚{Π𝑇4𝐿0Π5 + Π𝑇4𝐿1Π6 + Π𝑇4𝐿2Π7}} 𝜂 (𝑡) .

(22)

Also, apply inequality (9), and set 𝛿 = 𝑐𝑜𝑙{𝑥(𝑡 − 𝜏), 𝑥(𝑡 − 𝜏𝑡),
(1/(𝜏1 + 1))∑𝑡−𝜏𝑖=𝑡−𝜏

𝑡

𝑥(𝑖), (2/(𝜏1 + 1)(𝜏1 + 2))∑𝑡−𝜏𝑖=𝑡−𝜏
𝑡

∑𝑡−𝜏𝑗=𝑖 𝑥(𝑗)};
we have

− 𝑡−𝜏−1∑
𝑖=𝑡−𝜏

𝑡

𝜃𝑇 (𝑖) 𝑆2𝜃 (𝑖) ≤ 𝜂𝑇 (𝑡) {𝜏1Π𝑇8𝑀𝑗𝑆−12 𝑀𝑇𝑗 Π8
+ 𝑠𝑦𝑚{Π𝑇8𝑀0Π9 + Π𝑇8𝑀1Π10 + Π𝑇8𝑀2Π11}} 𝜂 (𝑡) .

(23)

Similarly, apply inequality (9), and set 𝛿 = 𝑐𝑜𝑙{𝑥(𝑡 − 𝜏𝑡), 𝑥(𝑡 −𝜏), (1/(𝜏2+1))∑𝑡−𝜏𝑡𝑖=𝑡−𝜏 𝑥(𝑖), (2/(𝜏2+1)(𝜏2+2))∑𝑡−𝜏𝑡𝑖=𝑡−𝜏∑𝑡−𝜏𝑡𝑗=𝑖 𝑥(𝑗)};
then we have

− 𝑡−𝜏𝑡−1∑
𝑖=𝑡−𝜏

𝜃𝑇 (𝑖) 𝑆2𝜃 (𝑖) ≤ 𝜂𝑇 (𝑡) {𝜏2Π𝑇12𝑁𝑗𝑆−12 𝑁𝑇𝑗 Π12
+ 𝑠𝑦𝑚{Π𝑇12𝑁0Π13 + Π𝑇12𝑁1Π14 + Π𝑇12𝑁2Π15}}
⋅ 𝜂 (𝑡) .

(24)

Then, by combining (18)–(24), and we suppose that the
input has zero noise, i.e., 𝜔(𝑡) = 0, and we have

Δ𝑉 (𝑡) = Δ𝑉0 (𝑡) + Δ𝑉1 (𝑡) + Δ𝑉2 (𝑡) + Δ𝑉3 (𝑡)
≤ 𝜂𝑇 (𝑡) [Ξ0 + Ξ1 + Ξ2 (𝜏𝑡)] 𝜂 (𝑡) , (25)

where

Ξ1 = Π𝑇1𝐴𝑇𝑃𝐴Π1 + 𝑠𝑦𝑚(Π𝑇1𝐴𝑇𝑃𝐴𝑑𝑒(2+𝜇)+1)
+ 𝑒𝑇(2+𝜇)+1𝐴𝑑𝑇𝑃𝐴𝑑𝑒(2+𝜇)+1
+ 𝑒𝑇1 (𝐴 − 𝐼)𝑇Ω (𝐴 − 𝐼) 𝑒1
+ 𝑠𝑦𝑚{𝑒𝑇1 (𝐴 − 𝐼)𝑇Ω𝐴𝑑𝑒(2+𝜇)+1}
+ 𝑒𝑇(2+𝜇)+1𝐴𝑇𝑑Ω𝐴𝑑𝑒(2+𝜇)+1,

Ξ2 (𝜏𝑡) = 𝜆Π𝑇4𝐿𝑆−11 𝐿𝑇Π4 + 𝜏1Π𝑇8𝑀𝑆−12 𝑀𝑇Π8
+ 𝜏2Π𝑇12𝑁𝑆−12 𝑁𝑇Π12.

(26)
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According to the Schur complement, for all nonzero 𝜁(𝑡),Ξ0 +Ξ1 +Ξ2(𝜏𝑡) < 0 is equivalent to the LMI in (13).Thus, the
negative definition of the Δ𝑉(𝑡) will guarantee the filtering
error system (5) is asymptotically stable.

Furthermore, in order to construct the𝐻∞ performance
index, we define 𝐽 ≜ ∑∞𝑡=0[𝑒𝑇(𝑡)𝑒(𝑡)−𝛾2𝜔𝑇(𝑡)𝜔(𝑡)]. And under
zero initial condition 𝑉(0) = 0, 𝑉(∞) > 0, and 𝜔(𝑡) ̸= 0, one
obtains

𝐽 ≤ ∞∑
𝑡=0

[𝑒𝑇 (𝑡) 𝑒 (𝑡) − 𝛾2𝜔𝑇 (𝑡) 𝜔 (𝑡)] + 𝑉 (0) − 𝑉 (∞)

= ∞∑
𝑡=0

[𝑒𝑇 (𝑡) 𝑒 (𝑡) − 𝛾2𝜔𝑇 (𝑡) 𝜔 (𝑡) + Δ𝑉 (𝑡)]

≤ ∞∑
𝑡=0

𝜂𝑇∗ (𝑡) [𝜙4 + 𝜙𝑇1 𝑃𝜙1 + 𝜙𝑇2Ω𝜙2 + 𝜙𝑇3 𝜙3 + 𝜙⋆]
⋅ 𝜂∗ (𝑡) ,

(27)

where 𝜙⋆ = 𝜙𝐿𝑆1𝜙𝑇𝐿 +𝜙𝑀𝑆2𝜙𝑇𝑀 +𝜙𝑁𝑆2𝜙𝑇𝑁. By using the Schur
complement, inequality (27) indicates that 𝐽 < 0, which is
equivalent to the LMI (15). Besides, for all 𝜔(𝑡) ∈ 𝑙2[0, +∞),‖𝑒‖2 < 𝛾‖𝜔‖2. Then, this completes the proof.

Remark 4. Different from the previous methods where free-
weighting matrix and Jensen’s inequality are used to han-
dle the double summation function Δ𝑉3(𝑡) in the proof
of Theorem 3, the novel Wirtinger-based inequality with
double summation could carry out an accurate summation
inequality to bound the signal summation term and give rise
to the derivative of the L-K functional to get vital in reducing
the conservatism.

4. 𝐻∞ Filter Design

In this section, we will focus on the design of full-order 𝐻∞
filter for state delay in system (2).

Theorem 5. In view of system (2), we assume integers 𝜇 > 0
and 𝜆 > 0 with satisfying 𝜏 = 𝜇𝜆. For an admissible filter
of form (4) ensure a prescribed 𝐻∞ norm bound 𝛾 and the
asymmetric stability of the filtering error system (5) exist if
there exist matrices 𝑉1, 𝑉2, 𝑉3, 𝐹, 𝐴𝐹, 𝐵𝐹, 𝐶𝐹, 𝐷𝐹 of appropriate
dimensions and

𝑃 = [𝑃1 𝑃2∗ 𝑃3] > 0,

𝑄 = [𝑄1 𝑄2∗ 𝑄3 ] > 0,
𝑅𝑗 = 𝑅𝑇𝑗 ,
𝑆𝑗 = 𝑆𝑇𝑗 ,

𝑗 = 1, 2,
𝐺, 𝐹, 𝐿𝑞,𝑀𝑞, 𝑁𝑞, 𝑞 = 0, 1, 2,

(28)

such that following LMIs are satisfied:

Ξ = [[[[[
[

𝜙 𝜙𝐿 𝜙𝑀 (𝜏𝑡) 𝜙𝑁 (𝜏𝑡)∗ −𝑆1𝑡 0 0
∗ ∗ −𝑆2𝑡 0
∗ ∗ ∗ −𝑆3𝑡

]]]]]
]
< 0, (29)

where

𝜙 = [[[
[

Ξ0 0 Ξ11∗ −𝛾2𝐼 Ξ21∗ ∗ Ξ31
]]]
]
,

Ξ11 = 𝑐𝑜𝑙 [Θ0 Θ1 02×4 Θ2 07×4] ,
Θ0
= [𝐴𝑇𝑉1 + 𝐶𝑇𝐵𝑇𝐹 𝐴𝑇𝑉3 + 𝐶𝑇𝐵𝑇𝐹 (𝐴 − 𝐼)𝑇 𝐹 𝐻𝑇 − 𝐶𝑇𝐷𝑇𝐹] ,
Θ1 = [𝐴𝑇𝐹 𝐴𝑇𝐹 0 −𝐶𝑇𝐹] ,
Θ2 = [𝐴𝑇𝑑𝑉1 + 𝐶𝑇𝑑𝐵𝑇𝐹 𝐴𝑇𝑑𝑉3 + 𝐶𝑇𝑑𝐵𝑇𝐹 𝐴𝑇𝑑𝐹 𝐻𝑇𝑑 − 𝐶𝑇𝑑𝐷𝑇𝐹] ,
Ξ21 = [𝐵𝑇𝑉1 + 𝐷𝑇𝐵𝑇𝐹 𝐵𝑇𝑉3 + 𝐷𝑇𝐵𝑇𝐹 𝐵𝑇𝐹 𝐿𝑇 − 𝐷𝑇𝐷𝑇𝐹] ,

Ξ31 =
[[[[[[
[

𝑃1 − 𝑉1 − 𝑉𝑇1 𝑃2 − 𝑉2 − 𝑉3 0 0
∗ 𝑃3 − 𝑉2 − 𝑉𝑇2 0 0
∗ ∗ 𝜙6 0
∗ ∗ ∗ −𝐼

]]]]]]
]
.

(30)

�en, the filtering problem can be solved. In addition, a
suitable filter state space realization is presented by

𝐴𝐹 = 𝑉−12 𝐴𝐹,
𝐵𝐹 = 𝑉−12 𝐵𝐹,
𝐶𝐹 = 𝐶𝐹,
𝐷𝐹 = 𝐷𝐹.

(31)

Proof. Due to 𝑃 > 0 and LMI in (29), it follows that 𝑃3 > 0
and −𝑃3+𝑉2+𝑉𝑇2 > 0, respectively, whichmeans𝑉2+𝑉𝑇2 > 0.
Thus, we can conclude that𝑉2 is nonsingular and for arbitrary
square and nonsingular matrices 𝑋3 and 𝑋4, meeting 𝑉2 =𝑋𝑇3𝑋−14 𝑋3. Then, we define the matrices:

𝐽1 = [𝐼 0
0 𝑋−14 𝑋3] > 0,

𝑋2 = 𝑉3𝑋−13 𝑋4,
𝑋 = [𝑉1 𝑋2𝑋3 𝑋4] ,

𝑃 = 𝐽−𝑇1 [𝑃1 𝑃2∗ 𝑃3] 𝐽
−1
1 ,

𝐽2 = diag {𝐽1, 𝐼 ⋅ ⋅ ⋅ 𝐼, 𝐽1, 𝐼 ⋅ ⋅ ⋅ 𝐼} ,

(32)
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𝐴𝐹 = 𝑋−𝑇3 𝐴𝐹𝑋−13 𝑋4,
𝐵𝐹 = 𝑋−𝑇3 𝐵𝐹,
𝐶𝐹 = 𝐶𝐹𝑋−13 𝑋4,
𝐷𝐹 = 𝐷𝐹.

(33)

Then, matric 𝑃 and LMI (29) can be expressed as

𝐽𝑇1 𝑃𝐽1 > 0, (34)

𝐽𝑇2 Ξ𝐽2 < 0, (35)

So, by way of congruent transformation to LMI (34) and (35),
respectively, with 𝐽−11 and 𝐽−12 , it is clear that LMI in (29) is
equivalent to (13). Consequently, from Theorem 5, we could
draw a conclusion that the filtering error system in (5) is
asymptotically stable with a𝐻∞ norm bound 𝛾.

The next job is to get the filer state-space realization as
(31). Through some conventional matrix processing in [10],
substituting 𝑉2 = 𝑋𝑇3𝑋−14 𝑋3 into (33), then

[𝐴𝐹 𝐵𝐹𝐶𝐹 𝐷𝐹] (36)

could be directly rewritten as

[𝑋−13 𝑋4 00 𝐼]
−1

[𝑉−12 𝐴𝐹 𝑉−12 𝐵𝐹
𝐶𝐹 𝐷𝐹 ][𝑋−13 𝑋4 00 𝐼] . (37)

Due to the fact that matrices 𝑋3 and 𝑋4 are nonsingular,
we can infer that

[𝑋−13 𝑋4 0
0 𝐼 ] (38)

is also nonsingular. And this makes the point that the
following systems are algebraically equivalent:

[𝐴𝐹 𝐵𝐹𝐶𝐹 𝐷𝐹] ⇐⇒ [𝑉−12 𝐴𝐹 𝑉−12 𝐵𝐹
𝐶𝐹 𝐷𝐹 ] , (39)

and thus, a state-space realization (𝐴𝐹, 𝐵𝐹, 𝐶𝐹, 𝐷𝐹), which is
defined in (4), of the desired filter could be acquired from
(39). This completes the proof.

5. Numerical Examples

Example 1 (see [29]). Firstly, we consider system (2) with
varying-delay:

𝐴 = [0.8 0
0.1 0.9] ,

𝐴𝑑 = [−0.1 0.15
−0.1 −0.15] ,

𝐵 = [01] ,

𝐶 = [1 1] ,
𝐶𝑑 = [0.4 0.6] ,
𝐷 = 1,
𝐻 = [1 2] ,
𝐻𝑑 = [0.5 0.6] ,
𝐿 = −0.5,

(40)

and 𝜏 = 6, 𝜏 = 8, 𝜇 = 2, by processing ofTheorem 5, the opti-
mal 𝛾∗ = 9.9691, which is much less than 𝛾∗ = 13.8580[1],8.7038[29], 10.3752[29], respectively. Our achieved results
have lower conservativeness than presently existing methods.
And when 𝜏 = 9 the𝐻∞ filters parameters

[ 𝐴𝐹 𝐵𝐹𝐶𝐹 𝐷𝐹 ] (41)

are given as follows:

[[
[

0.1250 0.1086 −0.2255
0.1380 0.3049 −0.30081.4573 × 10−5 −1.8674 × 10−5 1.4699

]]
]
. (42)

More detailed data will be listed in Table 1, which content
theminimum 𝛾∗ with different upper bounds 𝜏, and set 𝜏 = 6.
Example 2 (see [10]). Then, we consider system (2) with

𝐴 = [0.85 0.1
−0.1 0.7] ,

𝐴𝑑 = [ 0.2 0
−0.2 0.1] ,

𝐵 = [0.10.4] ,
𝐶 = [0.2 2.5] ,
𝐶𝑑 = [−0.5 0.5] ,
𝐷 = −1,
𝐻 = [0 2.2] ,
𝐻𝑑 = [1.5 −0.4] ,
𝐿 = −0.1,

(43)

and let 𝜇 = 1, 𝜇 = 2, respectively, with different lower and
upper bounds of time-delay. Thus, we could have the clear
discovery that when 𝜇 = 2, 𝜏 = 2, and 𝜏 = 6, by processing of
Theorem 5, we could acquire 𝛾∗ = 3.9910, which is much less
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Table 1: The minimum 𝛾∗ with different 𝜏 when 𝜏 = 6.
𝜏 7 8 9
[1] 7.5050 13.8580 ∞
[29]Theorem 4 6.0430 8.7038 13.9799
[29]Theorem 5 6.2928 10.3752 29.9862
Theorem 5 5.7470 7.5334 9.9691

Table 2: The minimum 𝛾∗ with different 𝜇, 𝜏 and 𝜏.
𝜇 1 1 2 2𝜏 1 1 2 2𝜏 4 5 5 6
[10] 4.9431 6.1608 5.3551 6.7581
[29]Theorem 4 3.6545 4.6494 5.3458 6.7185
Theorem 5 1.7342 2.2883 3.9551 3.9910

than 𝛾∗ = 6.7185, 6.7581, respectively, in [10, 29]. The 𝐻∞
filters parameters are given in (44)

[[
[

1.0252 1.4341 0.3874
−0.8278 −1.1579 −0.0675−0.3177 −0.4441 0.8472

]]
]
. (44)

Similarly, more specific data will be listed in Table 2,
which content the minimum 𝛾∗ with different delay parti-
tioning number 𝜇 and delay boundary.

6. Conclusions

By this we have completed the study for the delay-dependent𝐻∞ filter design for discrete-time system with varying-
delay. In the research process, by introducing the novel
Wirtinger-based inequality to further handle the quadratic
accumulative items coming from the modified Lyapunov-
Krasovskii functionals and taking advantage of the delay-
partitioning idea, a new BRL for the filtering system has
been gained. Furthermore, the achieved result has lower con-
servativeness than presently existing methods, for instance,
Jensen’s inequality and free-weighting matrix methods, etc.
Eventually, a numerical example has been provided to verify
the validness of our method.
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