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(is paper presents a robust controller with an extended state observer to solve the Synchronous Fly-Around problem of a chaser
spacecraft approaching a tumbling target in the presence of unknown uncertainty and bounded external disturbance. (e
rotational motion and time-varying docking trajectory of tumbling target are given in advance and referred as the desired tracking
objective. Based on dual quaternion framework, a six-degree-of-freedom coupled relative motion between two spacecrafts is
modeled, in which the coupling effect, model uncertainties, and external disturbances are considered. More specially, a novel
nonsingular terminal sliding mode is designed to ensure the convergence to the desired trajectory in finite time. Based on the
second-order sliding mode, an extended state observer is employed to the controller to compensate the closed-loop system. By
theoretical analysis, it is proved that the modified extended-state-observer-based controller guarantees the finite-time stabili-
zation. Numerical simulations are taken to show the effectiveness and superiority of the proposed control scheme. Finally,
Synchronous Fly-Around maneuvers can be accomplished with fast response and high accuracy.

1. Introduction

Synchronous Fly-Around (SFA) technique represents the
concept of proximity operation for driving a chaser
spacecraft to fly around a space tumbling target with attitude
synchronized. With the number of failed spacecraft and
space debris increasing, on-orbit service operations are
urgently required to extend life of the failed spacecrafts, such
as assembly, repairing, module replacement, detumbling,
refueling, and orbital debris removal [1, 2]. Under the in-
fluence of terrestrial gravitational perturbation, most of the
failed spacecrafts have evolved into space tumbling targets,
developing the noncooperative feature [3]. (e SFA ap-
proach (see Figure 1) can be identified as a significant
technology for on-orbit service missions since it performs
high accuracy in close-range proximity to noncooperative
tumbling target. Some studies have been performed with the
intention to solve the SFA problem [4–7].

As pointed out in [8], it also introduces a series of
problems and challenges in SFA process. Different from
traditional cooperative space missions, rendezvous and

docking (RVD), and spacecraft formation flying (SFF), the
noncooperative characteristics of SFA will result in de-
ficiency of shape structure and quality information, which
causes low accuracy of navigation in close proximity. An-
other problem is complicated modeling. It is obvious that
SFA is a six-degree-of-freedom (6-DOF) relative motion, in
which both the translational motion and rotational one are
included. Mutual coupling between the two motions will
also lead to complexity in modeling. (erefore, high precise
modeling is an essential step to overcome the highly coupled
drawback during SFA mission. Ma et al. [9] used C-W
dynamics equation to establish the relative translational
motion and adopted modified Rodrigues parameters to
describe the relative rotational dynamics. Similar modeling
method has also been performed in [10]. More recently, Xu
et al. [11] considered the dynamical coupling inside the 6-
DOF model and presented a nonlinear suboptimal control
law for SFA problem. However, all the abovementioned
studies gave the two-part relative motion and ignored the
nonlinear coupling effect [12], such that it would cause the
problem that rotational and translational control will not
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actuate simultaneously. (erefore, it is significant to es-
tablish integrated 6-DOF relative motion considering cou-
pled term. Dual quaternion [13–15] gives us inspiration to
solve SFA problem since it has been an effective tool for
motion description in physical problems and mathematical
calculation. It combines traditional Euler quaternions with
dual numbers and inherits elegant properties of both. Based
on dual quaternion, the coupled 6-DOF dynamics motion
between two spacecrafts can be derived successfully. Wang
et al. [12] made attempt to use dual quaternion to describe
the coupled dynamics of rigid spacecraft and investigated the
coordinated control problem for SFF problem. Wu et al.
[16, 17] proposed a nonlinear suboptimal control based on
dual quaternion for synchronized attitude-position control
problem. Under dual-quaternion framework, Filipe and
Tsiotras [18] proposed an adaptive tracking controller for
spacecraft formation problem and ensured global asymp-
totical stability in the presence of unknown disturbance. For
the safety problem of RVD, Dong et al. [19] proposed a dual-
quaternion-based artificial potential function (APF) control
to guarantee the arrival at the docking port of the target with
desired attitude. (e above research results illustrate the
effectiveness of 6-DOF modeling using dual-quaternion
framework and also provide the motivation of this paper.

(e guidance, navigation, and control (GNC) systems
for space proximity operations should be taken into account
during on-orbit SFAmissions [20]. Due to the nonlinear and
highly coupled dynamics, designing a controller for the
accurate SFA operation is still an open problem. In addition
to the preceding interests in 6-DOF modeling, uncertainties
and disturbances are another key issue that should be
addressed in the control system, which will severely reduce
the performance of the controller or lead to instability of the
closed-loop system.(erefore, it is urgent to realize accurate
and fast SFA tracking control, under strong coupling effects
and multisource interferences in practical process. In view of
this problem, various nonlinear control methods have been
carried out to estimate the disturbance and compensate the
system, such as state-dependent Riccati equation (SDRE)
control [21], adaptive control [22] and suboptimal control
[11]. Among these methods, terminal sliding mode (TSM)
control is an effective technique due to its robustness to
system uncertainties and can provide finite-time conver-
gence. Wang and Sun [23] carried out an adaptive TSM

control method for spacecraft formation flying problem
within dual-quaternion framework. However, the major
disadvantage of initial TSM is the singularity problem. In
order to eliminate this problem, Zou et al. [24] proposed a
nonsingular TSM control (NTSMC) to realize the finite-time
stability of satellite attitude control. Extended-state-observer
(ESO) methods have recently been introduced to com-
pensate for unmodeled dynamics and system with external
disturbance and uncertainty. Conventional ESO has shown
fine performance in disturbance rejection. Based on a new
technique known as the second-order sliding mode (SOSM)
[25], a novel ESO can guarantee high accuracy and ro-
bustness of the estimation with finite-time convergence.
Some studies have recently combined conventional TSM
and ESO for spacecraft control problem [26, 27]. Moreover,
the combination of NTSMC and ESO is also widely used,
especially in aerospace engineering, such as attitude tracking
control [28, 29], underactuated spacecraft hovering [30], and
reusable launch vehicle [31]. In Reference [28], an ESO-
based third-order NTSMC was proposed for the attitude
tracking control problem. Ran et al. [32] proposed an
adaptive SOSM-based ESO with fault-tolerant NTSMC for
the model uncertainty, external disturbance, and limited
actuator control during spacecraft attitude control. Zhang
et al. [33] presented an adaptive fast NTSMC using esti-
mated information by SOSM-based ESO to solve the
problem of spacecraft 6-DOF coupled tracking maneuver in
the presence of model uncertainties and actuator mis-
alignment. Moreno and Osori [25] gave a Lyapunov finite-
time stability proof for a closed-loop system combining
SOSM controller and ESO. To the best of the authors’
knowledge, ESO-based NTSMC is still an open problem for
SFA mission within dual-quaternion framework.

(is paper aims to investigate the Synchronous Fly-
Around maneuver problem in the presence of model un-
certainties and external disturbances. Compared to existing
results, the major contributions and differences of this study
are summarized as follows:

(1) To date, it is the first time to use dual quaternion to
describe 6-DOF relative dynamics for tumbling
target-capturing problem, in which the nonlinear
coupled effect, model uncertainties, and external
disturbances are taken into account. Moreover, the
error kinematics and dynamics are given to improve
modeling accuracy significantly.

(2) Motivated by the concept of SOSM, a novel ESO is
proposed to reconstruct the model uncertainties and
external disturbances with finite-time convergence.
Based on the estimated information of ESO, a fast
NTSMC is carried out to eliminate the total dis-
turbances and ensure the finite-time stable of the
closed-loop system. (e proposed method can gain
faster response and higher accuracy than existing
methods.

(is paper is organized as follows. Some necessary
mathematical preliminaries of dual quaternion and useful
lemmas are given and coupled kinematics and dynamics are
derived for the relative motion problem in Section 2. In
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Figure 1: Synchronous fly-around for a chaser approaching a
tumbling target.
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Section 3, NTSMC and ESO strategies are elaborated, and
the finite-time stability analysis of the system is performed in
Section 4. Following that, numerical simulations are illus-
trated and discussed in Section 5 to show the effectiveness of
the proposed method. Finally, some appropriate conclusions
are presented in Section 6.

2. Mathematical Preliminaries

(is study considers the leader-follower spacecraft forma-
tion, including a chaser and a tumbling target (Figure 2). In
order to facilitate the description of the model, the following
coordinate system is used: OI − XIYIZI is the Earth-cen-
tered inertial coordinate system, with the Cartesian right-
hand reference frame; Ol − xlylzl is LVLH (local-vertical,
local-horizontal) reference frame with the origin at the
center of mass of target, xl is pointing to the spacecraft
radially outward; zl is the axis normal to the target orbital
plane, and yl is the axis established by right-hand rule; Of −

xfyfzf (respectively, the tumbling target, Ol − xlylzl) is the
body-fixed coordinate system of the chaser, with its origin in
the center of mass of the chaser and axes pointing to the axis
of inertial; Pl − xlylzl is the desired tracking reference frame,
with the capturing point Pl of the tumbling target. (e
control objective is to control the chaser (Of − xfyfzf )
synchronize with desired state (Pl − xlylzl) so that the on-
orbit service can be guaranteed in the next step.

2.1. Dual Quaternion. Dual quaternion can be regarded as a
quaternion whose element is dual numbers and can be
defined as [14, 15, 23].

􏽢q � [􏽢η, 􏽢ξ] � q + εq′, (1)

where 􏽢η is the dual scalar part; 􏽢ξ � [􏽢ξ1, 􏽢ξ2, 􏽢ξ3] is the dual
vector part; q and q′ are the traditional Euler quaternions,
representing the real part and dual part of dual quaternion,
respectively; and ε is the called dual unit with ε2 � 0 and
ε≠ 0. In this paper, N is employed to denote the set of dual
quaternions and R denotes the set of dual numbers.
(erefore, it is supposed that 􏽢q ∈ N4, 􏽢ξ ∈ R3, and 􏽢η ∈ R.

Similar to the traditional quaternion and dual vector (see
Appendix), the basic operations for dual quaternions are
given as follows:

􏽢q1 + 􏽢q2 � 􏽢η1 + 􏽢η2, 􏽢ξ1 + 􏽢ξ2􏽨 􏽩,

λ􏽢q � [λ􏽢η, λ􏽢ξ],

􏽢q
∗

� [􏽢η, − 􏽢ξ],

􏽢q1 ⊗ 􏽢q2 � 􏽢η1􏽢η2 − 􏽢ξ1􏽢ξ2, 􏽢η1􏽢ξ2 + 􏽢η2􏽢ξ1 + 􏽢ξ1 × 􏽢ξ2􏽨 􏽩,

(2)

where 􏽢q1 � [􏽢η1, 􏽢ξ1] and 􏽢q2 � [􏽢η2, 􏽢ξ2], λ is a scalar, and 􏽢q∗

represents the conjugate of 􏽢q.
Using dual quaternion, the frame Of − xfyfzf with re-

spect to frame Ol − xlylzl can be defined as

􏽢qfl � 􏽢q
∗
l ⊗ 􏽢qf � qfl + ε

1
2
plfl ⊗ qfl � qfl + ε

1
2
qfl ⊗p

f
fl, (3)

where 􏽢ql and 􏽢qf represent the dual quaternion of frame of the
target and the chaser, respectively; qfl is the relative qua-
ternion; plfl and pffl are the relative position vectors of the
chaser relative to the target, expressed in frames Ol − xlylzl
and Of − xfyfzf , respectively.

2.2. Relative Kinetics and Coupled Dynamics. Referring to
[12, 18, 23], the kinematics and coupled dynamics equation
of Ol − xlylzl with respect to Of − xfyfzf using dual qua-
ternion representation can be described as follows:

2 _􏽢qfl � 􏽢qfl ⊗ 􏽢ωf
fl,

_􏽢ω
f
fl � − 􏽢M− 1

f 􏽢ωf
fl + 􏽢q
∗
fl ⊗ 􏽢ωl

l ⊗ 􏽢qfl􏼐 􏼑 × 􏽢Mf 􏽢ωf
fl + 􏽢q
∗
fl ⊗ 􏽢ωl

l ⊗ 􏽢qfl􏼐 􏼑􏽨 􏽩

+ 􏽢M− 1
f

􏽢F
f
f − 􏽢q
∗
fl ⊗ _􏽢ω

l
l ⊗ 􏽢qfl + 􏽢ωf

fl × 􏽢q
∗
fl ⊗ 􏽢ωl

l ⊗ 􏽢qfl􏼐 􏼑,

(4)

where 􏽢ωf
fl � ωf

fl + ε( _p
f
fl + ωf

fl × pffl) ∈ N
3 is the relative ve-

locity-expressed frame Of − xfyfzf ; ωf
fl is the relative

angular velocity; and _p
f
fl is the relative linear velocity

between two frames. As can be seen from the definition,
􏽢ωf
fl can also be written as 􏽢ωf

fl � 􏽢ωf
f − 􏽢q∗fl ⊗ 􏽢ωl

l ⊗ 􏽢qfl. Besides,
the force 􏽢F

f
f � 􏽢F

f
u + 􏽢F

f
g + 􏽢F

f
d is the total dual force; 􏽢F

f
g �

ff
g + ετfg is the dual gravity; 􏽢F

f
u � ff

u + ετfu is the dual
control force; 􏽢F

f
d � ff

d + ετfd is the dual disturbance; and ff
g

is the dual gravity force and τfg is the dual gravity torque
referred to the chaser (􏽢F

f
u � ff

u + ετfu and 􏽢F
f
d � ff

d + ετfd,
respectively). 􏽢Mf � mf(d/dε)I + εJf is the dual inertia
matrix of chaser, in which mf and Jf are the mass and
moment of inertia of chaser.

2.3. Lemmas. (e lemmas useful for this study are in-
troduced as follows. Firstly, the following system is
considered:

_x � f(x, u, t),

f(0, t) � 0,
(5)
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Figure 2: Coordinate system definition.
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where x ∈ Rn is the system status and u ∈ Rm is the control
input.

Lemma 1 (see [34]). Suppose Φ is a positive definite function
and there exists scalar υ> 0, 0< α< 1, and satisfies

_Φ(x) + υΦα(x)≤ 0, x ∈ U0, (6)

then there is an field U0 ⊂ Rn so that the Φ(x) can reach
equilibrium point in finite time. And the convergence time is
satisfied as

T1 ≤
Φ1− α

0
υ − υα

. (7)

Lemma 2 (see [35]). Suppose Θ is a positive definite function
and there are scalars ρ1 > 0 and ρ2 > 0, 0< β< 1, and satisfies

_Θ(x)≤ − ρ1Θ(x) − ρ2Θ
β
(x), x ∈ U1, (8)

then there is a field U1 ⊂ Rn so that the Θ(x) can reach
equilibrium point in finite time. And the convergence time is
satisfied as

T2 ≤
1

ρ1(1 − β)
ln
ρ1Θ

1− β
0 + ρ2
ρ2

. (9)

2.4. Problem Formulation. (e control objective of this
paper is to design a controller so that the relative motion
state [􏽢qfl(t), 􏽢ωf

fl(t)] of the chaser converges to the desired
state [􏽢qd(t), 􏽢ωd(t)] in finite time. In order to describe the
relative motion between the chaser and the capturing point
of tumbling target, the relative motion between the reference
frame Pl − xlylzl and frame Of − xfyfzf is established.
Firstly, the description of target’s attitude is given which is
considered as the general Euler attitude motion. (e kine-
matics and dynamic are shown as follows, respectively:

2 _ql � ql ∘ω
l
l,

Jl _ωl
l � − ωl

l × Jlω
l
l + τd,

(10)

where ql is the quaternion of the tumbling target; ωl
l is the

angular velocity expressed in Ol − xlylzl; Jl is the moment of
inertia of tumbling target; and τd is the total disturbance
torque acting on target. (e operation ∘ represents the
multiplication of traditional quaternion.

(e position vector of reference point Pl with respect to
the centroid Ol on the tumbling target in the frame Of −

xfyfzf is represented as follows:

pffl � q
∗
fl ∘Pl ∘ qfl, (11)

where qfl is the attitude quaternion of the chaser relative to
the target and Pl is the position of the noncentroid point Pl
with respect to the centroid Ol at the initial moment.

Remark 1. Referring to [36], some information of relative
motion can be measured. (e model of 3D reconstruction

which is obtained by the mathematical alignment of the
image plane and binocular stereo matching is established to
determine the relative position and pose of the target’s
capturing point. In such a way, relative rotational and
translational motion between two spacecrafts can be
obtained.

Considering the external disturbances and model un-
certainty of the spacecraft, the error kinematics and dy-
namics equations based on 􏽢qe and 􏽢ωe can be obtained as

2 _􏽢qe � 􏽢qe ⊗ 􏽢ωe,

􏽢M0
_􏽢ωe � − 􏽢ωe + 􏽢q

∗
e ⊗ 􏽢ωd ⊗ 􏽢qe( 􏼁 × 􏽢M0 􏽢ωe + 􏽢q

∗
e ⊗ 􏽢ωd ⊗ 􏽢qe( 􏼁

− 􏽢M0 􏽢q
∗
e ⊗ _􏽢ωd ⊗ 􏽢qe􏼐 􏼑 + 􏽢M0􏽢ωe × 􏽢q

∗
e ⊗ 􏽢ωd ⊗ 􏽢qe( 􏼁

+ 􏽢Fu + 􏽢Fg0 + 􏽢Fd + Δ􏽢Fg + Δ􏽢Σ,
(12)

where 􏽢ωe � 􏽢ωf
fl − 􏽢q∗e ⊗ 􏽢ωd ⊗ 􏽢qe � ωe + ε]e and

􏽢qe � 􏽢q− 1
d ⊗ 􏽢qfl � qe + εpe are the dual tracking error; qe and

pe are the rotation error and translation error, respectively;
ωe and ]e are the angular velocity error and linear velocity
error, respectively; 􏽢M0 and Δ 􏽢M are the nominal and un-
certain parts of the dual matrix inertia matrix; 􏽢Fd is the
bounded disturbance; 􏽢Fg0 and Δ􏽢Fg are the dual gravity
associated with 􏽢M0 and Δ 􏽢M; and Δ􏽢Σ is the uncertainty of the
dual inertia matrix and the value of which is
Δ􏽢Σ � − 􏽢M0

_􏽢ωe − 􏽢ωe + 􏽢q
∗
e ⊗ 􏽢ωd ⊗ 􏽢qe( 􏼁 × Δ 􏽢M 􏽢ωe + 􏽢q

∗
e ⊗ 􏽢ωd ⊗ 􏽢qe( 􏼁

− Δ 􏽢M 􏽢q
∗
e ⊗ _􏽢ωd ⊗ 􏽢qe􏼐 􏼑 + Δ 􏽢M􏽢ωe × 􏽢q

∗
e ⊗ 􏽢ωd ⊗ 􏽢qe( 􏼁.

(13)

3. Controller Design

(is section mainly studies the control problem, and
modified controller of ESO-NTSMC is given. By defining the
dual quaternion tracking error as 􏽢Ωe � Ωe + εpe with
Ωe � 2 ln(qe), the controller is designed tomake the tracking
error ( 􏽢Ωe, 􏽢ωe) converge to (􏽢0, 􏽢0) in finite time.

3.1. Nonsingular Terminal Sliding Mode Controller Design.
In order to achieve the control objective, a fast terminal
sliding surface is defined as

s � _x + α1x + α2x
p
, (14)

where x ∈ R and p is a constant which satisfies 0.5<p< 1
and α1 and α2 are both positive normal numbers. (e time
derivative of the sliding surface s is

_s � €x + α1 _x + pα2x
p− 1

_x. (15)

As can be seen, when x � 0, _x≠ 0, and p − 1< 0, the
singularity may occur in equation (15). Motivated by
[24, 37], an alternative form of sliding surface is proposed as
follows to avoid singularity:

s � _x + α1x + α2β(x), (16)
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where β(x) is

β(x) �
sgn(x)|x|p, if s � 0 or s≠ 0, |x|≥ μ,

c1x + c2sgn(x)x2, if s≠ 0, |x|≤ μ.

⎧⎨

⎩ (17)

In the above formula, c1 � (2 − p) μp− 1 and c2 � (p −

1) μp− 2 are the parameters; s � _x + α1x + α2sgn(x)|x|p is the
nominal sliding surface; and μ is a positive small constant.
(erefore, the time derivative of sliding surface (16) is

_s �
€x + α1 _x + pα2sgn(x)|x|p− 1 _x, if s � 0 or s≠ 0, |x|≥ μ,

€x + α1 _x + α2 c1 _x + 2c2sgn(x)x _x( 􏼁, if s≠ 0, |x|≤ μ.

⎧⎪⎨

⎪⎩

(18)

Remark 2. (e conventional nonsingular sliding mode
(NTSM) in Reference [38]was proposed as

s � x + ξ _x
m/n

, (19)

where x ∈ R; ξ > 0; and q and p are the positive odd integers
satisfying 1< (m/n)< 2. In Reference [39], it has been
proved that the NTSM (19) is still singular when a dual
sliding mode surface control method is designed. Further-
more, as explained in Reference [24], the NTSM (19) has
slower convergence rate than the linear sliding mode when
the sliding mode s � 0 is reached. (erefore, in order to
overcome this disadvantage, the fast NTSM is proposed in
this paper. (e singularity of TSM is avoided by switching
from terminal to general sliding manifold, which is function
c1x + c2sgn(x)x2 in equation (17).

Equation (18) is continuous, and singularity is avoided.
According to above derivation, the paper propose a fast
NTSM surface as

􏽢s � 􏽢ωe + 􏽢β⊙ 􏽢Ωe + 􏽢c⊙ χ 􏽢Ωe􏼐 􏼑, (20)

where 􏽢β � β + εβ′ ∈ R3 is the positive dual constant, with
β> 0 and β′ > 0, so does 􏽢c � c + εc′∈ R3; the operation of ⊙
is defined in Appendix; χ( 􏽢Ωe) � [χ( 􏽢Ωe1), χ( 􏽢Ωe2), χ( 􏽢Ωe3)]

T

is designed as follows:

χ 􏽢Ωei􏼐 􏼑 �

sigα 􏽢Ωei􏼐 􏼑, if 􏽢s � 0 or􏽢s≠ 0, 􏽢Ωei

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ ε0,

c1
􏽢Ωei + c2sgn 􏽢Ωei􏼐 􏼑 􏽢Ωei

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
, if 􏽢s≠ 0, 􏽢Ωei

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ ε0,

i � 1, 2, 3,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(21)

where sigα( 􏽢Ωei) � sgn(Ωei)|Ωei|
α + εsgn(pei)|pei|

α; (1/2)<
α< 1; ε0 is a positive value; c1 � (2 − α)μα− 1 and c2 � (α − 1)

μα− 2; and 􏽢s � 􏽢ωe + 􏽢β⊙ 􏽢Ωe + 􏽢c⊙ sigα( 􏽢Ωe).
Taking derivation of the sliding surface 􏽢s with respect to

time yields

_􏽢s � _􏽢ωe + 􏽢β⊙ _􏽢Ωe + 􏽢c⊙ _χ 􏽢Ωe􏼐 􏼑, (22)

where _χ( 􏽢Ωei) is

_χ 􏽢Ωei􏼐 􏼑 �

α 􏽢Ωe
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
α− 1 _􏽢Ωe, if 􏽢s � 0 or􏽢s≠ 0, 􏽢Ωei

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ ε0,

c1
_􏽢Ωei + 2c2sgn 􏽢Ωei􏼐 􏼑 􏽢Ωei

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

_􏽢Ωei, if 􏽢s≠ 0, 􏽢Ωei
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ ε0,

i � 1, 2, 3.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(23)

(e NTSMC method is

􏽢F
f
u � 􏽢Fe + 􏽢Fs, (24)

where 􏽢Fs � − 􏽢k⊙ sigp1(􏽢s) is the switching term, 􏽢k ∈ R3 with
􏽢ki � ki + εki

′, i � 1, 2, 3, satisfying ki > 0 and ki
′ > 0; p1 > 0;

and 􏽢Fe is the equivalent term and the value of which is

􏽢Fe � 􏽢ωe + 􏽢q
∗
e ⊗ 􏽢ωd ⊗ 􏽢qe( 􏼁 × 􏽢M0 􏽢ωe + 􏽢q

∗
e ⊗ 􏽢ωd ⊗ 􏽢qe( 􏼁

− 􏽢M0 􏽢q
∗
e ⊗ _􏽢ωd ⊗ 􏽢qe􏼐 􏼑 − 􏽢M0􏽢ωe × 􏽢q

∗
e ⊗ 􏽢ωd ⊗ 􏽢qe( 􏼁

+ 􏽢Fg0 − 􏽢β⊙ 􏽢M0
_􏽢Ωe − 􏽢c⊙ 􏽢M0 _χ 􏽢Ωe􏼐 􏼑.

(25)

3.2. Extended-State-Observer Design. (e ESO method
shows very fine performance in disturbance rejection and
compensation of uncertainties that the accuracy of the
controller can be improved. Based on the SOSM method
mentioned in References [25, 32], and by combining the
linear and nonlinear correction terms, a novel extended state
observer is proposed as follows:

􏽢e1 � 􏽢z1 − 􏽢s,

􏽢e2 � 􏽢z2 − 􏽢D,

_􏽢z1 � 􏽢M− 1
0

􏽢Fu + 􏽢M− 1
0 S 􏽢ωe, 􏽢qe( 􏼁 − 􏽢κ⊙ 􏽢e1 − 􏽢η⊙ sgnp2 􏽢e1( 􏼁 + 􏽢z2,

_􏽢z2 � − 􏽢ρ⊙ 􏽢e1 − 􏽢λ⊙ sgn2p2− 1 􏽢e1( 􏼁,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(26)

where 􏽢z1 ∈ N3 and 􏽢z2 ∈ N3 are the outputs of the observer;
􏽢D � Δ􏽢Fg + 􏽢Fd + Δ􏽢Σ is the total disturbance and also the
extended state variable; 􏽢e1 and 􏽢e2 represent the observer
measurement; p2 ∈ [0.5, 1); 􏽢κ, 􏽢η, 􏽢ρ, 􏽢λ ∈ R3 are the observer
designed parameters, respectively; and S(􏽢ωe, 􏽢qe) is

S 􏽢ωe, 􏽢qe( 􏼁 � 􏽢M− 1
􏼒􏽢Fd + 􏽢Fg − 􏽢ωe + 􏽢q

∗
e ⊗ 􏽢ωd ⊗ 􏽢qe( 􏼁

× 􏽢M 􏽢ωe + 􏽢q
∗
e ⊗ 􏽢ωd ⊗ 􏽢qe( 􏼁 − 􏽢M 􏽢q

∗
e ⊗ _􏽢ωd ⊗ 􏽢qe􏼐 􏼑

+ 􏽢M􏽢ωe × 􏽢q
∗
e ⊗ 􏽢ωd ⊗ 􏽢qe( 􏼁􏼓.

(27)

(e proposed ESO (26) can not only obtain the feature of
SOSM, such as finite-time convergence but also weaken the
chattering of conventional first-order sliding mode also. In
addition, it inherits the best properties of linear and non-
linear correction terms. (en, the error dynamics can be
established from equation (26) in the scalar form:
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_􏽢e1 � 􏽢e2 − 􏽢κ⊙ 􏽢e1 − 􏽢η⊙ sgnp2 􏽢e1( 􏼁,

_􏽢e2 � − 􏽢ρ⊙ 􏽢e1 − 􏽢λ⊙ sgn2p2− 1 􏽢e1( 􏼁 − 􏽢gi(t),

⎧⎨

⎩ (28)

where 􏽢gi(t) is the derivative of 􏽢D and the amplitude of 􏽢gi(t)

is assumed to be bounded by a positive value g, that is
|􏽢gi(t)|≤g.

Based on the NTSMC and ESO designed above, the
integral controller is designed as

􏽢F
f
u � 􏽢Fe + 􏽢Fs + 􏽢Fτ , (29)

where 􏽢Fe, 􏽢Fs, and 􏽢Fτ are given by

􏽢Fe � 􏽢ωe + 􏽢q
∗
e ⊗ 􏽢ωd ⊗ 􏽢qe( 􏼁 × 􏽢M0 􏽢ωe + 􏽢q

∗
e ⊗ 􏽢ωd ⊗ 􏽢qe( 􏼁

+ 􏽢M0 􏽢q
∗
e ⊗ _􏽢ωd ⊗ 􏽢qe􏼐 􏼑 − 􏽢M0 􏽢ωe × 􏽢q

∗
e ⊗ 􏽢ωd ⊗ 􏽢qe( 􏼁

+ 􏽢Fg0 − 􏽢β⊙ _􏽢Ωe − 􏽢c⊙ _χ 􏽢Ωe􏼐 􏼑,

􏽢Fs � − 􏽢k⊙ sig
p1(􏽢s),

􏽢Fτ � − 􏽢z2.

(30)

Under the proposed controller in equations (29) and
(30), the control objective can be achieved for tracking
tumbling target. (e closed-loop system for coupled rota-
tional and translational control is shown in Figure 3.

4. Stability Analysis

In this section, the stability analysis is divided into two parts.
In the first part ((eorem 1), the finite-time convergence of
ESO is proved, which implies that the proposed ESO can
estimate the exact state and total disturbances within a fixed
time. In the second part ((eorem 2), the finite-time stability
of the closed-loop system is proved, which indicates that the
finite-time convergence of the tracking error ( 􏽢Ωe, 􏽢ωe) can be
obtained. (e proofs of finite-time convergence of ESO and
total closed-loop system will be given using Lyapunov
stability theory.

Theorem 1. Suppose the parameters of ESO in equation (26)
satisfy the following:

p1
􏽢λ􏽢ρ> 􏽢κ2􏽢λ + p2 p2 + 1( 􏼁

2
􏽢η2􏽢κ2. (31)

(en, the observer errors will converge to the following
region in finite-time:

Ω1 � ϑ | ‖ϑ‖≤ δ �
g‖R‖

λmin Q1( 􏼁
􏼠 􏼡

p2/2p2− 1⎧⎨

⎩

⎫⎬

⎭, (32)

where ϑ � [‖􏽢e1i‖
p2 sgn(􏽢e1i), 􏽢e1i, 􏽢e2i]

T, R � 􏽢η 􏽢κ − 2􏼂 􏼃, and the
matrix Q1 satisfies the following expression:

Q1 � η
􏽢λ + p1􏽢η2 0 − p1􏽢η

0 􏽢ρ + 2 + p1( 􏼁􏽢κ2 − p1 + 1( 􏼁􏽢κ
− p1􏽢η − p1 + 1( 􏼁􏽢κ p1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (33)

(e convergence time is upperbounded by tm ≤ 2/θ1
ln((θ1V

(1/2)
0 + θ2)/θ2), where V0 is the initial Lyapunov state

and θ1 and θ2 are the constants depending on the gains.

Proof. To verify the finite-convergence performance, in
accordance with the idea of Moreno and Osorio [25], a
Lyapunov candidate is proposed as

V1 �
1
2

􏽢η⊙ 􏽢e1i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p2 sgn 􏽢e1i( 􏼁 + 􏽢κ⊙􏽢e1i − 􏽢e2i􏼐 􏼑

T

· 􏽢η⊙ 􏽢e1i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p2 sgn 􏽢e1i( 􏼁 + 􏽢κ⊙ 􏽢e1i − 􏽢e2i􏼐 􏼑 +

􏽢λ
p1
⊙ 􏽢e1i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2p2

+ 􏽢ρ⊙ 􏽢e
T
1i􏽢e1i +

1
2
􏽢e

T
2i􏽢e2i,

� ϑTΓϑ,

(34)

where ϑ � [|􏽢e1i|
p2 sgn(􏽢e1i), 􏽢e1i, 􏽢e2i]

T and the matrix Γ is de-
fined as

Γ �
1
2

2􏽢λ/p1 + 􏽢η2 􏽢η􏽢κ − 􏽢η

􏽢η􏽢κ 2􏽢ρ + 􏽢κ2 − 􏽢κ

− 􏽢η − 􏽢κ 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (35)

It is obvious that V1 is positive definite and radially
unbounded if 􏽢λ and 􏽢ρ are positive. (e range of V1 is ob-
tained as follows:

λmin(Γ)‖ϑ‖
2 ≤V1 ≤ λmax(Γ)‖ϑ‖

2
, (36)

where ‖ϑ‖2 � |􏽢e1i|
2p2 + 􏽢eT1i􏽢e1i + 􏽢eT2i􏽢e2i is the Euclidean norm of

ϑ and λmin(·) and λmax(·) represent the minimum and
maximum eigenvalues of the matrix, respectively.

(e time derivative of V1 can be obtained as
_V1 � 2􏽢λ + p1􏽢η2􏼐 􏼑⊙ 􏽢e1i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2p2− 1 _􏽢e1isgn 􏽢e1i( 􏼁 + 2􏽢ρ + 􏽢κ2􏼐 􏼑⊙ 􏽢e

T
1i

_􏽢e1i

+ 2􏽢e
T
2i

_􏽢e2i + p1 + 1( 􏼁􏽢η􏽢κ⊙ 􏽢e1i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p2 _􏽢e1isgn 􏽢e1i( 􏼁

− p1􏽢η⊙ 􏽢e1i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p2− 1 _􏽢e

T
1i􏽢e2i − 􏽢η⊙ 􏽢e1i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p2 sgn 􏽢e1i( 􏼁_􏽢e2i

− 􏽢κ⊙ _􏽢e
T
1i􏽢e2i − 􏽢κ⊙􏽢e

T
1i

_􏽢e2i.

(37)

q⌃d

q⌃e

q⌃

F⌃uNTSMC
equation (30)

ω⌃

[q⌃ ω⌃]

Model
equation (12)

[z⌃1 z⌃2] Disturbances
observer

equation (26)

–

Figure 3: Closed-loop system of NTSMC-ESO for spacecraft
coupled control.
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Substituting equation (28) into equation (37) yields

_V1 � 􏽢e1i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p2− 1

􏼔 − 􏽢ηλ + 􏽢ηp2􏽢η2􏼐 􏼑 􏽢e1i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2p2 − 􏽢η􏽢ρ + 2 + p2( 􏼁􏽢η􏽢κ2􏼐 􏼑 􏽢e1i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

− p1􏽢η⊙􏽢e
T
2i􏽢e2i + 2 p2 + 1( 􏼁􏽢η􏽢κ⊙ 􏽢e

T
1i􏽢e2i

+ 2p2􏽢η2 ⊙ 􏽢e1i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p2 sgn 􏽢e1i( 􏼁􏽢e2i􏼕 + 􏼔 − 􏽢κ⊙ 􏽢e

T
2i􏽢e2i − 􏽢κ􏽢ρ + 􏽢κ3􏼐 􏼑

⊙􏽢e
T
2i􏽢e2i − 􏽢κ􏽢λ + 2􏽢κp2􏽢η2 + 􏽢η2􏽢κ􏼐 􏼑 􏽢e1i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2p2 + 2􏽢κ2 ⊙􏽢e

T
1i􏽢e2i

+ 􏽢η⊙ 􏽢e1i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p2 sgn 􏽢e1i( 􏼁 − 2􏽢e2i + 􏽢κ􏽢e1i􏽨 􏽩􏽢gi(t),

� − 􏽢e1i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p2− 1ϑTQ1ϑ − ϑTQ2ϑ + 􏽢gi(t)Rϑ,

(38)

where the matrices Q1, Q2, and R are given by

Q1 � 􏽢η

􏽢λ + p2􏽢η2 0 − p2􏽢η

0 􏽢ρ + 2 + p2( 􏼁􏽢κ2 − p2 + 1( 􏼁􏽢κ

− p2􏽢η − p2 + 1( 􏼁􏽢κ p2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Q2 � 􏽢κ

􏽢λ + 2p2 + 1( 􏼁􏽢η2 0 0

0 􏽢ρ + 􏽢κ2 − 􏽢κ

0 − 􏽢κ 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

R � 􏽢η 􏽢κ − 2􏼂 􏼃. (39)

It is obvious thatQ2 is a symmetric matrix, and if λ and κ
are positive, it is positive definite. In addition, calculate the
determinant of Q1 as

Q1
����

���� � p2
􏽢λ + p2􏽢η2􏼐 􏼑 􏽢ρ + 2 + p2( 􏼁􏽢κ2 − p2 + 1( 􏼁

2
􏽢κ2􏽨 􏽩􏽮 􏽯

− p
2
2􏽢η2 􏽢ρ + 2 + p2( 􏼁􏽢κ2􏽨 􏽩,

� 􏽢λ p2􏽢ρ + p2 2 + p2( 􏼁􏽢κ2 − p2 + 1( 􏼁
2
􏽢κ2􏽨 􏽩

− p2􏽢η2 p2 + 1( 􏼁
2
􏽢κ2,

� 􏽢λ p2􏽢ρ − 􏽢κ2􏼐 􏼑 − p2􏽢η2 p2 + 1( 􏼁
2
􏽢κ2.

(40)

Substituting equation (31) into equation (40), it yields
‖Q1‖> 0. (erefore, Q1 is the positive definite matrix.
According to the definition of ϑ, it can be obtained that

􏽢e1i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p2− 1 ≥ ‖ϑ‖

p2− 1/p2( ). (41)

According to equations (34)–(41), one obtains
_V1 � − e1i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p2− 1λmin Q1( 􏼁‖ϑ‖

2
− λmin Q2( 􏼁‖ϑ‖

2
+ g‖R‖‖ϑ‖

≤ − λmin Q1( 􏼁‖ϑ‖
p2− 1/p2( )‖ϑ‖ − λmin Q2( 􏼁‖ϑ‖

2
+ g‖R‖‖ϑ‖

≤ − c1‖ϑ‖
2p2− 1/p2( ) − c3􏼒 􏼓V

(1/2)
1 − c2V1,

(42)

where c1 � λmin(Q1)/
�������
λmax(Γ)

􏽰
, c2 � λmin(Q2)/λmax(Γ), and

c3 � g‖R‖/
�������
λmin(Γ)

􏽰
. Based on equation (36), we assume

that V1 ≥ (c3/c1)
(2p2/2p2− 1)λmax(Γ), which implies that

c1‖ϑ‖(2p2− 1/p2) − c3 ≥ 0. And it is obvious that c2 > 0. By
substituting θ1 � c1‖ϑ‖(2p2− 1/p2) − c3 and θ2 � c2 into
equation (42), one obtains

_V1 ≤ − θ1V
(1/2)
1 − θ2V1. (43)

(erefore, according to Lemma 2, it is obvious that _V1 is
definitely negative and V1 is positive. (erefore, observer
error will converge to the small set Ω1 in finite time and the
convergence time satisfies tm ≤ 2/θ1 ln(θ1V

(1/2)
0 + θ2)/(θ2).

(e proof of (eorem 1 is completed. □

Remark 3. As seen in (eorem 1 and its proof, the re-
construction error of the model uncertainties and external
disturbances can be driven to the neighborhoods of the
origin in finite time. (e parameter (p2/2p2 − 1) gets larger,
and the region Ω1 � ϑ | ‖ϑ‖≤δ � (g‖R‖/λmin(Q1))

(p2/2p2− 1)
􏽮 􏽯

will be smaller by choosing adequate ESO parameters, p2, 􏽢κ,
􏽢η, 􏽢ρ, and 􏽢λ, which implies that the proposed ESO has high
accuracy. In this way, the output of observer will not in-
fluence the controller. (erefore, the finite-time conver-
gence of the closed-loop system, mentioned in(eorem 2, is
proved on the basis of (eorem 1. Some studies containing
ESO-NTSMC analyzed the total finite-time convergence of
the closed-loop system in the same way [32, 33].

Theorem 2. Based on the estimated state in observer (26),
and with the application of the controller in equations (29)
and (30), the close-loop system states will be driven to a
neighborhood of the sliding surface 􏽢s � 􏽢0 in finite time.
Moreover, the tracking errors 􏽢Ωe and 􏽢ωe will converge to a
small region in finite time.

Proof. (e proof includes two consecutive steps:
Firstly, it is to be proved that the sliding surface will

converge to 􏽢s � 􏽢0 in finite time. Define the form of the
Lyapunov function as follows:

V2 �
1
2
􏽢s
T 􏽢M􏽢s. (44)

Taking the time derivative of 􏽢s in equation (20), it yields

_􏽢s � − 􏽢M− 1 􏽢Fu + 􏽢D􏼐 􏼑 − 􏽢M− 1
S 􏽢ωe, 􏽢qe( 􏼁 + 􏽢β⊙ _􏽢Ωe + 􏽢c⊙ _χ 􏽢Ωe􏼐 􏼑.

(45)

With the application of equations (29) and (30), _􏽢s can be
obtained as

_􏽢s � 􏽢M− 1
− 􏽢k⊙ sigp1(􏽢s) − 􏽢z2 + 􏽢D􏼐 􏼑. (46)

Take the time derivative of V2 yields
_V2 � 􏽢s

T 􏽢M_􏽢s,

� 􏽢s
T

− 􏽢k⊙ sigp1(􏽢s) − 􏽢z2 + 􏽢D􏽨 􏽩,

� 􏽢s
T

− 􏽢k⊙ sigp1(􏽢s) − 􏽢e2􏽨 􏽩,

(47)

where 􏽢D � Δ􏽢Fg + 􏽢Fd + Δ􏽢Σ is the total external disturbance
and model uncertainty and 􏽢e2 � 􏽢z2 − 􏽢D is the error state of
ESO. Recalling from the stability in (eorem 1, the ESO
errors can enter the small setΩ in fixed time tm. After finite-
time tm, the ESO errors satisfy ‖􏽢e2‖< δ. In consequence, it
can be obtained as
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_V2 � − 􏽢s
T 􏽢k⊙ sigp1(􏽢s) + 􏽢e2􏽨 􏽩≤ − 􏽢s

T 􏽢k⊙ sigp1(􏽢s) − δ􏽨 􏽩

≤ − 􏽘

3

i�1
ki − δ si

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
− p1􏼐 􏼑 si

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p1+1

+ ki
′ − δ si
′

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
− p1􏼐 􏼑 si
′

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p1+1

􏽨 􏽩

≤ − θ3 ‖s‖
p1+1

+ s′
����

����
p1+1

􏼒 􏼓,

(48)

where θ3 � min[(ki − δ|si|
− p1), (ki
′ − δ|si
′|− p1)], i � 1, 2, 3, is

the positive scalar. For equation (48), if θ3 > 0, that is, ki −

δ|si|
− p1 > 0 or ki

′ − δ|si
′|− p1 > 0, then one can obtain

_V2 ≤ − θ4V
p1+(1/2)( )

2 , (49)

where θ4 � θ3
�����������������
2/max σmax(Jf ), mf􏼈 􏼉

􏽱
is a positive number.

(erefore, it can be proved by Lemma 1 that the sliding
surface 􏽢s will converge to the set Ω2 � 􏽢s|‖􏽢s‖≤Δs �􏼈

(‖􏽢k‖/δ)p1} in finite time.
Secondly, when the close-loop system state reaches the

neighborhood of 􏽢s � 􏽢0, it should be proved that the tracking
error 􏽢Ωe and 􏽢ωe will converge into small regions containing
the origin (􏽢0, 􏽢0) in finite time. Due to different conditions of
􏽢s and 􏽢Ωe in (23), the following cases should be taken into
consideration. □

Case 1. If 􏽢s � 0, equation (20) becomes

􏽢ωei � − 􏽢βi ⊙ 􏽢Ωei − 􏽢ci ⊙ χ 􏽢Ωei􏼐 􏼑, i � 1, 2, 3. (50)

Consider the following Lyapunov function

V3 �〈 􏽢Ωe,
􏽢Ωe〉. (51)

Taking the time derivative of V3 yields

_V3 �〈 􏽢Ωe,
_􏽢Ωe〉 �〈 􏽢Ωe, 􏽢ωe〉,

� 􏼜 􏽢Ωe, − 􏽢βi ⊙ 􏽢Ωe − 􏽢c⊙ sgn Ωe( 􏼁 Ωe
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
α

+ εsgn pe( 􏼁 pe
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
α

􏽨 􏽩􏼝,

� − 􏽢β〈 􏽢Ωe,
􏽢Ωe〉 − 􏽘

3

i�1
ci Ωei

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
α+1

+ ci
′ pei
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
α+1

􏼐 􏼑

≤ − θ5V3 − θ6V
(1+α/2)
3 ,

(52)

where θ5 � 􏽢β and θ6 � min(ci, ci
′), i � 1, 2, 3 are the

parameters.
(erefore, according to Lemma 2, the error states 􏽢Ωe and

􏽢ωe will converge to (􏽢0, 􏽢0) in finite time.

Case 2. If 􏽢s≠ 0, | 􏽢Ωei|≤ ε0, which indicates that 􏽢Ωei con-
verged into the set | 􏽢Ωei|≤ ε0. One can obtain

􏽢ωei + 􏽢βi ⊙ 􏽢Ωei + 􏽢ci ⊙ 􏽢c1i ⊙ 􏽢Ωei + 􏽢c2i ⊙ sgn 􏽢Ωei􏼐 􏼑 􏽢Ωei
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

􏼒 􏼓 � δs,

δs

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌<Δs.

(53)

(erefore, 􏽢ωei will eventually converge to the region as
follows:

􏽢ωei ≤ δs

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + 􏽢βiε0 + 􏽢ci ⊙ 􏽢c1iε0 + 􏽢c2iε

2
0􏼐 􏼑. (54)

Case 3. If 􏽢s≠ 0, | 􏽢Ωei|≥ ε0, it implies that

􏽢ωei + 􏽢βi ⊙ 􏽢Ωei + 􏽢ci ⊙ sig
α 􏽢Ωei􏼐 􏼑 � δs, δs

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌<Δs,

􏽢ωei + 􏽢βi −
δs

2 􏽢Ωei
􏼠 􏼡⊙ 􏽢Ωei + 􏽢ci −

δs

2 sigα 􏽢Ωei􏼐 􏼑
⎛⎝ ⎞⎠⊙ sigα 􏽢Ωei􏼐 􏼑 � 0, δs

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌<Δs.

(55)

Once 􏽢βi > δs/2 􏽢Ωei and 􏽢ci > δs/2 sigα( 􏽢Ωei), then 􏽢s is still
kept in the form of terminal sliding mode, which implies
that | 􏽢Ωei| will be bounded as | 􏽢Ωei|≤ ε1 � min (Δs/2βi),􏼈

(Δs/2ci)
(1/α)}.

In conclusion, |􏽢ωei| and | 􏽢Ωei| will be bounded as |􏽢ωei|≤ ς1
and | 􏽢Ωei|≤ ς2 in finite time, where ς1 � |δs| + 􏽢βiε0 + 􏽢ci ⊙

(􏽢c1iε0 + 􏽢c2iε20) and ς2 � max ε0, ε1􏼈 􏼉. Based on the analysis
above, it can be concluded that the control objective can be
accomplished in finite time. (e proof of (eorem 2 is
completed.

Remark 4. (e total finite-time stability of closed-loop is
achieved on the basis of the above proof. With the

Table 1: Simulation experiment parameters.

Orbital elements Values
Semimajor axis (km) 6778
Eccentricity 0.02
Inclination (deg) 45
Right ascension of the ascending node (deg) 30
Argument of perigee (deg) 25
True anomaly (deg) 30

Table 2: Control gains for simulations.

Controllers Controller gains

ESO-NTSMC
α � 0.67; μ � 10− 3; 􏽢β � 0.15 + ε2; 􏽢c � 0.2 + ε0.5;

􏽢k � 20 + ε10; 􏽢η � 3 + ε1; 􏽢κ � 10 + ε5; 􏽢λ � 3 + ε0.9;
􏽢ρ � 0.01 + ε0.01; p1 � 0.6; p2 � 0.6

LESO-
NTSMC

α � 0.67; μ � 10− 3; 􏽢β � 0.15 + ε2; 􏽢c � 0.2 + ε0.5;
􏽢k � 20 + ε10;􏽢κ � 10 + ε5; 􏽢ρ � 0.01 + ε0.01;

p1 � 0.6; p2 � 0.6

ESO-TSM
α � 5/3; 􏽢β � 0.5 + ε0.8; 􏽢k � 20 + ε10; 􏽢η � 3 + ε1;

􏽢κ � 10 + ε5; 􏽢λ � 3 + ε0.9; 􏽢ρ � 0.01 + ε0.01;
p1 � 0.6; p2 � 0.6
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application of ESO and its estimation of total disturbances,
the controller is reconstructed by adding the disturbance
rejection term 􏽢Fτ in equation (30). (erefore, the robust
controller can guarantee the finite-time stability of the
overall closed-loop system with high accuracy. By choosing
suitable controller parameters 􏽢k and p1 such that
Δs � (‖􏽢k‖/δ)p1 is smaller enough, the convergence setΩ2 can
be a sufficiently small set. (erefore, it can be seen that,
under the proposed controller method, the closed-loop

system can achieve finite-time convergence with satisfactory
performance.

Remark 5. Compared with the existing NTSMC methods,
the structure of proposed controller scheme in this research
combines ESO and NTSMC techniques, which can obtain
higher tracking accuracy and achieve finite-time conver-
gence. (e overall controller is developed based on the
estimated information of external disturbances and model
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Figure 4: Time responses of reconstruction error. (a) Translational term. (b) Rotational term.
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Figure 5: Time responses of relative rotation. (a) ESO NTSMC. (b) LESO NTSMC. (c) ESO TSM.
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uncertainties by ESO. (erefore, the controller does not
need the priori information of perturbations. Moreover,
based on the proof in equation (48), the ESO-based con-
troller can achieve smaller steady-state error when the es-
timation 􏽢z2 of ESO is applied to develop the robust
controller, which indicates that the system has better per-
formance and higher accuracy.

5. Simulation Results

In this section, numerical simulations are given to illustrate
the effectiveness of the proposed ESO-NTSMC for the chaser
tracking the tumbling target. It is assumed that the orbital
elements of tumbling target are presented in Table 1. (e
target body-fixed frame completely coincides with the
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Figure 6: Time responses of relative translation. (a) ESO-NTSMC. (b) LESO-NTSMC. (c) ESO-TSM.
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Figure 7: Time responses of relative angular velocity. (a) ESO-NTSMC. (b) LESO-NTSMC. (c) ESO-TSM.
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orbital coordinate system. (e control objective is to keep
attitude of chaser consistent with the target, and the relative
position of two can be kept at a certain distance.

(e rotational angular velocity of the tumbling target
is considered to be slow speed as ωt(0) � [0, 0, 0.01]T

(rad/s), and the capturing point in Ol − xlylzl is set as
pfl,d � [10, 0, 0]T m. (e inertia matrix is supposed to be

measured as Jt � [20, 0, 0; 0, 23, 0; 0, 0, 25] (kg · m2). (e
initial conditions of the relation motion between two
spacecraft are given as pffl(0) � [15, 0, 0]T m; qfl(0) �

[0.9991, 0, 0, 0.0431]T; and 􏽢ωf
fl(0) � 􏽢0.

In addition, proposed NTSMC with linear-ESO, LESO-
NTSMC, designed in Reference [25], and proposed ESO with
conventional NTSMC, ESO-TSM, designed in Reference [38]
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Figure 8: Time responses of relative linear velocity. (a) ESO-NTSMC. (b) LESO-NTSMC. (c) ESO-TSM.
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Figure 9: Time responses of control torque. (a) ESO-NTSMC. (b) LESO-NTSMC. (c) ESO-TSM.
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are also implemented for purpose of comparison.(e gains of
proposed and above controllers are given in Table 2.

(e preset uncertainties and disturbances are set in
accordance with Reference [12]. (e real mass and inertia
matrix of the chaser are assumed to be mf � 97 kg and
Jf � [18, 0, 0; 0, 17, 0; 0, 0, 20] (kg · m2). And the nominal

mass and inertia matrix of the chaser is assumed to be
mf0 � 100 kg and Jf0 � [22, 0, 0; 0, 20, 0; 0, 0, 23] (kg · m2),
with the model uncertainties bounded by |Δmf |≤ 3 kg and
|Jf ,ii|≤ 3 (kg · m2), i � 1, 2, 3, respectively. Moreover, it is
assumed that the disturbance forces and torques are set
as
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Figure 10: Time responses of control force. (a) ESO-NTSMC. (b) LESO-NTSMC. (c) ESO-TSM.
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Figure 11: Time responses of sliding surface of translational term. (a) ESO-NTSMC. (b) LESO-NTSMC. (c) ESO-TSM.
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f
f
d � [0.05 cos(nt)0.07 cos(nt) − 0.01 cos(nt)]T,

τfd � [− 0.04 cos(nt)0.03 cos(nt) − 0.05 cos(nt)]T,
(56)

where n � π/T0 is a target orbit period constant with
T0 ≈ 5711 s. (e control force is limited to the range of
|fu|≤ 10N, and the control torque is limited to the range of
|τu|≤ 1N·m.

Figures 4–13 show the time responses of the simulation
results using the proposed ESO-NTSMC and compared
control schemes, LESO-NTSMC and ESO-TSM, re-
spectively. (e results shown in Figure 4 illustrate the ef-
fectiveness of the ESO where the observer reconstruction
errors of translational term and rotational term converge to
a small range in finite time. In such a situation, the accuracy
of the system can be enhanced when the model uncertainties
and bounded external disturbances are estimated by ESO
and the system can be compensated. Figures 5(a) and 6(a)
shows the time responses of the tracking error of relative
translation and rotation, respectively. It can be seen that the
rotation error falls to tolerance within 10 s and converges to
the range of 5 × 10− 5 rad while the translation tracking error
converges to the range of 0.02m in around 20 s, which il-
lustrates the performance of accuracy and rapidity of ESO-
NTSMC. (e time histories of relative velocity and angular
velocity tracking errors are given in Figures 7(a) and 8(a),
respectively. (e steady-state behavior shows that the an-
gular velocity error converges to 1 × 10− 5 (rad/s) in 10 s, and
the velocity error converges to 5 × 10− 4 (m/s) at 20 s, which
confirms the control objective of tracking the velocity of
target accurately. It can be seen that, under the bounded
sliding mode control force and torque shown in Figures 9(a)
and 10(a), the sliding surfaces converge to the range of

|si|≤ 1 × 10− 3 (m/s) and |si
′|≤ 1 × 10− 5 (rad/s) in finite time

successfully, which are shown in Figures 11(a) and 12(a).
(e simulations of LESO-NTSMC are also carried out,

which are shown in Figures 5(b)–12(b). From these figures,
it can be seen that LESO-NTSMC is also tolerant to model
uncertainties and external disturbances when the system
states can be driven to a neighborhood of origin. As shown
in Figures 11(b) and 12(b), the sliding surface accuracy of
LESO-NTSMC is much lower than of ESO-NTSMC, which
can illustrate that the proposed method obtains better
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Figure 12: Time responses of sliding surface of rotational term. (a) ESO-NTSMC. (b) LESO-NTSMC. (c) ESO-TSM.
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control ability and high control accuracy in comparison with
LESO-NTSMC scheme. Figures 5(c)–12(c) show the sim-
ulation results using the ESO-based conventional NTSMC
method. Severe chattering and large overshoot exist in ESO-
TSM during the control process, and the convergence time
of ESO-TSM is larger than the proposed one. As seen, the
proposed ESO-NTSMC has faster convergence rate than
ESO-TSM and can also avoid singularity. From the tracking
trajectory shown in Figure 13, the chaser can successfully
track the desired trajectory of docking port of tumbling
target. In conclusion, it is obvious that the control object is
achieved under the control strategy of proposed ESO-
NTSMC while the performance and robustness can be
guaranteed.

6. Conclusion

In this study, a finite-time stabilization problem of a chaser
spacecraft approaching a tumbling target in presence of
unknown uncertainty and bounded external disturbance has
been handled. Based on the 6-DOF coupled relative motion
described by dual quaternion, a combination of NTSMC and
ESO is proposed to drive the translational and rotational
motion to the desired state. Meanwhile, the finite-time
convergence and stability property of the proposed method
is rigorously proven. It was shown that the tracking error can
be driven to the equilibrium point with fast response and
high accuracy. Numerical simulation results show the ef-
fectiveness and performance of the proposed controller and
its robustness to the model uncertainty and external
disturbance.

Appendix

For a given quaternion q � [η, ξ], η and ξ are the scalar part
and the vector part, respectively. (e conjugate of q is de-
fined as q∗ � [η, − ξ] and its norm is calculated by
‖q‖ �

�����
q ∘ q∗

􏽰
. It is called unit quaternion if ‖q‖ � 1. Its

logarithm is defined as

ln q � 0,
arc cos η
2

�����
1 − η2

􏽰 ξ􏼢 􏼣. (A.1)

(e equivalent of the unit quaternion referred to Euler
angle ϕ and the unit vector n is defined as

ln q � 0,
ϕ
2

n􏼢 􏼣, 0≤ϕ≤ 2π. (A.2)

As seen, when the angle ϕ � 0, there is q+ � [1, 0, 0, 0],
and when ϕ � 2π, correspondingly q− � [− 1, 0, 0, 0]. Be-
cause of ln q+ � ln q− � (0, 0, 0), it is obvious that a unit
quaternion can be transformed to a three-dimensional
vector by the logarithm operation.

(e definition of dual numbers is
􏽢a � a + εa′, (A.3)

where a and a′ are, respectively, called real part and dual
part. ε is called the dual unit, satisfying ε2 � 0 and ε≠ 0. And
the operation of the dual numbers is defined as

􏽢a1 + 􏽢a2 � a1 + a2 + ε a1′ + a2′( 􏼁;

λ􏽢a � λa + ελa′,

􏽢a1􏽢a2 � a1a2 + ε a2a1′ + a1a2′( 􏼁,

(A.4)

where λ is a scalar.
(e dual vector is that both the dual part and real part are

vectors. For two dual vectors 􏽢v1 � v1 + εv1′ and 􏽢v2 � v2 + εv2′,
their cross multiplication is

􏽢v1 × 􏽢v2 � v1 × v2 + ε v1 × v2′ + v1′ × v2( 􏼁,

〈􏽢v1, 􏽢v2〉 � v
T
1 v1′ + v

T
2 v2′.

(A.5)

In addition to this, dual number 􏽢a and dual vector 􏽢v have
the following operation:

􏽢a⊙ 􏽢v � av + εa′v′. (A.6)
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