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)e problem of parameter estimation of coherent signals impinging on an array with vector sensors is considered from a new
perspective by means of the decomposition of tensors. Signal parameters to be estimated include the direction of arrival (DOA)
and the state of polarization. In this paper, mild deterministic conditions are used for canonical polyadic decomposition (CPD) of
the tensor-based signal model; i.e., the factor matrices can be recovered, as long as the matrices satisfy the requirement that at least
one is full column rank. In conjoint with the estimation of signal parameters via the algebraic method, the DOAs and polarization
parameters of coherent signals can be resolved by virtue of the first and second factor matrices. Hereinto, the key innovation of the
proposed approach is that the proposed approach can effectively estimate the coherent signal parameters without sacrificing the
array aperture. )e superiority of the proposed algorithm is shown by comparing with the algorithms based on higher order
singular value decomposition (HOSVD) and Toeplitz matrix. )eoretical and numerical simulations demonstrate the effec-
tiveness of the proposed approach.

1. Introduction

)e problem of parameter estimation for coherent signals
is encountered in a variety of signal processing applica-
tions including wireless communication, satellite navi-
gation, and radar. Generally, the signal covariance matrix
must be full rank for the subspace-based high-resolution
estimation approaches such as multiple signal classifica-
tion (MUSIC) and estimation of signal parameters via
rotational invariance techniques (ESPRITs). However,
there is also a fact that cannot be ignored; that is, the
presence of the coherent signals can cause the rank loss of
the covariance matrix. Under such circumstances, the
spatial smoothing technique and its derivative algorithms
[1–5] are commonly used as a conventional solution to
this problem. According to previous research studies,
these approaches have been proved to play an important
role in eliminating the rank loss of the covariance matrix,
but they are not flawless because an unignorable large
aperture loss appears under these approaches as well,

degrading the accuracy of parameter estimation. Apart
from these approaches, the approaches of parameter es-
timation for coherent signals based on the Toeplitz matrix
signal model have received considerable attention and
developments because the rank of the Toeplitz matrix is
only related to the DOA of signals and cannot be affected
by the coherency between them [6–10]. In addition, in the
context of underwater environment and target imaging,
the coherent signal analysis methods proposed in [11, 12]
are also worthy of attention. For all the approaches
mentioned above, they share a common feature that the
process of parameter estimation is based on matrix
operations.

However, the matrix can only reflect the two-di-
mensional characteristics of the signal. For multidimen-
sional signals, stacking dimensions into one highly
structured matrix can effectively improve the accuracy of
parameter estimation. In [13], the measurement tensor has
been defined, and the estimation of the subspace through
higher order singular value decomposition (HOSVD) has
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been proposed. Similarly, the HOSVD-based algorithms
have been studied to improve the performance of pa-
rameter estimation in [14–17]. However, in order to
achieve the parameter estimation of coherent signals,
smoothing for tensor is unavoidable in terms of the
HOSVD-based algorithms, which will also lead to the
sacrifice of array aperture.

Recently, parameter estimation methods by exploiting
the canonical polyadic decomposition (CPD) of tensor,
which is a minimal decomposition into a sum of rank-1
tensors, have been studied in [18–21]. One common
feature of the existing tensor CPD-based parameter es-
timation methods is that they are all directed to non-
coherent signal models. In this paper, we will study the
CPD-based approach of parameter estimation under the
condition that at least two signals satisfy the coherent
premise.

Here, we present a signal model based on the third-order
tensor, with three dimensions corresponding to the tem-
poral, spatial, and polarized information of the signal.
Furthermore, the mild deterministic conditions [22] are
used for CPD of the tensor-based signal model; i.e., as long as
the coherent signals comply with any one of the spatial and
polarized diversities, the proposed approach can effectively
estimate the parameters of the coherent signals. )e pa-
rameters to be estimated mainly include the DOA and
polarization parameters delivered by the signal. Computer
results are reported as a function of the signal-to-noise ratio
(SNR), in comparison to the advanced subspace-based ap-
proaches. In addition, the estimation accuracy of polarized
parameters is also studied with respect to the different SNR
values.

)e rest of this paper is organized as follows: Section 2
derives the tensor-based signal model, followed by the
proposed algorithm for extracting the signal parameters in
Section 3. Meanwhile, numerical simulations are provided in
Section 5. Finally, the last part of the paper will present our
concluding remarks. Table 1 summarizes the algebra no-
tations involved in this paper.

2. Signal Model

Let θ ∈ [0, 2π) and ϕ ∈ [0, π] serve as the indications of
the azimuth angle and the elevation angle. Set the
number of electromagnetic (EM) vector sensors in the
array as L, and the components measured by an EM
vector sensor are indexed as 1, . . . , J separately. )e
spatial steering vector for the array with DOA (θ, ϕ) is
given by

as
(θ, ϕ) � e

− i2πf1 , . . . , e
− i2πfL􏽨 􏽩

T
, (1)

where fl � bT
l ϵ/λ, ϵ � − sinϕr cos θr sinϕr sin θr􏼂 cos ϕr]

T,
and bl ∈ R3 indicates the spatial location of the lth sensor,
l � 1, . . . , L. Let Ψ � (θ, ϕ, c, η) indicate the spatial-polari-
zation parameter, where c ∈ [0, π/2] symbolizes the polar-
ization auxiliary angle and η ∈ [− π, π) symbolizes the
polarization-phase difference. )e polarization steering
vector can be denoted as

ap
(Ψ) � B

− sin θ cos ϕ cos θ

cos θ cos ϕ sin θ

0 − sinϕ

cosϕ cos θ sin θ

cos ϕ sin θ − cos θ

− sinϕ 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

􏽼√√√√√√√√√√􏽻􏽺√√√√√√√√√√􏽽
Ξθ,ϕ

hc,η,
(2)

where hc,η � cos c sin ceiη􏼂 􏼃
T and B ∈ RJ×6 is defined as

the polarization selectionmatrix for the EM vector sensor. In
particular, for the complete EM vector sensor, the polari-
zation selection matrix is represented as B � I6×6 and B �

[I3×3, 03×3] belongs to the three dipoles, in which I sym-
bolizes the unit matrix. )e spatial-polarization steering
vector of the signal with the spatial-polarization parameterΨ
can be further given by

a(Ψ) � as
(θ, ϕ)⊗ ap

(Ψ). (3)

Hereby, the R signals with the complex amplitudes
sr(k), r � 1, . . . , R􏼈 􏼉 are assumed to be received by the array.
Furthermore, assume that the first R1 signals are coherent
and the last R2 signals are noncoherent, but all the signals are
in cofrequency, where R1 + R2 � R. Construct the following
equation to represent the vector output of the array at the
instant tk:

y(k) � 􏽘
R

r�1
a Ψr( 􏼁sr(k) + n(k), (4)

where the additive prewhitening noise n(k) is assumed to
have a Gaussian complex circular. In order to better dis-
tinguish the multidomain diversities of the signal, we
perform tensorization on (3) so that the multidomain
diversities of the signal caters to the multidimensional
nature of the tensor, and then the following representation
is obtained:

􏽢A(Ψ) � ap
(Ψ)⊚ as

(θ, ϕ). (5)

Furthermore, the tensor output of the consecutive K
snapshots for the array can be modeled as

Table 1: Algebra notations.

v Scalar v

v Vector v
A Matrix A
A Tensor A
R Real number field
C Complex number field
AT Transpose of A
AH Conjugate transpose of A
A⊚B Outer product between A and B

A⊗B Kronecker product between A and B
A⊙B Khatri–Rao product between A and B
A ∘B Hadamard product between A and B
rA Rank of the matrix A
‖A‖F Frobenius norm of A
‖v‖2 2-norm of v
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Y � 􏽘
R

r�1

􏽢A Ψr( 􏼁⊚ sr + N

� 􏽘
R

r�1
ap Ψr( 􏼁⊚ as θr,ϕr( 􏼁⊚ sr + N,

(6)

where Y ∈ CJ×L×K and sr � [sr(1), . . . , sr(K)]. In addition,
the noise tensorN ∈ CJ×L×K is yielded by tensorization with
respect to the noise matrix N � [n(1), . . . ,n(k)].

3. The Proposed Approach

Let T � 􏽐
R
r�1a

p
r ⊚ as

r ⊚ sr. )ereby, equation (6) can be
expressed as

Y � T + N. (7)

Considering that ap
r ∈ CJ, as

r ∈ C
L, and sr ∈ CK are

nonzero vectors, tensor Sr � ap
r ⊚ as

r ⊚ sr is the rank-1 ten-
sor. If the number R of the rank-1 terms in T is minimal,
then T � 􏽐

R
r Sr is called the CPD of T and R is called the

rank of T (denoted by rT). Since the addition of noise
component N, the structure of the tensor Y is significantly
different from the structure of the tensor T. Herein, we are
not going to talk about the structure of the tensor Y, but
instead regard it as the rank R tensor and decompose it.
Furthermore, the estimation of the factor matrices can be
obtained.

3.1. Construction of Intermediate Tensor. )e CPD of Y can
be expressed as

Y � 􏽘
R

r�1
ar ⊚ br ⊚ cr, (8)

where ar ∈ CJ, br ∈ CL, and cr ∈ CK. Let
A � [a1, . . . , aR] ∈ CJ×R, B � [b1, . . . , bR] ∈ CL×R, and
C � [c1, . . . , cR] ∈ CK×R. We can also write (8) as
Y � [A,B,C]R, where A, B, and C are called the first,
second, and third factor matrix ofY, respectively. Again, we
can write T as T � [Ap,As, S]R, where Ap �

[ap(Ψ1), . . . , ap(ΨR)], As � [as(θ1,ϕ1), . . . , as(θR, ϕR)], and
S � [s1, . . . , sR]. Furthermore, we call that the CPD of the
tensor is unique when it is the only subject to the trivial
indeterminacies, in which the factor matrices can be arbi-
trarily permuted and the vectors belonging to any factor
matrix can be arbitrarily scaled. Obviously, the factor ma-
trices of Y and the factor matrices of T do not satisfy the
above indeterminacies due to the presence of the noise.
)erefore,A, B, andC are considered as the estimated values
of Ap, As, and S, respectively.

Herein, we only consider the algebraic algorithm for
CPD under the condition that at least one factor matrix ofT
has full column rank. )at is to say, in the tensorY, at least
one factor matrix contains highly collinear vectors due to the
presence of noise disturbances. In order to adapt to the
analysis of the coherent signal tensor model, we extend
)eorem 2 and )eorem 8 in [22]. )e following theorem
can be obtained.

Theorem 1. Let T � [Ap,As, S]R and rAs
� L � R, i≥ 0

Assume that

dim ker R2,i(T)􏼐 􏼑∩ S
2+i

C
L2+i

􏼒 􏼓􏼒 􏼓 � R. (9)

#en, rT � R, and the CPD of T is unique. In addition,
the CPD of T can be obtained algebraically. Under this
premise, the proposed algorithm can achieve a unique de-
composition of the tensor Y.

Matrix Rm,i(T) is defined in Appendix A. Sm+i(CLm+i

) ⊂
CLm+i

denotes the subspace spanned by all vectors of the form
x ⊗ · · · ⊗ x, where x ∈ CL is repeated m + i times.

We hereby execute the decomposition of the tensor-
based signal model to obtain the factor matrices, which are
then used to extract the parameters of the signals. Assume
that rB � L � R. First of all, the Cm

J Cm
K × Cm

L+m− 1 matrix
Qm(Y) needs to be built, and the (l1, . . . , lm)-th column of
the matrix Qm(Y) can be obtained as follows:

Qm(Y)􏼂 􏼃:, l1 ,...,lm( ) � vec Fm− 1 Yl1
, . . . ,Ylm

􏼐 􏼑􏼐 􏼑, (10)

where (l1, . . . , lm) ∈ Qm
L , Y1, . . . ,YL ∈ CJ×K represents the

frontal slices of the tensor Y, and Qm
L � (l1, . . . , lm)􏼈

: 1≤ l1 ≤ l2 ≤ . . . ≤ lm ≤L}. An equation for the polarized
compound matrix Fm− 1(Y1, . . . ,Ym) can be defined as

Fm− 1 Y1, . . . ,Ym( 􏼁 � 􏽘

m

k�1
(− 1)

m− k
􏽘

1≤i1<i2 ···<ik≤m

· Cm Yi1
+ Yi2

+ · · · + Yik
􏼐 􏼑,

(11)

where the m-th compound matrix Cm(X) of a given matrix
X can be obtained from Appendix B.

Subsequently, how to get the vectors 􏽢w1, . . . , 􏽢wCL− 1
R

from
the matrix Qm(Y) is the focus of this paper. In the absence
of noise, for the tensor T, as described in [23], vectors
􏽢w1, . . . , 􏽢wCL− 1

R
form a basis of ker(Qm(T)). Combining the

construction process of the matrix Qm(T), the vector 􏽢wi

satisfying Qm(T)􏽢wi � 0 has the following structural
features:

􏽢wi,1:a � 􏽢wi,1, . . . , 􏽢wi,a􏽨 􏽩
T
,

􏽢wi,a+1:Cm
L+m− 1

� 0, . . . , 􏽢wi,a+i, . . . , 0􏽨 􏽩
T
,

(12)

where i ∈ [1, CL− 1
R ], a � Cm

L+m− 1 − CL− 1
R , and the element

􏽢wi,a+i is constant 1. Similarly, we can also write Qm(T) as
Qm(T) � [Q1

m(T),Q2
m(T)], where the submatrices

Q1
m(T) and Q2

m(T) contain the first a columns and the last
CL− 1

R columns of Qm(T), respectively. )erefore, the fol-
lowing equation is established:

Q1
m(T)􏽢wi,1:a + Q2

m(T)􏽨 􏽩
:,i

� 0, (13)

where [Q2
m(T)]:,i represents the ith column of the sub-

matrix Q2
m(T).

However, the vectors 􏽢w1, . . . , 􏽢wCL− 1
R

cannot be obtained
by solving the basis of the matrix ker(Qm(Y)) due to the
presence of noise. Inspired by (12) and (13) summarized in
this paper, an optimization problem model is established as
follows:
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min
􏽢wi,1:a

Q1
m(Y) 􏽢wi,1:a + Q2

m(Y)􏽨 􏽩
:,i

�����

�����2
. (14)

Herein, the alternating least squares (ALS) method is
used to solve the optimization problem (14), and then the
vectors 􏽢w1, . . . , 􏽢wCL− 1

R
can be obtained according to (12).

Let eL
j􏽮 􏽯

L

j�1 denotes the canonical basis of R
L, and then

eL
j1
⊗ · · · ⊗ eL

jm
􏽮 􏽯

(j1 ,...,jm)∈Rm
L

is the canonical basis of RLm

,

Rm
L � (j1, . . . , jm) : j1, . . . , jm ∈ 1, . . . , L{ }􏼈 􏼉. )e symmetr-

izer πS on the space RLm

can be denoted as

πS eL
j1
⊗ . . . ⊗ eL

jm
􏼐 􏼑 �

1
m!

􏽘
l1 ,...,lm∈P j1 ,...,jm{ }

eL
l1
⊗ · · · ⊗ eL

lm
􏼐 􏼑.

(15)

In addition, the intermediate matrix G ∈ RLm×Cm
L+m− 1

needs to be built.)e columns of thematrixG can be defined
as follows:

πS eL
j1
⊗ . . . ⊗ eL

jm
􏼐 􏼑 : j1, . . . , jm( 􏼁 ∈ Q

m
L􏽮 􏽯. (16)

Furthermore, the matrix W � G[􏽢w1, . . . , 􏽢wCL− 1
R

] can be
obtained. Reshape the Lm × CL− 1

R matrix W into an
L × Lm− 1 × CL− 1

R tensor W. Afterwards, we need to compute
the CPD of the tensor W � [F,M1,M2]CL− 1

R
by generalized

eigenvalue decomposition (GEVD). )e tensor CPD pro-
cedure by GEVD is shown in [21].

3.2. Estimation of Factor Matrices. Once the tensor W is
constructed, we can obtain the matrix unfoldings:

WI �

W1

⋮

WCL− 1
R

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

FDiag m1
2( 􏼁MT

1

⋮

FDiag mCL− 1
R

2􏼒 􏼓MT
1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� M2 ⊙ F( 􏼁MT
1 ,

(17)

where WI ∈ CLCL− 1
R ×Lm− 1

, Wk′ � [wi′j′k′]
L,Lm− 1

i′,j′�1 symbolizes the
k′th frontal slice ofW,mi

2 denotes the ith row of theM2, and
Diag(·) is the diagonalization operator. According to (17),
the following equation can be easily derived:

Wk1′
W†

k2′
� FDiag mk1′

2􏼒 􏼓Diag mk2′
2􏼒 􏼓

− 1
F†, (18)

where k1′ ≠ k2′ , k1′ , k2′ � 1, . . . , CL− 1
R , and (·)† denotes the

Moore–Penrose inverse. Obviously, the columns of the
factor matrix F are the eigenvectors of Wk1′

W†
k2′
. )e

corresponding eigenvalues are the first CL− 1
R larger eigen-

values, which are arranged in a descending order. It is worth
noting that when CL− 1

R > 2, there are multiple combinations
(k1′ , k2′) that can be used for EVD. In order to fully exert the
statistical characteristics of (17), C2

H possible combinations
are selected for EVD to obtain Fh′ , where h′ � 1, . . . , C2

H,
H � CL− 1

R . Herein, we make the agreement that (k1′ , k2′)
tuples are ordered lexicographically: the h1′th tuple (k1′ , k2′) is
preceding the h2′th tuple (k3′, k4′) if and only if k1′ ≤ k3′ and
k2′ ≤ k4′. According to the trivial indeterminacies afore-
mentioned for CPD uniqueness, Fh1′

and Fh2′
coincide up to

column permutation and scaling, h1′ ≠ h2′. )erefore, we need
to match multiple sets of results; i.e., all the eigenvectors
need to be normalized and arranged in a descending order
according to the corresponding eigenvalues. )e results of
the matching processing are recorded as Fh′′ , and the esti-
mation of the factor matrix F can be obtained by performing
the following statistical operation:

F �
1

C2
H

􏽘

C2
H

h′�1

Fh′′ . (19)

Once the matrix F is obtained, we can recover the matrix
B from F. First, compute R submatrices F1, . . . , FR of CL− 2

R− 1
columns of F that are linearly dependent. )en, compute
b1, . . . , bR as orthogonal complements to the submatrices
aforementioned. It is worth noting that, in the presence of
noise, the algorithm proposed in this paper only guarantees
that ‖brFr‖2≤ 10− 15. Furthermore, the factor matrices A and
C can be recovered, thanks to R1,0(Y)B− T � A⊙C.

3.3. Estimation of Signal Parameters. )e construction of
the factor matrices clearly shows that the factor matrix A
contains the spatial-polarization parameters of the sig-
nals, while the factor matrix B includes only the spatial
ones of them. Putting it in other way, ar and br are the
estimated counterparts of ap(Ψr) and as(θr, ϕr), re-
spectively. )us, the following equations are going to be
used to obtain the spatial DOA of the rth signal impinging
on the array:

br􏼂 􏼃1 � e
− i2π bT

1 ϵr/λ( ), . . . , br􏼂 􏼃L � e
− i2π bT

Lϵr/λ( ). (20)

It is obvious that the DOA of the rth signal can be
procured through any two equations from (20). Suppose
(θr,ϕr)n is the representation of the nth subequations’ so-
lution. Under such circumstances, the DOA can be esti-
mated through the average of multiple sets’ solutions:

θr, ϕr( 􏼁 �
1

C2
L

􏽘

C2
L

n�1
θr,ϕr( 􏼁n. (21)

Once the DOA is estimated, a further step is taken to
extract the polarization parameters (cr, ηr) of the rth signal
from the following formula:

ar � BΞθr,ϕr
cos cr, sin cre

iηr􏽨 􏽩
T
. (22)

In order to simplify the decomposition of the tensor-
based signal model, the value of the snapshots K is supposed
to be as small as possible when K≥R is satisfied. )erefore,
we take N-segment K snapshots to improve the estimation
accuracy of signal parameters. )at is, the signal parameters
which are estimated through decomposing over N times are
going to be averaged.

4. Simulation Results

Consider a uniform linear array (ULA) with 4 complete
EM vector sensors whose spacing is half wavelength.
Suppose there are three signals with the polarization
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parameters (c1, η1) � (20 ∘ , 90 ∘ ), (c2, η2) � (45 ∘ , 90 ∘ ),
and (c3, η3) � (60 ∘ , 90 ∘ ) impinging on the ULA from
(θ1,ϕ1) � (30 ∘ , 90 ∘ ), (θ2, ϕ2) � (10 ∘ , 90 ∘ ), and (θ3, ϕ3) �

(60 ∘ , 90 ∘ ), respectively. s1 is independent of s2, and s3 is
the replica of s2, which means that there is a coherency
between s2 and s3. All of the signals have the same power.
In addition, the noise component is assumed to be zero-
mean additive white Gaussian noise. )e root mean
square error (RMSE) is defined as

RMSE(μ) �

�������������������

1
MR

􏽘

M

m�1
􏽘

R

r�1
􏽢μrm − μr( 􏼁

2

􏽶
􏽴

, (23)

whereM is the Monte Carlo trial number, μr denotes one of
the parameters (θr, ϕr, cr, ηr), and 􏽢μrm is the estimation of μr

in the mth trial.
)e DOA estimation of the signals at SNR � 20 dB

with 10 independent trials is illustrated in Figure 1. As
expected, our proposed algorithm succeeds in differen-
tiating the signals without paying special attention to their
coherency.

For all the following simulations, their results derive
from 300 Monte Carlo trials and have been compared with
the Cramér–Rao lower bound (CRB) benchmark which is
described in Appendix C.

In Figure 2, the proposed algorithm is compared with
two advanced subspace-based algorithms in terms of the
RMSE versus number of snapshots for SNR � 20 dB. It can
be seen from Figure 2 that the DOA estimation accuracy of
the proposed algorithm outperforms the other two algo-
rithms. Especially for the case of fewer number of snap-
shots, the advantages of the proposed algorithm are
obvious.

Figure 3 illustrates the superior performance of the
proposed algorithm as compared to the other two algo-
rithms when the snapshots number is set as 200. It is
worth noting that as SNR increases, the tensor-based
methods, i.e., the proposed algorithm and the HOSVD-
based algorithm, present a better accuracy of the DOA
estimation than the Toeplitz-based algorithm. What is
more, the estimation performance of the polarization
parameters is examined in Figure 4, which is conducted
under the same scenarios with those in Figure 3.
According to the operation process mentioned above, we
know that, in the proposed algorithm, polarization pa-
rameters cannot be estimated independently without
obtaining the DOA estimation because the estimation of
polarization parameters can only be achieved with the
predicted DOA at hand at first. When comparing Figure 4
with Figure 3, we can see clearly that the estimation ac-
curacy of polarization parameters is inferior to that of
DOA parameters, and the reason lies in the accumulation
of the estimation error during these two steps. Never-
theless, the estimation accuracy of polarization parame-
ters in the proposed algorithm is still better than that of
the other two algorithms.

0

2

4

6

8

10

N
um

be
r o

f t
ria

ls

0 10 20 30 40 50 60 70
θ (°)

Figure 1: DOA estimation of the signals with the proposed al-
gorithm at SNR � 20 dB.
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Figure 2: DOA RMSE versus number of snapshots for
SNR � 20 dB.
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Figure 3: DOA RMSE versus SNR for NK � 200.
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5. Conclusions

With the purpose of surmounting the problem of parameter
estimation for coherent signals, this paper proposes a new
approach which features decomposition for tensors. Specif-
ically, factor matrices can be effectively estimated at first and
then be used to extract the parameters of signals irrespective
of the coherency between them. In view of this, an obvious
advantage of this approach lies in its effective estimation of
factor matrices even with noises present. Besides, the problem
of aperture loss, which commonly appears in most traditional
algorithms, can also be avoided under this approach.
Meanwhile, according to the simulation results, our proposed
algorithm shows a higher accuracy of parameter estimation in
comparison with the state-of-the-art ones.

Appendix

A. Construction of the Intermediate Matrix

Let P i1 ,...,ik{ } serve as the indication of the set of all
permutations of the set i1, . . . , ik􏼈 􏼉. It is important to note
that the cardinality of P i1 ,...,ik{ } is counted by considering
multiplicities (e.g., P 1,1,1{ } is made up of six identical entries
(1, 1, 1)) if some of the values coincide.

It is easy to know that any integer from 1, . . . , Jm+iLm+i􏼈 􏼉

can be uniquely denoted as (􏽥j − 1)Lm+i +􏽥l and any integer
from 1, . . . , Km+i􏼈 􏼉 as 􏽥k, where

􏽥j ≔ 1 + 􏽘

m+i

p�1
jp − 1􏼐 􏼑J

m+i− p
,

􏽥l ≔ 1 + 􏽘
m+i

p�1
lp − 1􏼐 􏼑L

m+i− p
,

􏽥k ≔ 1 + 􏽘
m+i

p�1
kp − 1􏼐 􏼑K

m+i− p
,

(A.1)

and j1, . . . , jm+i ∈ 1, . . . , J{ }, l1, . . . , lm+i ∈ 1, . . . , L{ }, and
k1, . . . , km+i ∈ 1, . . . , K{ }. )ese equations are of great use if
there is going to have a switch between tensor, matrix, and
vector indications. Hereinto, the ((􏽥j − 1)Lm+i +􏽥l, 􏽥k)th entry
of the Lm+iJm+i × Km+i matrix Rm,i(T) can be defined as
follows:

1
m!(m + i)!

􏽘

s1 ,...,sm+i( )∈P k1 ,...,km+i{ }

det

tj1l1s1
· · · tj1lmsm

⋮ ⋮ ⋮

tjml1s1
· · · tjmlmsm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

· 􏽙
l

p�1
tjm+plm+psm+p

.

(A.2)

B. Construction of the Compound Matrix

)e m-th compound matrix of a given matrix is derived
from m × m minors of that matrix. Let X ∈ CJ×K. )e Cm

J ×

Cm
K matrix whose (a, b)-th entry is detX(Sm

J (a), Sm
K(b)) is

called them-th compound matrix of X and is represented by
Cm(X), where m≤min(J, K). Let i1, . . . , ik represent in-
tegers. )e multi-index notation Sm

n can be defined as

S
m
n � i1, . . . , ik( 􏼁 : 1≤ i1 < i2 < · · · < ik ≤ n􏼈 􏼉. (A.3)

We assume that the elements of Sm
n are ordered lexi-

cographically. It is well known that S23 � (1, 2),{

(1, 3), (2, 3)}. For example, let X � [I2, a], where
a � [a1, a2]

T. )en,

C2(X) �
1 0

0 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

1 a1

0 a2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

0 a1

1 a2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼢 􏼣

� 1, a2, − a1􏼂 􏼃.

(A.4)

It is well known that Cm(XT) � (Cm(X))T and Cm(X)

is equal to the zero matrix if and only if m> rX.

C. Cramér–Rao Lower Bound for the Vector
Sensor Array

)e following matrix form is established after considering
the situations described in (6):

y(k) � As(k) + n(k), (A.5)

in which A � [a(Ψ1) . . . a(ΨR)] ∈ CLJ×R and s(k) �

[s1(k) . . . sR(k)]T ∈ CR×1. Ψ � [Ψ1, . . . ,ΨR]T represents the
unknown parameters vector, where Ψr serves as an in-
dication of the unknown parameters vector of the rth source,
r ∈ [1, . . . , R]. )e matrix A in (A.5) is assumed to be
column full rank so is the Jacobian zA/zΨ. On the basis of
this, we further set

􏽥A � 􏽥a(1)
1 , . . . , 􏽥a(1)

q1
, . . . , 􏽥a(R)

1 , . . . , 􏽥a(R)
qR

􏽨 􏽩,

􏽥a(n)
m �

za Ψn( 􏼁

zΨn(m)
,

(A.6)
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Figure 4: Polarization parameter’s RMSE versus SNR for NK � 200.
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where the number of elements in vector Ψr is represented by
qr. Exploring the performance of estimatingΨ in (A.5) from
x(1), . . . , x(K) is our main concern in this paper.

)e purpose of constructing the following two in-
termediate matrices lies in simplifying the expression of the
Cramér–Rao lower bound mentioned before:

U � Rss AHARss + σ2I􏼐 􏼑
− 1
AHARss,

P � I − A AHA􏼐 􏼑
− 1
AH

,

(A.7)

where Rss represents the covariance of the signal matrix
S � [s(1), . . . , s(K)], σ2 symbolizes the noise variance, and I
serves as the denotation of a R × R unit matrix. For Ψ, the
Cramér–Rao lower bound of its unbiased estimation is

CRB(Ψ) �
σ2

2K
Re btr (1⊠U)⊡ 􏽥A

HP􏽥A􏼒 􏼓
bT

􏼠 􏼡􏼢 􏼣􏼨 􏼩

− 1

,

(A.8)

where 1 is an indication of a q × q matrix with all entries
equal to one, q � 􏽐

R
r�1qr. Assuming that the (i, j)-th block

entry of the matrixQ is represented byQ〈ij〉 with dimension
pi × pj, the block operators btr(·), bT, ⊠, and ⊡ are defined
as follows.

Definition 1. Block trace operator:

[btr(Q)]ij � tr Q〈ij〉􏼐 􏼑. (A.9)

Definition 2. Block transpose:

QbT
􏼐 􏼑

〈ij〉
� Q〈ij〉. (A.10)

Definition 3. Block Kronecker product:

Q1 ⊠Q2( 􏼁〈ij〉 � Q1􏼂 􏼃〈ij〉⊗ Q2􏼂 􏼃〈ij〉. (A.11)

Definition 4. Block Hadamard product:

Q1 ⊡Q2( 􏼁〈ij〉 � Q1􏼂 􏼃〈ij〉 Q2􏼂 􏼃〈ij〉. (A.12)

Data Availability

)e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

)e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

)is work was supported by the National Natural Science
Foundation of China under Grant nos. 61771404 and
61601372.

References

[1] S. U. Pillai and B. H. Kwon, “Forward/backward spatial
smoothing techniques for coherent signal identification,”
IEEE Transactions on Acoustics, Speech, and Signal Processing,
vol. 37, no. 1, pp. 8–15, 1989.

[2] W. Du and R. L. Kirlin, “Improved spatial smoothing tech-
niques for DOA estimation of coherent signals,” IEEE Trans-
actions on Signal Processing, vol. 39, no. 5, pp. 1208–1210, 1991.

[3] J. Dai and Z. Ye, “Spatial smoothing for direction of arrival
estimation of coherent signals in the presence of unknown
mutual coupling,” IET Signal Processing, vol. 5, no. 4,
pp. 418–425, 2011.

[4] J. Wen, B. Liao, and C. Guo, “Spatial smoothing based
methods for direction-of-arrival estimation of coherent sig-
nals in nonuniform noise,” Digital Signal Processing, vol. 67,
pp. 116–122, 2017.

[5] J. Shi, G. Hu, and X. Zhang, “Direction of arrival estimation in
low-grazing angle: a partial spatial-differencing approach,”
IEEE Access, vol. 5, pp. 9973–9980, 2017.

[6] F. M. Han and X. D. Zhang, “An ESPRIT-like algorithm for
coherent DOA estimation,” IEEE Antennas and Wireless
Propaga Letters, vol. 4, pp. 443–446, 2005.

[7] X. Zhang and D. Xu, “Improved coherent DOA estimation
algorithm for uniform linear arrays,” International Journal of
Electronics, vol. 96, no. 2, pp. 213–222, 2009.

[8] Y.-H. Choi, “ESPRIT-Based coherent source localization with
forward and backward vectors,” IEEE Transactions on Signal
Processing, vol. 58, no. 12, pp. 6416–6420, 2010.

[9] C. Li, G. Liao, S. Zhu, and S. Wu, “An ESPRIT-like algorithm
for coherent DOA estimation based on data matrix de-
composition in MIMO radar,” Signal Processing, vol. 91, no. 8,
pp. 1803–1811, 2011.

[10] A. Goian, M. I. AlHajri, R. M. Shubair et al., “Fast detection of
coherent signals using pre-conditioned root-MUSIC based on
Toeplitz matrix reconstruction,” in Proceedings of the IEEE
11th International Conference on Wireless and Mobile Com-
puting, Networking and Communications, pp. 168–174, Abu
Dhabi, UAE, October 2015.

[11] J. Li, Q.-H. Lin, C.-Y. Kang, K. Wang, and X.-T. Yang, “DOA
estimation for underwater wideband weak targets based on
coherent signal subspace and compressed sensing,” Sensors,
vol. 18, no. 3, p. 902, 2018.

[12] D. Li, M. Zhan, J. Su, H. Liu, X. Zhang, and G. Liao, “Per-
formances analysis of coherently integrated CPF for LFM
signal under low SNR and its application to ground moving
target imaging,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 55, no. 11, pp. 6402–6419, 2017.

[13] M. Haardt, F. Roemer, and G. Del Galdo, “Higher-order SVD-
based subspace estimation to improve the parameter esti-
mation accuracy in multidimensional harmonic retrieval
problems,” IEEE Transactions on Signal Processing, vol. 56,
no. 7, pp. 3198–3213, 2008.

[14] M. Boizard, G. Ginolhac, F. Pascal, S. Miron, and P. Forster,
“Numerical performance of a tensor MUSIC algorithm based
on HOSVD for a mixture of polarized sources,” in Proceedings
of the 21st European Signal Processing Conference (EUSIPCO
2013), pp. 1–5, Marrakech, Morocco, September 2013.

[15] K. Han and A. Nehorai, “Nested vector-sensor array pro-
cessing via tensor modeling,” IEEE Transactions on Signal
Processing, vol. 62, no. 10, pp. 2542–2553, 2014.

[16] P. Forster, G. Ginolhac, and M. Boizard, “Derivation of the
theoretical performance of a tensorMUSIC algorithm,” Signal
Processing, vol. 129, pp. 97–105, 2016.

Mathematical Problems in Engineering 7



[17] X. Lan, L. Wang, Y. Wang, C. Choi, and D. Choi, “Tensor 2-D
DOA estimation for a cylindrical conformal antenna array in
a massive MIMO system under unknown mutual coupling,”
IEEE Access, vol. 6, pp. 7864–7871, 2018.

[18] X. J. Guo, S. Miron, D. Brie, S. H. Zhu, and X. W. Liao, “A
CANDECOMP/PARAFAC perspective on uniqueness of
DOA estimation using a vector sensor array,” IEEE Trans-
actions on Signal Processing, vol. 59, no. 7, pp. 3475–3481,
2011.

[19] F. Raimondi, P. Comon, O. Michel, S. Sahnoun, and
A. Helmstetter, “Tensor decomposition exploiting diversity of
propagation velocities: application to localization of icequake
events,” Signal Processing, vol. 118, pp. 75–88, 2016.

[20] L. Liu, L. Wang, and Z. Zhang, “Vector-sensor-based signal
parameter estimation by exploiting CPD of tensors,” IEEE
Sensors Letters, vol. 2, no. 3, pp. 1–4, 2018.

[21] L. Liu, L. Wang, J. Xie, and Z. L. Zhang, “DOA and polari-
zation parameters estimation by exploiting canonical polyadic
decomposition of tensors,” Wireless Communications and
Mobile Computing, vol. 2019, Article ID 7389306, 12 pages,
2019.

[22] I. Domanov and L. De Lathauwer, “Canonical polyadic de-
composition of third-order tensors: relaxed uniqueness
conditions and algebraic algorithm,” Linear Algebra and its
Applications, vol. 513, pp. 342–375, 2017.

[23] I. Domanov and L. D. Lathauwer, “Canonical polyadic de-
composition of third-order tensors: reduction to generalized
eigenvalue decomposition,” SIAM Journal on Matrix Analysis
and Applications, vol. 35, no. 2, pp. 636–660, 2014.

8 Mathematical Problems in Engineering



Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems 
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering  
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and 
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018Volume 2018

Numerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Advances inAdvances in Discrete Dynamics in 

Nature and Society
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Di�erential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

