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The purpose of this paper is to present an in-flight initial alignment method for the guided projectiles, obtained after launching,
and utilizing the characteristic of the inertial device of a strapdown inertial navigation system. This method uses an Elman neural
network algorithm, optimized by genetic algorithm in the initial alignment calculation. The algorithm is discussed in details and
applied to the initial alignment process of the proposed guided projectile. Simulation results show the advantages of the optimized
Elman neural network algorithm for the initial alignment problem of the strapdown inertial navigation system. It can not only
obtain the same high-precision alignment as the traditional Kalman filter but also improve the real-time performance of the system.

1. Introduction

The initial alignment of the strapdown inertial navigation
system (SINS) provides initial values in order to complete
the navigation calculations task, including initial position,
initial velocity, and initial attitude. Due to the accumulation
of initial errors in navigation calculations, it is necessary to
control the initial alignment errors within a certain range,
especially the initial attitude error.

The main task of the initial alignment is to determine
the initial direction cosine matrix, namely, the attitude
matrix 𝐶𝑛𝑏 , which is transferred from the body coordinate
(b-coordinate) to the navigation coordinate (n-coordinate).
According to the movement state of the carrier, the initial
alignment can be divided into static base alignment and
moving base alignment. Many researches on static base
alignment technology are discussed and studied [1–4], but for
the guided projectile studied in this paper, the velocity and
attitude dynamically change, so it is necessary to complete the
alignment under the condition of the movement base. Thus,
the gravitation acceleration and the gyro-measured value of
the earth’s rotation cannot be simply used to calculate the
attitude matrix 𝐶𝑛𝑏 [5].

The process of alignment can be divided into two stages:
coarse alignment and fine alignment. The coarse alignment

obtains a rough attitude matrix 𝐶𝑛𝑏 , which provides a basis
for subsequent fine alignment. This stage requires a lower
precision but does so quickly [6, 7]. The traditional initial
coarse alignment algorithm is calculated under the static state
of the carrier. However, for the guided projectile, the initial
alignment is started in the motion process, which means in-
flight alignment, and the carrier is also accompanied by high-
speed rotation during the high-speed flight. The traditional
initial alignment algorithm is no longer applicable. For the
proposed initial alignment algorithm in this paper, the coarse
alignment algorithm uses the equations of specific force
and the combination of GPS information with geomagnetic
information to obtain the rough attitude matrix 𝐶𝑛𝑏 . The
detailed process is derived in [8] and no longer described
here; only the fine alignment algorithm is discussed in this
paper.

Fine alignment is carried out on the basis of the estimated
attitude matrix from coarse alignment. By processing the
output information of the inertial device, the real-time value
of the misalignment angle is estimated. The attitude matrix
from coarse alignment is replaced by the real-time updated
attitude matrix, and then the accurate attitude matrix is
obtained. Fine alignment mostly uses the Extended Kalman
Filter (EKF) [9] and the Unscented Kalman Filter (UKF) [10]
algorithms.At the same time, there are also improved filtering
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methods based on these two Kalman filters, such as Extended
Particle Filter (EPF) algorithm [11], Unscented Particle Filter
(UPF) algorithm [12], Adaptive Unscented Kalman Filter
(AUKF) algorithm [13], and high-degree Cubature Kalman
Filter (CKF) [14].

In recent years, with the rapid development of neural
network technology, researchers have used the theory and
idea of artificial neural network to solve the problems, which
are difficult to be solved using traditional control theory
[15]. Neural network has a good function approximation,
real-time performance, and robustness. Thus, it can be used
instead of a Kalman filter to solve the initial alignment
of SINS. L. Vargasmeléndez et al. successfully combined
neural network with standard linear Kalman filtering of
inertial navigation system (INS) [16]. X. L. Wang and R.
Zhang et al. studied the weight updating of multilayer neural
network learning algorithm based on the principle of EKF
and obtained the same precision as EKF [17–19]. Y. H. Liu
et al. introduced the neural network based on the UKF
[20]. D. Liu and T. Zhang et al. used a Wavelet Neural
Network (WNN) in the method [21, 22]. However, as the
carriers that have been studied before are mostly static-based
systems, the selected neural network structures are mostly
feedforward structures. The research methods above are not
suitable for the proposed carrier of this paper. The feedback
neural network Elman network will be used for the real-time
dynamic characteristics of the guided projectile studied in
this paper.

The Elman feedback network can meet the dynamic
characteristics of the dynamic systems, but it is easy to
fall into the local minimum value in the search of solu-
tions. Therefore, it is necessary to combine an optimization
algorithm to complete the global optimizing. The genetic
algorithm (GA), by imitating the Mendel genetic variation
theory,maintains a good structure in the iterative process and
searches for a better structure. It is an optimized searching
method that does not rely on specific problems. It can be
used to optimize the structure of neural networks, which
are difficult to express in function forms. Combining the
genetic algorithm with the neural network can not only
guarantee the real-time performance of the initial alignment
but also optimize the operation. The backpropagation (BP)
network and the Radial Basis Function (RBF) network
optimized using GA have already been widely demonstrated
[23, 24].

In this paper, an application of the Elman neural network
based on the GA is studied to obtain the initial alignment
of the SINS for a guided projectile and, moreover, to solve
the problems of real-time performance and robustness when
using traditional Kalman filtering algorithm in the initial fine
alignment. This method has the advantages of high precision
and fast calculations time. First, the nonlinear error models
of initial alignment of SINS are built, and then the Elman
neural network models of initial alignment are established.
Then, the optimization processes of neural network based on
GA are obtained. Finally, the simulation is carried out, and
the feasibility of the proposed method is proved by the data
comparison.

2. Nonlinear Error Model of Initial
Alignment of SINS

The establishment of accurate error equations is the basis
of initial alignment using various filtering techniques. In
this paper, velocity errors, misalignment angle errors, and
position errors are used as error models. We chose the East-
North-Up (ENU) geographic coordinate (t-coordinate) as the
navigation coordinate (n-coordinate) of the guided projectile
in-flight control. In view of the application precision of
MEMS,make the earth default into round ball, which is𝑅𝑀 =𝑅𝑁 = 𝑅. Meanwhile, the influences of calibration coefficient
error and installation error are far smaller thanmisalignment
angle error; the model established below ignores them.

Three position errors of longitude, latitude, and
height; three velocity errors of east, north, and up
directions; three misalignment angles of pitch, roll,
and yaw; three directions of gyro error; and three
accelerometer errors are selected as state variables
for the in-flight initial alignment of SINS: 𝑋(𝑘) =[𝛿𝐿 𝛿𝜆 𝛿ℎ 𝛿𝑉𝐸 𝛿𝑉𝑁 𝛿𝑉𝑈 𝜑𝐸 𝜑𝑁 𝜑𝑈 𝜀𝐸 𝜀𝑁 𝜀𝑈 ∇𝐸∇𝑁 ∇𝑈]𝑇. The measurement variables select 𝑍(𝑘) =[Δ𝐿 Δ𝜆 Δℎ Δ𝑉𝐸 Δ𝑉𝑁 Δ𝑉𝑈]𝑇, which are the location
differences and velocity differences between the SINS
calculation and GPS receiver in real time, that is,

Δ𝐿 = 𝐿𝐼𝑁𝑆 − 𝐿𝐺𝑃𝑆
Δ𝜆 = 𝜆𝐼𝑁𝑆 − 𝜆𝐺𝑃𝑆
Δℎ = ℎ𝐼𝑁𝑆 − ℎ𝐺𝑃𝑆
Δ𝑉 = 𝑉𝐼𝑁𝑆 − 𝑉𝐺𝑃𝑆.

(1)

The discrete system state equation and measurement
equation for state estimation can be written as follows:

𝑋 (𝑘) = 𝜙 (𝑘, 𝑘 − 1)𝑋 (𝑘 − 1) + Γ (𝑘 − 1)𝑊 (𝑘 − 1)
𝑍 (𝑘) = 𝐻 (𝑘)𝑋 (𝑘) + 𝑉 (𝑘) , (2)

where 𝜙(𝑘, 𝑘 − 1) is the transition matrix from time k-1 to
time k, Γ(𝑘 − 1) is the noise driving matrix, W(k-1) is the
Gaussian random process noise with mean 0 of SINS, H(k)
is the measurement matrix, andV(k) is the Gaussian random
measurement noise with mean 0 of SINS.

According to the derivation and simplification of the
specific force equation, the expressions of the error models
are obtained as follows.

2.1. Misalignment Angle Error Model

�̇�𝐸 = − 𝛿𝑉𝑁𝑅 + ℎ + (𝜔𝑖𝑒 sin 𝐿 + 𝑉𝐸𝑅 + ℎ tan 𝐿)𝜑𝑁
− (𝜔𝑖𝑒 cos 𝐿 + 𝑉𝐸𝑅 + ℎ)𝜑𝑈 + 𝜀𝐸
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�̇�𝑁 = 𝛿𝑉𝐸𝑅 + ℎ − 𝜔𝑖𝑒 sin 𝐿𝛿𝐿
− (𝜔𝑖𝑒 sin 𝐿 + 𝑉𝐸𝑅 + ℎ tan 𝐿)𝜑𝐸 − 𝑉𝑁𝑅 + ℎ𝜑𝑈
+ 𝜀𝑁

�̇�𝐸 = 𝛿𝑉𝐸𝑅 + ℎ tan𝐿 + (𝜔𝑖𝑒 cos 𝐿 + 𝑉𝐸𝑅 + ℎ sec2𝐿) 𝛿𝐿
+ (𝜔𝑖𝑒 cos𝐿 + 𝑉𝐸𝑅 + ℎ)𝜑𝐸 + 𝑉𝑁𝑅 + ℎ𝜑𝑁 + 𝜀𝑈,

(3)

where 𝜔𝑖𝑒 is the rotational speed of the Earth. 𝜀 is the gyro-
error and the subscripts denote direction; this paper models
this error based on the first-order Markov process:

̇𝜀𝑟𝑔 = − 1𝑇𝑔𝑟 𝜀𝑟𝑔 + 𝑤𝑟𝑔, (4)

where 𝑇𝑔𝑟 is correlation time, 𝜀𝑟𝑔 is gyro-random drift error,
and𝑤𝑟𝑔 is driving white noise of random drift and its variance
equals 2/𝑇𝑔𝑟𝑅(0).𝑅(0) is themean square value of theMarkov
process. When the mean value of process is zero, it equals the
variance of gyro-drift.

2.2. Velocity Error Model

𝛿�̇�𝐸
= 𝑓𝑁𝜑𝑈 − 𝑓𝑈𝜑𝑁 + ( 𝑉𝑁𝑅 + ℎ tan 𝐿 − 𝑉𝑢𝑅 + ℎ) 𝛿𝑉𝐸
+ (2𝜔𝑖𝑒 sin 𝐿 + 𝑉𝐸𝑅 + ℎ tan 𝐿) 𝛿𝑉𝑁
− (2𝜔𝑖𝑒 cos 𝐿 + 𝑉𝐸𝑅 + ℎ) 𝛿𝑉𝑈
+ (2𝜔𝑖𝑒 cos 𝐿𝑉𝑁 + 𝑉𝐸𝑉𝑁𝑅 + ℎ sec2𝐿 + 2𝜔𝑖𝑒 sin 𝐿𝑉𝑈) 𝛿𝐿
+ ∇𝐸

𝛿�̇�𝑁
= 𝑓𝑈𝜑𝐸 − 𝑓𝐸𝜑𝑈 − 2 (𝜔𝑖𝑒 sin 𝐿 + 𝑉𝐸𝑅 + ℎ tan 𝐿) 𝛿𝑉𝐸
− 𝑉𝑁𝑅 + ℎ𝛿𝑉𝑈 − 𝑉𝑈𝑅 + ℎ𝛿𝑉𝑁
− (2𝜔𝑖𝑒 cos 𝐿 + 𝑉𝐸𝑅 + ℎ sec2𝐿)𝑉𝐸𝛿𝐿 + ∇𝑁

𝛿�̇�𝑈
= 𝑓𝐸𝜑𝑁 − 𝑓𝑁𝜑𝐸 + 2 (𝜔𝑖𝑒 cos 𝐿 + 𝑉𝐸𝑅 + ℎ) 𝛿𝑉𝐸
+ 2 𝑉𝑁𝑅 + ℎ𝛿𝑉𝑁 − 2𝜔𝑖𝑒 sin 𝐿𝑉𝐸𝛿𝐿 + ∇𝑈,

(5)

where f is specific force from accelerometer with subscripts
denote direction.

In this velocity error model, ∇ is the accelerometer error.
It is also modeled based on the first-order Markov process:

∇̇𝑟𝑎 = − 1𝑇𝑎𝑟∇𝑟𝑎 + 𝑤𝑟𝑎. (6)

The meaning of the accelerometer error in the Markov
process is defined the same as the gyro-error.

2.3. Position Error Model

𝛿�̇� = 𝛿𝑉𝑁𝑅 + ℎ
𝛿�̇� = 𝛿𝑉𝐸𝑅 + ℎ sec 𝐿 + 𝑉𝐸𝑅 + ℎ sec 𝐿 tan 𝐿𝛿𝐿
𝛿ℎ̇ = 𝛿𝑉𝑈

(7)

After obtaining the estimated errors, we can correct
attitude matrix 𝐶𝑛𝑏 in real time. The correction equation is

𝐶𝑛𝑏 = [I − 𝛿𝜑×]𝐶𝑛𝑏 (8)

𝛿𝜑× = [[
[

0 −𝛿𝜑𝑈 𝛿𝜑𝑁𝛿𝜑𝑈 0 −𝛿𝜑𝐸−𝛿𝜑𝑁 𝛿𝜑𝐸 0
]]
]
, (9)

where 𝐶𝑛𝑏 denotes rough attitude matrix from coarse initial
alignment and 𝛿𝜑× is antisymmetric matrix of the estimated
misalignment angle errors.

3. Elman Neural Network Model of
Initial Alignment

According to the error models established in the previous
section, the state estimation can be obtained by a certain
filtering method and then has feedback to eliminate the
errors. Since the running time of the Kalman filter is directly
proportional to the cubic of the system’s order, it is difficult
to ensure the real-time performance when the system’s order
is high. The neural network has a self-learning function,
can approximate any nonlinear function, and has fast data
processing.Therefore, the neural network can be used instead
of the Kalman filter for the initial fine alignment of SINS.

The typical structure of a multilayer neural network is
composed of three layers of artificial neural nodes, namely,
the input layer, the hidden layer, and the output layer. The
number of neurons in the input layer corresponds to the
dimension of the input information of the system. All of the
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neurons exported from the input layer are weighted with
thresholds by a nonlinear transmission function and then
imported to the hidden layer. The input of each neuron
node in the output layer is calculated and weighted by the
output of all nodes in the hidden layer [25]. However, the
main parameters of in-flight alignment are time-varying. In
order to realize the identification of the dynamic system,
the historical output of the system can only be added to
the input vector by adding external delay if the general
forward neural network structure is adopted. It increases the
dimension of the input vector, thus leading to an increase of
the entire system’s order and a decrease of the convergence
rate. Therefore, a feedback multilayer neural network is
needed. An Elman neural network is used in this paper.

The Elman neural network, which was proposed by
Jeffrey L. Elman in 1990, is a typical model of a feedback
neural network, which has very strong computing power. It
generally consists of four layers: the input layer, the hidden
layer, the connection layer, and the output layer. Compared
with the forward neural networks such as a BP neural
network, there is an extra connection layer that receives
a feedback signal from the hidden layer, which is used to
memorize the output value of the previous moment from the
hidden layer neurons. After delay and storage, the signal is
then reentered into the hidden layer. This method of self-
connectionmakes the data of the historical state sensitive.The
addition of internal feedback network improves the ability
to process dynamic information, to achieve the purpose of
dynamic modeling.

It is assumed that the Elman neural network has a m
dimension input vector xi(𝑖 = 1, 2, . . . , 𝑚), l dimension hid-
den layer neuronsOh(ℎ = 1, 2, . . . , 𝑙), l dimension connection
layer neurons Ch(ℎ = 1, 2, . . . , 𝑙), and n dimension output
vector yi(𝑖 = 1, 2, . . . 𝑛). We use 𝑤𝑚𝑙, 𝑤𝑙𝑛, and 𝑤𝑙𝑙 to represent
the weight between the input layer and the hidden layer,
the hidden layer and the output layer, and the hidden layer
and the connection layer, respectively. The output of the h-th
neuron node of the connection layer is

𝐶ℎ (𝑘) = 𝑂ℎ (𝑘 − 1) , (10)

where k and k-1, respectively, indicate the time at present and
the time at the step delay. The input information of the h-th
neuron node of the hidden layer is

𝐼ℎ (𝑘) = 𝑚∑
𝑖=1

𝑤𝑖ℎ𝑥𝑖 (𝑘) + 𝜃ℎ (11)

and the output information of the hidden layer is

𝑂ℎ (𝑘) = 𝑓 (𝐼ℎ (𝑘) + 𝑤𝑙𝑙𝐶ℎ (𝑘 − 1)) , (12)

where the function f (x) uses the tangsig function.The output
of network is

𝑦𝑗 (𝑘) = 𝑔( 𝑙∑
ℎ=1

𝑤ℎ𝑗𝑂ℎ (𝑘)) , (13)

where the function 𝑔(𝑥) uses the logsig function.
Since the inertial device of the strapdown inertial guided

projectile starts working after the projectile is launched, the
initial alignment does not begin with a static base. It is
unable to collect the datum of the system in advance to train
the Elman neural network. This paper uses the input and
output values of the UKF to make up the pairs of datum as
the learning samples. The Elman neural network is trained
using the UKF estimation values and the corresponding
measurement values in advance. When the errors between
the network outputs and the samples are within the allowable
range, this neural network can be used to accurately estimate
and compensate the system to complete the initial alignment
of SINS independently.

Figure 1 shows the Elman neural network diagram of
initial alignment. The input nodes are the measurement
variables of the system, and the output nodes are the state
variables of the system. The sampling period of the system
is 0.1 s.

The measurement variables 𝑍(𝑘) =[Δ𝐿 Δ𝜆 Δℎ Δ𝑉𝐸 Δ𝑉𝑁 Δ𝑉𝑈]𝑇 are used as the inputs
of the Elman neural network and weighted by calculating
them to the hidden layer; the output feedbacks of the
hidden layer nodes are combined with the weighted
inputs of next moment to input them into the hidden
layer. At this time, the outputs are weighted from the
hidden layer and the system state variables 𝑋(𝑘) =[𝛿𝐿 𝛿𝜆 𝛿ℎ 𝛿𝑉𝐸 𝛿𝑉𝑁 𝛿𝑉𝑈 𝜑𝐸 𝜑𝑁 𝜑𝑈 𝜀𝐸 𝜀𝑁 𝜀𝑈 ∇𝐸∇𝑁 ∇𝑈]𝑇 are finally obtained from the output layer.

4. Elman Neural Network Algorithm Based on
GA Optimization

Although the Elman neural network is better in estimating
initial values than the Kalman filter, there are still some
defects when using the Elman neural network alone. Since
the Elman neural network weights are updated as the way BP
neural network is used, which is the gradient descentmethod,
it is easy for them to fall into local minimum. Therefore, the
GA is used to train the optimal initial weight so that the
network can obtain the global optimal solution. At the same
time, the GA has the characteristic of parallel search, which
ensures the rapidity of the algorithm.

The GA is a global optimization method based on
biological evolution process of random search. It greatly
reduces the influence of the initial state through crossover
and mutation operation and conducts searching in the global
optimal solution rather than staying in the local optimal
solution. However, the precision of the solution searched
by GA alone is low. In this paper, the combination of the
GA and the Elman neural network can extend the searching
space of the neural network system and have the ability for
global optimization. On the basis of the genetic algorithm,
the solution obtained by GA is used as the initial solution of
the Elman neural network.
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Figure 1: Elman neural network diagram of initial alignment.

The purpose of the GA-Elman network is to obtain the
better initial weights and thresholds of network through the
Genetic algorithm, no longer random assignment.The initial
weights and thresholds of the network are represented by
individuals, and every individual initialized the prediction
error of neural network as the individual fitness. The method
uses the operations of selection, crossover, and mutation to
find the best individual, which is the optimal weight and
threshold of the neural network.

Figure 2 is the flowchart of the process for GA optimizing
the Elman neural network. The specific steps are as follows:

(a) Generation of the initial population: encode and
arrange the number of neurons of the hidden layer
and theweights and the thresholds of the network into
each character string in sequence as each individual.

(b) Calculate the fitness of individuals: the training data
is used to train the Elman neural network to predict
the outputs of the system, which are the differences
between the calculation of its genes (thresholds and
weights) and the expected values.

(c) Genetic operation: record the individual with the best
fitness (the smallest difference). Select the individuals
with good fitness using the geometric plan ranking
method; cross and vary the selected individuals,

equivalent to the sexual reproduction and genemuta-
tion of the organisms.

(d) According to the given genetic algebra, the optimal
individual gene is the ultimate threshold and weight.
The gene is used to initialize the neural network and
then training and predicting are used to get better
results.

5. Numerical Simulation

5.1. 	e Principle of Simulation. This numerical simulation
was carried out with Matlab. The results of the initial
alignment state estimation from GA-Elman network are
compared with the results from using the UKF alone, which
demonstrates the superiority of the GA-Elman network.

In this paper, the inputs and outputs of the UKF are
used as pairs of datum for learning samples. The Elman
neural network is trained by the state variables and the
corresponding measurement variables obtained from the
UKF in advance. When the errors between the network
outputs and the samples are within the allowable range,
the neural network can accurately estimate and compensate
the system independently, thereby completing the initial
alignment process of SINSwhen theKalmanfilter is removed.
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Figure 2: Flowchart of the process for GA to optimize the Elman neural network.

The principle diagram of the Elman neural network based
on GA optimized for the initial fine alignment is shown in
Figure 3.

When the switch is connected to state 1, the system is
in the training phase of the neural network. At this time,
the output state estimation e of the UKF, that is, the error
of the sample expected output 𝑋 and the network output
Op, is continuously adjusted by updating the weights and
thresholds.When the error e tends to themaximumallowable
value, training is over.

When the neural network training is finished, the switch
is connected to state 2. At this time, the neural network can
replace the Kalman filter to complete the initial alignment of
SINS independently.

To select the training datum, which is more suitable for
dynamic system environment, the Six Degrees of Freedom
(6-DOF) Ballistic Model is used to generate the trajectory
of the guided projectile as in Figure 4. The state values and
measurement values of the UKF on this trajectory are taken
as the samples to train the neural network.

In the simulation, the number of input layer nodes of the
Elman network is 6, the number of hidden layer nodes is 50,
and the number of output layer nodes is 15.

The related parameters in the simulation are shown in
Table 1.

5.2. Simulation Results. The fine alignment process of the
initial alignment of SINS is completed independently by the
trained Elman neural network based on the GA. Since the
attitude matrix is corrected by the estimation of the mis-
alignment angle in initial alignment, the simulation results of
the three misalignment angles under the UKF filter and the
Elman neural network are compared.

The whole simulation period is 30 s, where 10 s to 30 s is
for fine alignment. The red solid line is the result of the UKF
and the green solid line with circle symbol is the result of the
GA-Elman.

From Figure 5, it is shown that the Elman neural net-
work based on the GA is very accurate in state estimation,
and the convergence of misalignment angle errors for the
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Table 1: Nty Table 1: Related parameters.

Related parameters Setting values
Horizontal position error of GPS (m) 5
Vertical position error (m) 10
Horizontal velocity error (m/s) 0.2
Vertical velocity error (m/s) 0.3
Measurement white noise of gyro (∘/s) 0.117
Driven white noise of gyro (∘/s) 0.017
Measurement white noise of accelerometer (mg) 2.061
Driven white noise of accelerometer (mg) 0.292
Correlation time (s) 3600
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Figure 3: The principle diagram of the GA-Elman network.
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Figure 4: Trajectory of guided projectile.

GA-Elman network is better than the UKF. In other words,
the application of the Elman neural network instead of the
Kalman filter can not only solve the real-time problem in
the Kalman filter but also satisfy the required precision.
Therefore, it is feasible to replace the Kalman filter with the
GA-Elman neural network. What is more, the Elman neural
network is connected by a large number of simple units. The

high connectionmakes the network insensitive to some small
noise or small errors; that is to say, the network has certain
robustness, so that the characteristics of the Elman network
are not easily affected by the uncertain factors.

6. Summary

In this paper, an application of Elman neural network based
on genetic algorithm is performed to get the initial fine
alignment of the strapdown inertial navigation system for
a guided projectile. This optimized Elman neural network
proved its capability to solve the problems of the real-
time performance and robustness of the traditional Kalman
filtering algorithm in case of the initial fine alignment.
The optimization of Elman neural network using genetic
algorithm ismore practical which solved the problem that the
network easily falls into the local minimum. The simulation
results illustrated that the proposed GA-Elman method is
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Figure 5: Estimate errors of misalignment angles.

better at estimating the misalignment angles of SINS and
has the advantages of higher precision and faster calculations
speed.
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