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The maximum likelihood estimation is a widely used approach to the parameter estimation. However, the conventional algorithm
makes the estimation procedure of three-parameter Weibull distribution difficult. Therefore, this paper proposes an evolutionary
strategy to explore the good solutions based on the maximum likelihood method. The maximizing process of likelihood function is
converted to an optimization problem. The evolutionary algorithm is employed to obtain the optimal parameters for the likelihood
function. Examples are presented to demonstrate the proposed method. The results show that the proposed method is suitable for
the parameter estimation of the three-parameter Weibull distribution.

1. Introduction

Due to its extremely high flexibility, the Weibull distribution
[1] is widely used for fitting engineering data, such as the
strength of materials [2, 3], fracture of brittle materials [4,
5], and wind speed [6, 7]. The three-parameter Weibull
distribution is very flexible for random data fitting so that
it has a strong adaptability for different types of probability
distribution. When the three parameters are well chosen,
it can be equal or approximate to some other statistical
distributions. However, it is vitally important to estimate the
three parameters precisely in order to utilize the Weibull
model successfully.

It is a known fact that the three-parameter Weibull dis-
tribution parameters estimation is an extremely complicated
procedure. To date, several estimation approaches have been
conducted, such as graphic method [8-10], moment estima-
tion [11-14], maximum likelihood estimation (ML) [15-17],
kernel density estimation [18, 19], least squares estimation
with particle swarm optimization [20], ML with genetic
algorithm [21], Bayesian approach [22, 23], grey model [24,
25], etc.

The maximum likelihood method is an effective and
important approach for parameter estimation. The estimation
procedure is converted to maximize the so-called likelihood
function with respect to three undetermined parameters.
However, it is complicated to solve the maximum likelihood
equations by conventional numerical methods. Therefore,
various methods have been studied for parameter estimation
of the three-parameter Weibull distribution. Orkcii et al. [26]
proposed an approach based on the differential evolution
algorithm to search the maximum value of the likelihood
function. Usta et al. [27] combined the probability weighted
moments and the power density method for estimating the
Weibull parameters. In [28], the particle swarm optimiza-
tion (PSO) was adopted to provide accurate estimations
of the Weibull parameters. Petkovic et al. [29] proposed
an adaptive neuro-fuzzy inference system to predict the
parameters of the Weibull distribution. Mazen et al. [30]
discussed various approaches including maximum likelihood
method, percentile based method, least squares method,
weighted least squares method, and maximum product of
spacing estimators by numerical simulations. However, all
these methods depend heavily on the sample data.
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The Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) algorithm [31-33] is a new global optimization
algorithm, which has a powerful searching ability and high
efficiency. In this article, the maximum likelihood estimation
combined with evolutionary algorithm is proposed to obtain
the estimates of the Weibull parameters. The parameter
estimation problem is converted to an optimization problem
and is solved by the CMA-ES method. The three unknown
parameters are taken as variables in the optimization problem
and the fitness for optimization is the likelihood function.
The advantage of this method is that it does not need to solve
the maximum likelihood equations, and we can obtain the
estimates of the three parameters directly by the optimization
process. The results are compared with other estimation
methods and literatures.

The rest of this article is organized as follows. Section 2
gives a short review of maximum likelihood method for
Weibull distribution. In Section 3, the maximum likelihood
estimation and the evolution optimization are presented.
Section 4 presents discussions and comparisons with other
estimation methods of two cases. Finally, conclusions are
given in Section 5.

2. Maximum Likelihood Estimation for
Three-Parameter Weibull Distribution

The cumulative distribution function (CDF) and probability
density function (PDF) of the three-parameter Weibull dis-
tribution are given by
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Here, « > 0, § > 0, and # > 0 are location, shape, and
scale parameters, respectively. Figure 1 illustrates shapes of
PDF for different parameters. As can be seen, the shape of
Weibull PDF is very flexible so that it can fit into a wide range
of experiment data.

In general, there are many methods to estimate the
parameters of a distribution, such as probability-weighted
moment, maximum likelihood method, and least square
method. Among them, the ML estimators are asymptoti-
cally unbiased with the minimum variance under regularity
conditions. Then, the MLE for three-parameter Weibull
distribution is described briefly.

Lett,,t,, -+ ,t, be arandom sample of size n; 0 is noted
as the Weibull model parameters which are to be estimated;

namely, 0 = («, 3, 7). The likelihood function is written as
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FIGURE 1: Weibull PDF with various values of § when assuming « =
Oandy = 1.5.

The aim of estimation is to determine the unknown vector 6
and the three unknown parameters e, 3, and # by maximizing
the likelihood function. Since it contains exponential term, it
is easier to obtain the maximum by its logarithm. By this way,
the complexity of calculations is reduced. The logarithm of
the likelihood function is shown as

In[L(1:9)] = > [m (B)+(B-1)In(t; - )

n
i=1

—ﬁln(n)—(@)ﬁ]

(4)

Then, the vector © can be obtained by maximizing of
the likelihood function. To achieve this, the conventional
approach is to take the partial derivation of the likelihood

function in terms of vector 6 and set the partial equations
to zero, as

Jdln [L (ti;e)]
o

dln [L(t;:6)]
B

ln[L(t:6)]
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=0 )

We substitute the log-likelihood function into the above
equations. The following equations are obtained:
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It is well known that it is difficult to obtain the estimates
of the unknown parameters (&, 3,7) by solving the above
equations with numerical methods. Inspired by the ideas of
heuristic algorithm, the direct optimization searching meth-
ods for unknown parameters based only on the evaluation of
the objective function are proposed. The optimization strat-
egy is used to overcome the difficulties of solving the above
equations. In this study, the Covariance Matrix Adaptation
Evolution Strategy (CMA-ES) is used because it is robust and
effective for global optimization.

(6)

3. Evolution Optimization

3.1. CMA-ES Algorithm. In this section, the Covariance
Matrix Adaptation Evolution Strategy is briefly introduced
for three-parameter Weibull distribution. The CMA-ES
searches for a minimization of an objective function without
any requirement of objective function derivatives. It has well
performance on nonlinear and badly conditioned problems
because the CMA-ES is a second-order approach estimating
a positive definite matrix within an iterative procedure. The
searching is taken by controlling the step and direction of
evolution to generate new individuals in iteration. The CMA-
ES starts with a given or random initial search points. The
next generation is got by mutation, competition, selection,
and recombination. Such repetition goes on until the best
solution is achieved.

The mutation direction of group depends on the step size
o and covariance matrix C. The basic function of CMA-ES
algorithm is shown as

xlig+l) _ m(!]) + O‘(g)N (0’ C(Q)) ,

where x,(cg *D ¢ R" is the individual in the (g+1)th generation,

m'9 is the distribution mean of the (g)th generation, ¢'¥ is

the step size, N(0, C9) is the normal distribution function
with mean 0 and standard deviation C'9, C'9 is positive
definite covariance matrix in (g)th generation, and A is the
number of the solutions of x on (g+1)th generation. The
principle of updating C is to increase the variance along
the successful search direction. The covariance matrix C/9*!)
of (g+1)th generation is calculated by the following written
expression:

k=12,...,A (7)

C(gﬂ) = (1 - Ccov) : C(g) + Coov P(gH (P ng1)) (8)

and p9*Y is the evolution path and is calculated by
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where ¢, is the learning rate of the covariance matrix, ¢,
is the learning rate of the evolution path, which is inversely
proportional to the number of parameters, y is the weight
coeflicient, and (x)fj’) is the mean of individuals in (g)th
generation. The CMA-ES needs fewer populations than other
evolution strategies. The history path is expressed by the

vector sum of mean of each population.

3.2. Application in Weibull Parameter Estimation. For the
random samples of the Weibull distribution, t,,¢,,- - - , ¢, the
parameter estimation is done by maximizing (4). It is hard to
solve the equations by gradient method due to the difficulties
of evaluating the gradient terms. Owing to the advantages
of the CMA-ES, it is easy to obtain the maximum of log-
likelihood function. Therefore, it is changed to an optimiza-
tion problem with three parameters and an optimization goal
based on the log-likelihood function, defined as

min f=iL?(3), 6 = (o 1)

st o sa<a (10)

Here, L;(0) is log-likelihood function. o, o, 8, B, #, "
are the upper and lower boundaries of «, ,#, respectively.
For an optimization problem, it is important to choose
the boundaries. In this article, firstly, we obtain the initial
values of the unknown parameters by rank regression method
(RRM) [18]; then the left boundaries of the parameters are
defined as [0,0,0] and the right boundaries are set as five
times of the initial values. To estimate the three parameters
of the Weibull distribution, the pseudocode of the CMA-ES
algorithm is described below.

(1) Initialization. Give a vector, x = 6 (9> Bo»1o)-

(2) Set the parameters of CMA-ES, such as upper and
lower boundary of independent variable.

(3) Set number of samples per iteration A = 8
(4) Initialize state variables, m,0,C=1,p, =0,p, =0
(5) While (true), start iterate

(5.1) Foriin{l..
A

(5.2) x;: sample multivariate normal. Here, m: mean,
2 . .
0°C: covariance matrix

(5.3) f;: fitness (x;)

. A}, evaluate new solutions for each
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TABLE 1: Estimation results of different methods for 6 = (0,2, 1.5).

Sample size o B n Time/s
Exact value 0 2 1.5
100 0.0123 1.9506 1.4804 8.12
500 0.0030 1.9677 1.4901 45.36
1000 3.3le-4 1.9718 1.4928 93.19
2500 6.306e-5 2.0184 1.4981 248.48
(5.4) x, )« x4y With s() sort (f; _,,1), sort
solutions.
(5.5) m' = m, replace m.
(5.6) Move mean to better solutions, update
m (xq,...,%))
(5.7) Update isotropic evolution path. Update ps
(0™ C2(m —m)) Z
(5.8) Update anisotropic evolution path. Update pc g
(pe 0™ (m=m"), I, ) N
(5.9) Update the covariance matrix. Update C (C, p,, ~
(x; —m)]a,...,(x) —m')/o)
(5.10) Update step-size using isotropic path length.
Update o (0, I p, 1) : ”
0 100 200 300 400 500 600 700

(5.11) Return x

o ) 3 P Iteration
(5.12) Calculate the objective function, )7, L;(0)
04
(6) Stop when solution is converged, output the parame- — B
- n

ters x = E((x, B.n).

4. Results and Discussion

To validate the proposed approach, several examples of three-
parameter Weibull distribution estimation are considered
to reveal the effect of sample size and compare with other
intelligent global optimization algorithms. All algorithm
evaluations are performed on the processing unit of 2.2GHz
CPU and 8 GB RAM with MATLAB 2017B.

4.1. Example 1. The first example focuses on the three-

parameter Weibull distribution parameters in vector 6 =
(&, B, 1) with different sample size n. The parameters 0 =
(0,2, 1.5) are considered here. The sample data are generated
by the Monte Carlo acceptance-rejection method [37]. It is
a widely used method for the generation of pseudorandom
numbers according to their probability density function. The
algorithm is briefly introduced as follows:

(1) Generate pseudorandom numbers u, v from the
uniform distribution on (a, b) and (0,1), respectively.

(2) Calculate X by the inverse of the cumulative distribu-
tion function, X=F" ().

(3) If v<X/X,,, accept X; otherwise reject X.

(4) Repeat Steps 1 to 3, until the necessary number of
samples has been accepted.

FIGURE 2: History of the optimization parameter.

Here, (a, b) is the our interval of interest and X, is the
supremum of probability density function in the interval.

The sample sizes of 100, 500, 1000, and 2500 are chosen
for each example. The initial value of the CMA-ES is set as
the mean value of the search space, namely, the boundaries of
the parameters. The step size determines the coordinate-wise
standard deviations for the search. Here, we set the initial step
size o as the standard deviation of the initial value.

The optimization history of three parameters for the
case of sample size 100 is shown in Figure 2. The algorithm
converges in about 632 iterations. Once the objective function
value is converged, the estimates of the three parameters are
obtained. Then, to obtain the statistical results, the program
has been performed ten times for averaging the results. The

results are tabulated in Table 1 for 6 = (0,2, 1.5) estimation
scenario. As can be seen, the estimation results become better
as the sample size increases. Meanwhile, the running time
increases as the sample size increases, and for larger sample
size, it takes a long time to converge.

4.2. Example 2. In this example, the method is applied
to experimentally obtained data—failure data of ceramic
material. The failure data is shown in Table 2 [34].
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TABLE 2: Failure data of ceramic material/MPa.
Raw failure data (MPa)
307 308 322 328 328 329 331 332 335
337 343 345 347 350 352 353 355 356
357 364 371 373 374 375 376 376 381
385 388 395 402 41 413 415 456
TABLE 3: Parameters obtained by optimization method.
Methods o B Ui
Ref [34] 298 2.0 73
CMA-ES 298.29 1.9973 72.92
GA 305.41 1.78 64.58
SA 300.29 1.72 63.83
PSO 298.63 2.02 71.66
TABLE 4: Results for different search space. 80
Search space o B n 70 +
[0,56,] 298.29 1.9973 72.92 60 L
[0,100,] 302.76 2.38 77.35 o
— =}
[0,500,] 350.21 10.17 144.68 3 501
=1
S 40}
=
The parameters from literature [34] are 6 = (298,2,73). % 30 H
In this example, the comparison with intelligent global ©
optimization algorithms was carried out. Firstly, the initial 20y
values 6 of the unknown parameters are calculated by 10
RRM, with a searching space of [0,560]. These algorithms 0 . N
include genetic algorithm (GA), particle swarm optimization 0 50 100 150 200 250 300
(PSO) algorithm, and simulated annealing (SA) algorithm. Tteration

The parameters of GA are set as maximum generation 100,
population size 20, crossover probability 0.4, and mutation
probability 0.2. The parameters of PSO are set as cognitive
learning parameter 2, social learning parameter 2, inertia
weight 0.8, and individuals 20. The cooling schedule parame-
ters of SA are set as Markov chain length 10, decay scale 0.95,
step factor 0.02, initial temperature 30, and accept points 0.
The Weibull parameters calculated from CMA-ES, GA, PSO,
and SA are shown in Table 3. It can be seen from Table 3 that
the result of CMA-ES is very close to the literature result. The
result of CMA-ES is better than the other methods. To further
test the proposed method, the calculation is carried out for
different search spaces [38]. The results are listed in Table 4,
which is average of ten calculations. As can be seen, the results
of small search space are better than large search space and
the large search space can lead to unreliable results.

4.3. Example 3. In this example, a glass strength data set
is adopted to test the proposed method. The data are from
literature [3], where only the data of the naturally aged glass
is utilized, listed in Table 5.

There are 18 raw data and we use the proposed method to
estimate the three unknown parameters. The history curve of

FIGURE 3: Iteration history of objective function.

objective function is plotted in Figure 3. As can be seen, the
optimal values converged after 294 iterations. The simulation
results are listed in Table 6.

It should be noted that the two-parameter Weibull distri-
bution is used to fit the raw strength data. The shape and scale
parameters by the proposed method are close to the literature.
It can be seen that the proposed method is valid for this
case. Furthermore, to compare the goodness-of-fit for glass
strength data, the cumulative distribution functions (CDF)
and empirical distribution function (EDF) curves are plotted
in Figure 4. The mean square values of empirical distribution
function and cumulative distribution functions of the sample
data are 0.6035, 0.0191, 0.2317, and 0.0025 for LR, WLR-F&T,
WLR-B, and proposed method, respectively. The frequency of
raw experimental data and the estimated probability density
function are shown in Figure 5. As can be seen, the probability
density function curve of the proposed method is closest to
the frequency distribution curves.
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TABLE 5: Raw strength data.
Failure strength, o / (MPa)
24.12 24.13 28.52 29.18 29.67 30.48
32.98 3591 35.92 36.38 37.60 37.70
39.71 49.10 52.43 52.46 52.61 61.72
TABLE 6: Results of different estimation methods [3].

Method o B n K-S(ks_stat/p) AIC
LR (Ref [3]) \ 4.2 422 (0.2222/0.7088) 7.9410
WLR-F&T (Ref [3]) \ 34 41.7 (0.1667/0.9448) 7.9438
WLR-B (Ref [3]) \ 3.2 41.3 (0.1667/0.9448) 7.9727
CMA-ES(ML) 22.4101 1.3954 17.4991 (0.1111/0.9997) 7.6697

Note. LR, least square regression; WLR-F&T, weighted least squares regression with Faucher & Tyson’s equation [35]; WLR-B, weighted least squares regression
with Bergman’s equation [36]; CMA-ES(ML), the proposed method ML using CMA-ES; ks_stat/p, value of K-S test/the probability of the CDF data similarity.

0.9
0.8 +
0.7 +
0.6
0.5+
0.4t

Probability of failure, P¢

0.3}
0.2 F
0.1F

0 , , , , ,
20 30 40 50 60 70 80

Failure stress, oy (MPa)

- == WLR-B
Proposed method

FIGURE 4: Empirical distribution function and assumed cumulative
distribution function.

To further test the effectiveness of the proposed method,
Kolmogorov-Smirnov (K-S) tests and the Akaike Informa-
tion Criterion (AIC) are adopted. In this paper, AIC is
calculated as

2p-2L
n

AIC = (11)
where p is the number of parameters, L is the sum of log-
likelihood, and 7 is the sample size. The smaller value of AIC
means the model is better. The significance level is set as 0.05
for K-S test. As can be seen, the CDF data by our proposed
method has the largest probability, same as the EDE. The AIC
value of the proposed method is smallest, which is 7.6697. It
indicates that the result of the proposed method outperforms
the others.

Probability density of failure, f

20 30 40 50 60 70 80
Failure stress, oy (MPa)

I Frequency of raw data - - = WLR-B
.......... LR Proposed method
_____ WLR-E&T

FIGURE 5: Empirical density function and assumed density distribu-
tion function.

5. Conclusions

In this article, the estimation of Weibull distribution param-
eters is converted to an optimization problem and solved by
the covariance matrix adaptation evolution strategy (CMA-
ES). The fitness function of the CMA-ES is the likelihood
function of the three-parameter Weibull model. The opti-
mization variables are the unknown parameters, namely,
location, scale, and shape parameters. The results show that
better estimation results are obtained with larger samples.
Compared with other heuristic approaches, the CMA-ES has
a good performance for parameter estimation. The proposed
method is also suitable for real data sets and performs better
than other methods in terms of goodness-of-fit for empirical
distribution functions.
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For the further research, the proposed method is aimed
to be applied to parameter estimation of other distributions,
such as log-normal distribution, skew normal distribution,
and some multiparameter distributions.
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