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-is paper puts forward a new viewpoint on optimization of boiler combustion, namely, reducing NOx emission while
maintaining higher reheat steam temperature rather than reducing NOx emission while improving boiler efficiency like tra-
ditional practices. Firstly, a set ofmultioutputs nonlinear partial least squares (MO-NPLS) models are established as predictors to
predict these two indicators. To guarantee better predictive performance, repeated double cross-validation (rdCV) strategy is
proposed to identify the structure as well as parameters of the predictors. Afterward, some controllable process variables, taken as
inputs of the predictors, are then optimized by minimizing NOx emission and maximizing reheat steam temperature via
multiobjective artificial bee colony (MO-ABC). Results show that our rdCV-MO-NPLS model with MO-ABC optimization
methods can reduce NOx emission synchronously and improve reheat steam temperature effectively compared with non-
dominated sorting genetic algorithm II (NSGA-II) and combustion adjustment experimental data on a real 1000MW boiler.

1. Introduction

Boiler combustion optimization of reducing nitrogen oxide
(NOx, for short) has become a hot topic during the past
three decades. -ere exist several currently typical ways in
coping with the boiler combustion optimization problem.
-e first popular method is numerical simulation that is
based on computational fluid dynamics (CFD) [1–3].
However, the optimal set points explored by numerical
simulation cannot guarantee optimal value in practice due to
inconsistencies between designed conditions in CFD and
practical conditions. To consider this, it is interesting to take
into account the abundant information originating from
practical running data. Under such circumstance, the data-
driven method is motivated.

-e development of data-driven methods can be divided
into two stages. At the first stage, researchers only focus on
NOx emission reduction by using evolutional algorithms
(EAs) to search the optimal set point of controllable process
variables. -e typical EAs include genetic algorithm (GA),
particle swarm optimization (PSO), and ant colony opti-
mization (ACO). Among them, GA is frequently used on
boiler combustion optimization. For example, in [4, 5],

artificial neural network (ANN) combined with GA is
proposed to reduce NOx emission. And in [6], support
vector machine (SVM) and conventional GA (CGA) are
used on NOx emission reduction. Researchers can notice
that only NOx emission is considered as the optimization
objective in the above researches, but ignoring that the
combustion system is a hybrid system which is coupled with
other subsystems. -e reduction of NOx usually plays great
influence on other important parameters such as reheat
steam temperature (Tr, °C). -at is, the optimization of
boiler combustion system is essentially a multiobjective
optimization problem.

-is issue with multiobjective optimization in boiler
combustion systems has gained great attention at the second
stage. Traditionally, boiler combustion optimization is
implemented to reduce NOx emission and increase boiler
efficiency by EAs (for example, see works [7–10]). ANNs
with multiobjective GA (MOGA) are employed on boiler
combustion optimization. Although the abovemethods have
made significant contributions on reducing NOx emission
while improving boiler efficiency, there still exist some
unconsidered issues. Firstly, reheat steam temperature is
always lower than its set value due to the requirement of
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meeting electric peak regulation.-is phenomenon not only
imposes a bad influence on the whole plant efficiency but
also poses a threat to safe control of the boiler combustion
system. Secondly, the precise calculation of boiler efficiency
is hard to complete actually due to some practical issues.-e
third problem is the lack of effective modelling data, as
historical running data are heavily coupled and incomplete.
-erefore, it is urgent to improve reheat steam temperature.

Up to date, to the best of our knowledge, there is few
literature on boiler combustion optimization to reduce NOx
emission and improve reheat steam temperature simulta-
neously. Motivated by the above statements, this paper aims
to reduce NOx emission while achieving higher reheat steam
temperature by proposing a jointed optimization method.
More precisely, a Multiple Output version of Nonlinear
Partial Least Squares (MO-NPLS) regression model is first
proposed to predict behaviors of NOx emission and reheat
steam temperature synchronously. To achieve better per-
formance, the structure and parameters of MO-NPLS are
identified by repeated double cross validation (rdCV) rather
than traditional k-fold cross-validation strategy. -en,
a multiobjective artificial bee colony (MO-ABC) algorithm is
adopted to search optimal inputs of predictors that can
achieve lower NOx emission and higher reheat steam
temperature from Pareto front. -e modelling data are from
a combustion adjustment experiment conducted on a real
1000MW coal-fired boiler. It will be seen that our proposed
method outperforms combustion adjustment experimental
data and commonly used nondominated sorting genetic
algorithm II (NSGA-II). -erefore, the main contributions
of this paper can be summarized in three-fold:

(1) Both NOx emission and reheat steam temperature
are firstly proposed in boiler combustion optimi-
zation. -is strategy can reduce NOx emission while
maintaining higher reheat steam temperature to
guarantee the safety in boiler combustion system
control as well as the improvement of whole plant
efficiency.

(2) A MO-NPLS method with rdCV strategy is raised to
establish the predictive model of both NOx emission
and reheat steam temperature. -is algorithm is
powerful due to its strong generalization ability
especially with small number of samples.

(3) A MO-ABC-based multiobjective optimization
method is proposed on boiler combustion optimi-
zation. On the basis of the rdCV-MO-NPLS mod-
elling method, our proposed MO-ABC algorithm
can reduce NOx emission synchronously and im-
prove reheat steam temperature effectively compared
with NSGA-II and the experimental data.

-e rest of the paper is organized as follows. In Section 2,
the 1000MW boiler combustion system and data sources are
described. Section 3 establishes predictors used to predict
behaviors of NOx emission and reheat steam temperature by
rdCV-MO-NPLS. -en, Section 4 presents the joint optimi-
zation method by MO-ABC and the comparison with NSGA-
II and experimental data. Section 5 concludes this paper.

2. Description of Combustion System

In this section, the boiler combustion system is introduced,
together with the dynamic characteristics of combustion
system. And then, the data source used for modelling es-
tablishment and validation is presented.

2.1. Boiler Combustion System. Figure 1 illustrates
a 1000MW tower-type ultrasupercritical boiler adopting the
reheat system and air-staged combustion technique. As can
be seen from Figure 1, a selective catalytic reduction (SCR)
system is installed at the exit of convection flue gas and two
air preheaters are arranged beneath the SCR system. Along
vertical direction, the entire furnace is divided into three
zones including main combustion zone, reduction zone, and
burning-out zone. Furthermore, in the main combustion
zone, twelve-level pulverized coal burners are equipped and
correspond to six mills indexed by letters from A to F that
are with burners A1 and A2 at the bottom to F1 and F2 at the
top, respectively.

Generally, different coal allocations decided by the coal
feeding rate of each mill will lead to different temperature
fields and flame centers in the furnace. For instance, if more
coal is supplied by bottom mills, the flame center will move
downward. As a result, NOx production will reduce due to
the extension of reductive zone; however, the reheat steam
temperature (Tr) will decrease too because of less quality of
heat. In the present work, although the coal feeding rate is
a directly manipulated parameter, thermal load (Qi) is
monitored instead by considering the diversity of coal types
as follows:

Qi �
Bi

B0
· Q0, i ∈ A, B, . . . , F{ }, (1)

where B0 is the total coal fed by mills and Q0 indicates the
total thermal load.

In contrast to coal allocations, primary air is usually not
adjusted because its main task is to transport pulverized
power from mills, i.e., to match the pulverized coal. Sec-
ondary air, including that in the main combustion zone and
separated overfire air (SOFA) in the burning-out zone, can be
adjusted to improve combustion conditions in the boiler. To
enhance reducibility in the main combustion zone so as to
reduceNOx production, one can decrease secondary air in the
main combustion zone with increase of SOFA ratio (αSOFA) as
the total air volume remains constant. Evidently, this pa-
rameter represents the ratio of secondary air to total air. More
interestingly, higher reheat steam temperature can be
achieved with higher αSOFA, but excessive αSOFA will affect the
combustion performance in the main combustion zone.
However, the volume of secondary air in the main com-
bustion zone is rather difficult to monitor due to tens of
dampers in power plant. Instead, αSOFA is used and defined as

αSOFA �
SOFA
total air

, (2)

where total air� primary air + secondary air. Considering
that there is about 20% running oxygen (O2) in total air.
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-erefore, the higher the running O2 is, the greater the total
air volume will be.

In addition, notice that the higher the running O2 value
is, the better combustion effect will be. -en, both NOx
emission and reheat steam temperature will increase sub-
sequently and vice versa. -is means there exists an optimal
α value, namely, optimal running O2.

In summary, to reduce NOx emission and increase
reheat steam temperature synchronously heavily relies on
the distribution of thermal loads (Qi), running O2, and αSOFA
in the furnace.

Remark 1. -e burners at vertical direction are tilted within
a range of ±30° to tune the reheat steam temperature (Tr,°C)

[11]. At low load condition, even if burners have been al-
ready fully titled up, the reheat steam temperature will be
still significantly lower than its desirable setpoint. -is will
impose a bad influence on whole power plant efficiency (the
whole plant efficiency ηcp � ηb · ηp · ηi · ηm · ηg where ηi is
plant thermal efficiency which depends on reheat steam
temperature).

2.2. Data Source. -e value of reheat steam temperature
from actual operational conditions is not accurate as it is
controlled by a closed-loop temperature system. -erefore,
we adopted the data collected from a combustion adjust-
ment experiment shown in Supplementary file of the
1000MW power plant described in Section 2.1. Consider the
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Figure 1: Schematic diagram of a 1000MW boiler combustion system: (1) boiler; (2) burners.
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problem of excessive NOx emission and lower reheat steam
temperature is more severe under lower loads. As a result,
only 650MW, 800MW, and 850MW conditions are dis-
cussed in the following. Corresponding data are listed in
Appendix A (Tables A1–A3) in the Supplementary file.

Remark 2. Reheat steam temperature in the experiment was
not controlled by a closed-loop way, and hence, its values are
real. -erefore, all collected experimental data are more
useful than data collected in practical running way when
validating the performance of our method that will be
presented later.

3. Estimations of NOx and Reheat Steam
Temperature Based on MO-NPLS with rdCV

PLS/NPLS algorithms have been applied in engineering (for
example, see [12–14]). However, due to the limited number of
samples, the prediction accuracy of PLS/NPLS based on
traditional k-fold cross validationmay decrease. Motivated by
this and literature [15], we propose a multiple output version
of NPLS (MO-NPLS) model with repeated double cross-
validation (rdCV) strategy in Section 3.1. -e predictive
model is necessarily used to predict the behaviors of NOx
emission and reheat steam temperature and then identify and
validate it in different cases of loads in Section 3.2.

3.1. MO-NPLS Model with rdCV. Give inputs
xi � [xi1, . . . , xim]T ∈ Rm and outputs yi � [yi1, yi2]

T ∈ R2

with i � 1, . . . , n. -en, let X � [x1, . . . , xn]T ∈ Rn×m and
Y � [y1, . . . , yn] ∈ Rn×2 be the number of n observations for
inputs and outputs, respectively. Evidently, Xij indicates the
i-th observation of the j-th input, and this is held on for
output Y. -e superscript “T” represents transpose. To make
the results independent from units, all attributes of data
(X, Y) are normalized into range [− 1, 1] according to the z-
score rule and are denoted by (E0, F0) with E0 ∈ Rn×m and
F0 ∈ Rn×2.

Define tj ∈ Rn and uj ∈ Rn(j � 1, . . . , m) are the prin-
cipal components of X and Y, respectively. Similarly as
traditional nonlinear PLS [16, 17], rdCV-MO-NPLS is in
nature a recursive modelling strategy, aiming to establish
relationship between tj and uj(j � 1, . . . , m) firstly and then
implement the regression relationship of X and Y.

Let u1 be any column of F0 at the beginning. -en, one
can estimate of the first components (t1, u1) as follows.

Firstly, t1 is calculated by

t1 �
E0w1

wT
1w1

, (3)

where w1 ∈ Rm×1 is the weight of matrix E0 and obtained by
wT

1 � uT
1E0/(uT

1u1).
-en, one can fit the polynomial relationship between t1

and u1 by the least squares method. Specifically, assume the
relationship between t1 and u1 is quadratic, namely,

u1 � f t1( 􏼁 + e1 � c1,0I + c1,1t1 + c1,2t
2
1 + e1, (4)

where e1 ∈ Rn is the residual vector which is independent
and identically distributed. I ∈ Rn is a vector of ones. Take
Z � [I, t1, t21] ∈ Rn×3 and c1 � [c1,0, c1,1, c1,2]

T ∈ R3, then (4)
can be rewritten by a compact form:

u1 � Zc1 + e1. (5)

So, one can get the polynomial coefficient c1 by the least
squares method:

c1 � Z
T
Z􏼐 􏼑

− 1
Z
T
u1, (6)

where (ZTZ) represents the inverse matrix of (ZTZ).
After coefficients c1 are fitted by formula (6), then r1, i.e.,

the estimate of u1, can be calculated by

r1 � 􏽢u1 � f t1( 􏼁 � c1,0I + c1,1t1 + c1,2t
2
1. (7)

-en, update u1 (mark u1,new) by

u1,new �
F0q1

qT1q1
, (8)

where q1 ∈ R2×1 are weights of matrix F0 and determined by
qT1 � rT1F0/(rT1 r1). Next, w1 needs to be updated according to
[18].

At this point, we can recalculate the vector t1 (mark
t1,new) by formula (3) with the updated w1.

Check the convergence of t1: if ‖t1,new − t1‖/‖t1‖≥ 10− 6,
refit the polynomial coefficient c1 between u1,new and t1,new.
Otherwise, calculate the regression coefficient p1 by

p
T
1 �

tT1,newE0

tT1,newt1,new
. (9)

Finally, the residual of E0 and F0 (mark E1 and F1) that
will be used in the next iteration can be induced by

E1 � E0 − t1,newp
T
1 ,

F1 � F0 − r1q
T
1 ,

(10)

with regression coefficient pj.
Replace E0 and F0 with E1 and F1 and formulas (3)–(10)

are repeated until all m principal components (tj, uj) with
j � 1, . . . , m are extracted.

After all m principal components have been extracted,
optimum number afinal (afinal ≤m) can be selected. Usually,
k-fold strategy is applied, whereas rdCV strategy is adopted
here for achieving more robust predictive ability, which has
been proven of PLS in [15].-is is the reason why we call our
model rdCV-MO-NPLS. Once afinal is determined, the
prediction of outputs Y can thus be obtained according to

􏽢Y � Y + 􏼪sY, 􏽘

afinal

k�1
rkq

T
k 􏼫, k � 1, . . . , afinal, (11)

where < ·, ·> means point-product operation of two
vectors with equal dimensionality; Y � (Y1, Y2) with
Yj � (1/n)􏽐

n
i�1Yij, j � 1, 2; and sY � (sY1

, sY2
) with

sYj
�

�����������������
(1/n)􏽐

n
i�1(Yij − Yj)

2
􏽱

.
From the above interpretations, the rdCV-MO-NPLS is

summarized in Algorithm 1.
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3.2. Model Identification and Validation

3.2.1. Model Identification. In this section, rdCV-MO-NPLS
is identified, respectively, at 650MW, 800MW, and
850MW. In each case, identification as well as rdCV data are
shown in Table A1 (from lines 1 to 45), Table A2 (lines 1 to
30), and Table A3 (lines 1 to 90). In cases of 650MW and
850MW, six inputs were considered, including C-F level
thermal loads (X1 to X4, MW), running O2 (X5), and αSOFA
(X6, %), whereas seven inputs were considered in 800MW,
which are B-F level thermal loads (X1 to X5, MW), running
O2 (X6), and αSOFA (X7, %). In all cases, the outputs are

Y � NOx(X),Tr(X)( 􏼁. (12)

Figure 2 displays the results of applying rdCV. It can be
seen that the highest percentage in three cases are, re-
spectively, 0.32 (aopt � 3), 0.38 (aopt � 2), and 0.256 (aopt � 2).
Hence, the final optimum principal component afinal in each
case is 3, 2, and 2, respectively. With the help of afinal, the
rdCV-MO-NPLS model can be identified as Case 1 to Case 3.

For better comparison, 5-fold cross validation (We call
5-fold-MO-NPLS model) is conducted by the same iden-
tification data as the rdCV method. After 5-fold cross val-
idation process, the optimum principal component afinal of
650MW, 800MW, and 850MW cases is 4, 1, and 4, re-
spectively. -en, the validation results of 5-fold-MO-NPLS
model with their afinal will be seen in the next section.

Case 1 (rdCV-MO-NPLS of 650MW load condition).
Since afinal � 3, the first three components (t1, u1), (t2, u2),
and (t3, u3) are selected. Normalize the training data pre-
sented in Table A1 (from lines 1 to 45) into E0 � (e1, . . . , e6)

and F0 according to z-score rule. Corresponding parameters
of (w, p, c, q) shown in Table 1 as well as (t1, u1), (t2, u2), and
(t3, u3) are identified based on (3)–(11).-e rdCV-MO-NPLS
predictive model is in form of

t1 � E0w1 � E0􏼂0.1084, 0.7642, − 0.2669, − 0.5667,

− 0.0943, 0.0555􏼃
T
,

t2 � E1w2 � E0 I − w1p
T
1􏼐 􏼑w2 � E0􏼂 − 0.2094, − 0.2329,

− 0.6923, − 0.7341, − 0.1408, 0.1400􏼃
T
,

t3 � E2w3 � E0 I − w1p
T
1􏼐 􏼑 I − w2p

T
2􏼐 􏼑w3 � E0􏼂0.8325,

− 0.4500, 0.1520, 1.2745, 0.0707, − 0.0796􏼃
T
,

f � r1q
T
1 + r2q

T
2 + r3q

T
3 � 􏼂 − 0.1112 + 1.9943t1 + 0.6504t

2
1

+ 0.626t2 + 0.3445t
2
2 + 0.2332t3 − 0.4783t

2
3, − 0.0403

+ 1.9161t1 + 0.6248t
2
1 − 0.9299t2 − 0.5116t

2
2 + 0.1726t3

− 0.3540t
2
3􏼃

≔ f1, f2􏼂 􏼃,

􏽢Y � 􏽢Y1,
􏽢Y2􏽨 􏽩 � Y1, Y1􏼂 􏼃 + 􏼪 sY1, sY2􏼂 􏼃, f1, f2􏼂 􏼃􏼫

� 509.5 + 55.8445f1, 581.2 + 6.1878f2􏼂 􏼃.

(13)

Case 2 (rdCV-MO-NPLS of 800MW load condition). -e
first two components (t1, u1) and (t2, u2) are chosen. Based
on data as shown in Table A2 (lines 1 to 30), and identified

Input: data (X, Y) and parameters Nrep, SEGtest, SEGcalib;
Output: optimal number of principal component afinal and rdCV-MO-NPLS model.
for rep � 1 to Nrep do
Split dataset S equally into SEGtest groups, i.e., S � S(1), S(2), . . . , S(SEGtest)􏼈 􏼉;
for i � 1 to SEGtest do

Select S(i) as Test set, and construct Calibration sets S(− i) � S − S(i);
Split Calibration set equally into SEGcalib groups, S(− i) � V(1), V(2), . . . , V(SEGcalib)􏼈 􏼉;
for j � 1 to SEGcalib do
Select V(j) as Validation set and V(− j) � S(− i) − V(j) as Training set;
Fit MO-NPLS based on V(− j) with, respectively, a � 1, 2, . . . , m of principal components,
Apply the MO-NPLS models to V(j) and get predictive 􏽢Y

a

j for a � 1, 2, . . . , m;
Calculate mean square error MSEa

j � (1/nMSE)􏽐
nMSE
k�1 (Yj(k) − 􏽢Y

a

j (k))2, with the number of objects in the used validation set
nMSE and the output objects of validation set Yj;

Estimate optimum principal components a
(i)
opt1 , . . ., a

(i)
optk according to 􏽢Y

a based on standard error method [15] (Here, more than
one aopt may be selected (i.e., k≥ 1) because of different confidence interval);
Make MO-NPLS models based on Calibration set S(− i) with a � a

(i)
opt1 , . . . , a

(i)
optk ;

Test fitted models on S(i) and obtain a group of k predictions 􏽢Y
a

k as well as k biases;
Find the smallest bias and determine the optimal principal component a

(i,rep)
opt .

One can get aopt with the number of SEGtest after completing the outer loop.
Totally, after a complete rdCV run, we can get aopt with the number of (Nrep × SEGtest). -e final optimum of principal component
afinal is the one with highest frequency in a

i,rep
opt .

Identify rdCV-MO-NPLS model with database S and afinal to get model parameters [w, p, c, q] based on (3)–(10).

ALGORITHM 1: rdCV-MO-NPLS.
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parameters of rdCV-MO-NPLS shown in Table 2, the rdCV-
MO-NPLS model can be established as

t1 � E0w1 � E0􏼂− 0.4416, − 0.3083, 0.3598, − 0.1139,

− 0.1758, − 0.5304, − 0.5053􏼃
T
,

t2 � E1w2 � E0 I − w1p
T
1􏼐 􏼑w2 � E0􏼂0.4468, 0.0730, − 0.3284,

− 0.0332, 0.3795, 0.4261, 0.6668􏼃
T
,

f � r1q
T
1 + r2q

T
2 � 􏼂− 0.1626 + 1.104t1 + 0.2081t

2
1

+ 0.2959t2 + 0.0180t
2
2, − 0.1275 + 0.9698t

2
1 + 0.1828t1

− 0.3007t2 − 0.0183t
2
2􏼃

≔ f1, f2􏼂 􏼃,

􏽢Y � 􏽢Y1,
􏽢Y2􏽨 􏽩 � Y1, Y2􏼂 􏼃 + 􏼊 sY1, sY2􏼂 􏼃, f1, f2􏼂 􏼃􏼋

� 451.9 + 27.3115f1, 585.7 + 4.7006f2􏼂 􏼃.

(14)

Case 3 (rdCV-MO-NPLS of 850MW load condition).
Similar as Case 2, the first two components (t1, u1) and (t2,
u2) were selected on the basis of Table A3 (from lines 1–90).
Additionally, identified parameters of rdCV-MO-NPLS are
shown in Table 3. -e rdCV-MO-NPLS model is

t1 � E0w1 � E0􏼂0.2595, 0.4561, − 0.3307, − 0.5786,

− 0.0490, 0.5273􏼃
T
,

t2 � E0 I − w1p
T
1􏼐 􏼑w2 � E0􏼂0.4214, 0.4823, 0.2326,

− 1.2139, 0.0331, 0.0308􏼃
T
,

f � r1q
T
1 + r2q

T
2 � [ 0.0143 + 1.3261t1 + 0.0230t

2
1 + 0.5570t2

− 0.0635t
2
2, 0.0049 + 0.7791t1 − 0.0135t

2
1 − 0.9594t2

+ 0.1095t
2
2

≔ f1, f2􏼂 􏼃,

􏽢Y � 􏽢Y1,
􏽢Y2􏽨 􏽩 � Y1, Y2􏼂 􏼃 + 􏼊 sY1, sY2􏼂 􏼃, f1, f2􏼂 􏼃􏼋

� 464.2 + 35.8762f1, 594.8 + 2.9182f2􏼂 􏼃.

(15)

3.2.2. Model Validation. In general, generalization ability
of a prediction model is more important than its fitting
ability. -erefore, it is necessary to validate aforemen-
tioned models to get their generalization ability. Vali-
dation samples in three cases are seen in Table A1 (from
lines 46 to 53), Table A2 (from lines 31 to 36), and
Table A3 (from lines 91 to 96) in Supplementary file,
respectively.

To state the superiority of the rdCV-MO-NPLS model,
another three well-known methods: 5-fold-MO-NPLS,
support vector regression (SVR), and artificial neural net-
work (ANN) are employed to establish models of NOx
emission and reheated steam temperature. All methods are
on the same identification and validation data. Figures 3–5
show the predictive results for different methods. -e
prediction error sum (PRESS � 􏽐

nPRESS
i�1 |􏽢Yi − Yi|/Yi with

prediction sample number nPRESS) representing general-
ization ability and simulation error sum (SS � 􏽐

nSS
i�1|

􏽢Yi−

Yi|/Yi with simulation sample number nPRESS) reflecting
approximate ability is presented in Table 4.

It can be seen from Figures 3–5 that the prediction of
rdCV-MO-NPLS approaches the real values the most while
the deviation among 5-fold-MO-NPLS, SVR, or ANN and
real value is larger in the three working load conditions.
Furthermore, from Table 4, it can be concluded that the
PRESS value of rdCV-MO-NPLS are lower than the other
three methods in all the three cases, which means rdCV-
MO-NPLS has stronger predictive capability. -is verified
that firstly, rdCV can achieve more robust ability than the
k-fold strategy; secondly, SVR can only establish the SISO
model, as the boiler combustion system is strongly coupled,
so the accuracy of predictive model will be reduced due to
decoupling. Finally, as for ANN, it can deal with the MIMO
system but is prone to overfitting easily.

Remark 3. Compared with k-fold cross validation, rdCV can
achieve more robust ability. -is also shows that rdCV can
be successfully used in NPLS. Besides, rdCV-MO-NPLS is
more powerful than SVR and ANN in generalization ability
on the modelling of NOx emission and reheat steam
temperature.
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Figure 2: Percentage of principal components aopt: (a) 650MW, (b) 800MW, and (c) 850MW.
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4. Combustion Optimization

Artificial bee colony (ABC) is a well-known intelligent
optimization algorithm proposed in 2005 [19]. It has been
applied more and more on engineering optimization in
recent years [20–23] because of its simplicity to imple-
ment as it uses fewer control parameters [24, 25] and
robust ability to get out of a local minimum [26]. In this
section, a multiobjective version of ABC (MO-ABC) [25]
is used to optimize NOx emission and reheat steam
temperature.

4.1. JointOptimizationviaMultiobjectiveArtificialBeeColony
Algorithm. -e objective of combustion optimization is to
minimize NOx emission and maximize reheat steam tem-
perature (Tr) through searching optimal inputs (x) which is
m-dimensional, namely, thermal loads (Qi), running O2, and
αSOFA based on rdCV-MO-NPLS models established in
Section 3. Considering that these two objectives are con-
tradictory, we can only find a set of nondominated solutions.
Objective function can be described as follows:

min
x

Y � Y1(x), Y2(x)􏼂 􏼃,

s.t. Xmin ≤x≤Xmax, i � 1, . . . , m,
(16)

where Y1(x) is the NOx emission. Y2(x) is the inverse of Tr
by converting the problem of maximizing Tr to minimize its
inverse. -e values of Y1(x) and the inverse of Y2(x) of
650MW, 800MW, and 850MW can be calculated from
formulas (13)–(15), respectively. Xmin � [Xmin ,1, . . . ,

Xmin ,m]T ∈ Rm and Xmax � [Xmax,1, . . . , Xmax ,m]T ∈ Rm are
the lower and upper bounds of inputs in the rdCV-MO-
NPLS model.

To solve problem 4.1, a MO-ABC is applied step by step
as follows:

Step 1 (solutions initialization). New variables named Np
and FoodNumber will be defined as the population size and
the number of food sources, respectively. Since each
employed bee represents a food source and the number of
employed bees and onlooker bees is equal, the FoodNumber
can be set to half of the population (i.e., Np/2) [25]. Each
food source will be initialized through a function randomly
generated in input space according to

xi d � Xmin ,d + rand[0, 1] Xmax ,d − Xmin ,d􏼐 􏼑, (17)

where i is the index of the food source with the range of
i � 1, 2, . . . , FoodNumber; d is the dimension index of each
food source with the range of d � 1, 2, . . . , m; rand [0,1] is
a random number distributed uniformly over the interval
[0,1]; and Xmin ,d and Xmax ,d are the lower and upper bounds
of the dth dimension, respectively.

In addition, assign each food source with a trial index
triali, i � 1, 2, . . . , FoodNumber; triali is initialized to 0 for
each food source.

Step 2 (solutions evolve in employed bee phase). -e initial
solutions in (17) first evolved through the help of employed
bees according to

Table 1: Parameters of rdCV-MO-NPLS model at 650MW.

h1

w1 p1 c1 q1
0.1084 − 1.0821 − 0.2037 0.7211
0.7642 1.7506 2.7657 0.6928

− 0.2669 − 2.0513 0.9019
− 0.5667 1.7544
− 0.0943 − 1.3794
0.0555 1.7356

h2

w2 p2 c2 q2
− 0.2521 1.3719 − 0.0598 0.5585
− 0.5344 − 1.1655 1.1211 − 0.8295
− 0.5870 0.1064 0.6167
− 0.5105 − 1.2466
0.1779 0.0342
0.1181 1.2109

h3

w3 p3 c3 q3
0.7658 1.7521 0.0860 0.8038

− 0.0421 − 0.7898 0.2901 0.5949
− 0.5367 0.0805 − 0.5950
0.3318 − 0.6007
0.0995 − 1.1659
0.0608 − 0.2728

Table 2: Parameters of rdCV-MO-NPLS model at 800MW.

h1

w1 p1 c1 q1
− 0.4416 − 0.0237 − 0.2057 0.7513
− 0.3083 − 0.2094 1.4695 0.6600
0.3598 0.0880 0.2770

− 0.1139 0.2170
− 0.1758 − 0.0283
− 0.5304 − 1.0054
0.5053 0.7517

h2

w2 p2 c2 q2
0.3187 0.9644 − 0.0116 0.7014

− 0.0164 0.1064 0.4219 − 0.7128
− 0.2241 − 0.2031 0.0257
− 0.0662 − 0.4456
0.3286 − 0.9193
0.2724 0.3618
0.8133 1.0018

Table 3: Parameters of rdCV-MO-NPLS model at 850MW.

h1

w1 p1 c1 q1
0.2595 0.3142 0.0113 0.8622
0.4561 0.0651 1.5380 0.5066

− 0.3307 − 0.6749 − 0.0266
− 0.5786 0.0298
− 0.0490 − 0.2947
0.05273 1.2676

h2

w2 p2 c2 q2
0.1698 − 1.6923 0.0092 0.5021
0.0401 − 2.2468 1.1094 − 0.8648
0.5532 − 0.5951 − 0.1266

− 0.6529 − 2.4330
0.0806 − 0.2785

− 0.4804 − 0.2926
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vi,d � xi,d + ϕi,d · xi,d − xk,d􏼐 􏼑, (18)

where k≠ i and k � 1, 2, . . . , FoodNumber and
d � 1, 2, . . . , m. ϕi,d is a random number distributed
uniformly between [− 1, 1]. If vi dominates xi, i.e.,
NOx(vi)≤NOx(xi) and (1/Tr(vi))≤ (1/Tr(xi)) (denoted
as vi≺xi), update xi to vi. If not, the update was un-
successful, the trial for the old food source, xi, is incre-
mented by one.

Step 3 (solutions evolve in onlooker bee phase). -e quality
of solution xi, i.e., fitness of solution xi, is evaluated by

fiti �
dom xi( 􏼁

FoodNumber
, (19)

where dom(xi) is the number of solutions that are domi-
nated by food source xi. -e probability for each food source
xi advertised by the corresponding employed bee will be
calculated in a roulette way according to

Pi �
fiti

􏽐
FoodNumber
k�1 fitk

. (20)

Once a solution is selected, this solution will evolve to a new
position according to formula (18) if this newposition dominates
its previous one. Otherwise, its trial value is increased by one.

Step 4 (solutions evolve in scout bee phase).-ere is at most
one scout bee in the colony. -is means if the maximal trial
value in the colony reaches the limit, then the corresponding
food source will turn to a scout bee and after doing a random
search according to formula (17). At the same time, its trial
value will be reset to zero. -e limit is determined by

limit �
Np
2

· m. (21)

Step 5 (solution archive updates). A fixed-size archive (e.g.,
FoodNumber) is conserved to hold the best solutions. Spe-
cifically, after the (t)th cycle, we can get the nondominated
solutions. Combine them with solutions which are held in
archive at (t − 1)th cycle. -en, select the top FoodNumber

solutions by nondomination strategy to update archive.
All the above steps are repeated until the maximum

iteration, Cmax, is met. -e main process of MO-ABC is
summarized in Figure 6.

Remark 4. -e specific values ofXmin andXmax are shown in
Appendix B (Tables B1–B3) in Supplementary part, and it is
determined by history running and experimental data as well
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as security conditions as the usual practice of data-driven
methods (for example, see work [4]).

4.2. Optimizing Results and Analysis. To implement MO-
ABC as shown above, some parameters should be preset
including Np and limit. Here, Np was set to 100 by a trivial
way. limit was set to 300 (at 650MW and 850MW) and 350
(at 800MW), respectively, based on formula (21).

Furthermore, another popular multiobjective EA
(MOEA), NSGA-II, is also conducted for comparison.
Values of Np and [Xmin, Xmax] in NSGA-II are set the same
as MO-ABC.

In the present work, we use the number of function
evaluations (FEs) as a measure criterion to determine Cmax.
Set that both algorithms are terminated after 100,000 FEs.
Define CmaxNSGA− II and CmaxMO− ABC as the maximum it-
eration of NSGA-II and MO-ABC algorithms, respectively.
Since FEsNSGA− II � Np∗CmaxNSGA− II � 100∗CmaxNSGA− II �

100, 000, then we can get CmaxNSGA− II � 1000. In addition, the
upper bound of the fitness evaluations in basic ABC is defined
and given as FEs≤ (SN + SN + 1)∗CmaxMO− ABC + SN. In
each iteration, there are SN employed bees, SN onlooker bees,
and at most 1 scout bee [27]. In this paper, substitute
“SN � Np/2 � 50, FEs≤ 100, 000” into above equation, then
we can get CmaxMO− ABC � 990.

-e optimization results of MO-ABC and NAGA-II are
presented in Figures 7–9.

To assess the solution sets shown in Figures 7–9,
a comprehensive quality indicator (QI), i.e., hypervolume
(HV) [28], is applied here. -e HV indicator represents the
volume of the area enclosed by solution set and a reference
point, which can combine the quality of convergence,
spread, cardinality, and uniformity of solution set and can be
defined as follows.

Given a solution set A and a reference point r, HV can be
calculated as

HV(A) � λ ∪
a∈A

x| a≺x≺r{ }􏼒 􏼓, (22)

where λ is the Lebesgue measure. Put it simply, the HV value
of a set can be seen as the volume of the union of the

hypercubes determined by each of its solutions and the
reference point (as the left-bottom vertex and the right-top
vertex, respectively).

Specifically, for a two-objective optimization problem,
HV can be calculated by the following steps. Firstly, the
nondominated points in set A are sorted by descending

No

Yes

Return archive

Is termination
condition met?

Solutions evolve in scout bee phase

Solutions evolve in employed bee phase

Solutions evolve in onlooker bee phase

Update archive

Initialize: population, number of food
sources, trial parameter

Input: Np, Cmax, limit, [Xmin, Xmax]

Figure 6: Schematic diagram of the MO-ABC algorithm.

Table 4: PRESS and SS values in different methods at 650MW, 800MW, and 850MW1,2.

Loads Methods PRESSNOx PRESSTr PRESS SSNOx SSTr SS

650MW

rdCV-MO-NPLS 0.1346 0.0193 0.1539 0.8458 0.1138 0.9596
5-fold-MO-NPLS 0.1354 0.0192 0.1546 0.8458 0.1138 0.9596

SVR 0.1407 0.0294 0.1701 0.8705 0.1347 1.0052
ANN 0.1360 0.0336 0.1696 0.7806 0.1342 0.9148

800MW

rdCV-MO-NPLS 0.0985 0.0140 0.1125 0.5368 0.1139 0.6507
5-fold-MO-NPLS 0.1397 0.0098 0.1495 0.5368 0.1139 0.6507

SVR 0.1318 0.0295 0.1613 1.3079 0.1580 1.4659
ANN 0.1633 0.0214 0.1847 1.1438 0.2416 1.3854

850MW

rdCV-MO-NPLS 0.0931 0.0141 0.1072 2.4469 0.2517 2.6986
5-fold-MO-NPLS 0.1068 0.0136 0.1204 2.4469 0.2517 2.6986

SVR 0.1073 0.0165 0.1238 2.5070 0.1665 2.6735
ANN 0.1416 0.0139 0.1555 2.9540 0.2784 3.2324

1-e values in bold are the optimal in their columns. 2PRESS � PRESSNOx + PRESSTr; SS � SSNOx + SSTr.
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order on their first dimensional objective values. And then,
HV is calculated by

HV(A) � 􏽘
n

i�1
obj2 pi( 􏼁 − obj2(r)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 · obj1 pi( 􏼁 − obj1 pi− 1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

(23)

where obji(pj) represents the value of the jth solution in A
on their ith dimensional objective. obj1(p0) is set to obj1(r).
n is the number of solutions in set A.

-e r and HV are illustrated in the third and fourth
column of Table 5.

Table 5 shows that the HV indicators of MO-ABC are
higher than NSGA-II in all three load conditions. -at is,
the solution sets of MO-ABC all outperform NSGA-II
(illustrated in Figures 7–9) in the comprehensive per-
formance with comparable time consumption (shown in
the last column of Table 5). -is means MO-ABC is more
applicable to boiler combustion optimization than
NSGA-II.

Furthermore, we can present our findings in our
current study whether the nondominated solutions by
MO-ABC shown in Figures 7–9 are better than real
values (i.e., experimental values). Among them, six
recommended nondominated solutions with “+” (the
principle of selecting these recommended nondominated
solutions is to keep NOx as low as possible while
maintaining the reheat steam temperature above its
designed value) are shown in Tables 6–8 (No. 1–6) as well
as the experiment values of NOx emission and reheat
steam temperature (No. 7).

In order to quantify the degree of reduction of NOx
and increase of Tr relative to the experimental value,
percentage improvement (PNOx and PTr) are defined as
follows:

PNOx �
NOxM − NOxe

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

NOxe

× 100%,

PTr �
TrM − Tre

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

Tre

× 100%,

(24)

where NOxM and NOxe are the NOx values obtained by
MO-ABC and experiment, respectively. TrM and Tre are
Tr values obtained by MO-ABC and experiment, re-
spectively. Results are shown in the last two columns of
Tables 6–8.

By comparing results in Figures 7–9 and Tables 6–8, we
can conclude that optimal NOx emission and reheat
steam temperature achieved by MO-ABC is better than
that explored directly from experimental ones (i.e., real
data) based on the percentage improvement. -is verified
that our new viewpoint on combustion optimization is
meaningful. To this end, joint optimization of NOx
emission and reheat steam temperature can bring much
more benefits to the combustion system with the points
of synthetic optimization view.
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Figure 9: Pareto frontier by MOEAs at 850MW.
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5. Conclusions

-is paper puts a new point on optimizing NOx emission
and reheat steam temperature simultaneously using
a joint optimization method, in which a set of rdCV-MO-
NPLS strategies were proposed as predictors in three cases
of load such as 650MW, 800MW, and 850MW. Com-
pared with another three well-known methods (k-fold-
MO-NPLS, SVR, and ANN), this method can achieve
higher predictive accuracies. -en, MO-ABC was applied
to search the optimal set point of controllable process
variables to reduce NOx emission and improve reheat
steam temperature. Results showed that our joint opti-
mization of boiler combustion with MO-ABC provided

a set of tradeoff solutions and outperformed that obtained
by NSGA-II and experimental data. -is implies that our
proposed method on boiler combustion optimization can
guarantee higher economy as well as safety control of
combustion systems.
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Table 5: HV indicator and time consumption by MOEAs.

Loads MOEAs r HV Time consuming (s)

650MW MO-ABC (1200, 0.002) 0.3574 36.503
NSGA-II (1200, 0.002) 0.2892 37.021

800MW MO-ABC (500, 0.002) 0.1481 38.105
NSGA-II (500, 0.002) 0.1062 37.929

850MW MO-ABC (500, 0.002) 0.1239 30.856
NSGA-II (500, 0.002) 0.0590 29.499

Table 6: Recommended setpoints for inputs at 650MW.

No. NOx Tr -ermal load (C) -ermal load (D) -ermal load (E) -ermal load (F) αSOFA Running O2 PNOx PTr

1 416.2 578.6 146.6 167.5 154.7 205.8 0.225 4.805 6.26 0.28
2 436.6 580.4 143.8 171.0 150.0 209.9 0.209 4.742 1.67 0.59
3 403.2 577.1 146.6 167.6 155.9 205.7 0.229 4.672 9.19 0.02
4 427.8 579.2 146.6 171.3 147.1 209.4 0.190 4.782 3.65 0.38
5 441.3 581.7 140.1 169.5 147.1 210.0 0.203 4.791 0.61 0.81
6 439.5 582.2 142.1 170.4 147.1 209.2 0.211 4.423 1.01 0.90
7 444 577

Table 7: Recommended setpoints for inputs at 800MW.

No. NOx Tr -ermal load
(B)

-ermal load
(C)

-ermal load
(D)

-ermal load
(E)

-ermal load
(F) αSOFA

Running
O2

PNOx PTr

1 50.2 588.7 123.1 156.0 166.6 172.9 203.4 0.253 2.211 87.9 0.46
2 57.3 589.6 123.1 155.9 166.6 173.2 203.4 0.253 2.237 86.2 0.61
3 217.6 598.1 123.1 155.4 166.5 173.0 203.4 0.210 2.237 47.8 2.06
4 250.7 599.2 122.4 155.9 166.6 173.5 203.4 0.208 2.236 39.9 2.25
5 440.3 603.1 123.1 157.3 166.2 173.1 203.4 0.196 2.224 56.1 2.92
6 479.4 603.2 123.1 160.0 166.2 173.1 203.4 0.196 2.236 15.0 2.94
7 416.9 586

Table 8: Recommended setpoints for inputs at 850MW.

No. NOx Tr -ermal load (C) -ermal load (D) -ermal load (E) -ermal load (F) αSOFA Running O2 PNOx PTr

1 138.0 592.1 151.1 164.4 206.4 251.3 0.243 2.171 67.1 0.87
2 148.0 593.4 152.6 164.4 205.7 251.3 0.197 2.171 64.7 1.09
3 181.9 599.8 151.3 164.4 186.3 251.3 0.184 2.229 56.6 2.18
4 224.9 602.1 153.1 164.4 186.3 251.3 0.184 2.948 46.4 2.57
5 362.3 606.7 151.1 164.4 186.3 251.3 0.201 4.479 13.6 3.36
6 365.1 607.1 151.1 164.4 186.3 251.0 0.185 4.478 13.0 3.42
7 419.5 587
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Supplementary Materials

Appendix A: experimental data are provided when the boiler
worked stably, respectively, at 650MW, 800MW, and
850MW. More details can be viewed in Tables A1–A3. Table
A1: the steady-state experimental data of 650MW. Table A2:
the steady-state experimental data of 800MW. Table A3: the
steady-state experimental data of 850MW. Appendix B:
Table B1: lower and upper bounds of inputs of the rdCV-
MO-NPLS model at 650MW. Table B2: lower and upper
bounds of inputs of the rdCV-MO-NPLS model at 800MW.
Table B3: lower and upper bounds of inputs of the rdCV-
MO-NPLS model at 850MW. (Supplementary Materials)
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