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The term double-fault networked control system means that sensor faults and actuator faults may occur simultaneously in
networked control systems. The issues of modelling and an 𝐻∞ guaranteed cost fault-tolerant control in a piecewise delay method
for double-fault networked control systems are investigated. The time-varying properties of sensor faults and actuator faults are
modelled as two time-varying and bounded parameters. Based on the linear matrix inequality (LMI) approach, an 𝐻∞ guaranteed
cost fault-tolerant controller in a piecewise delay method is proposed to guarantee the reliability and stability for the double-fault
networked control systems. Simulations are included to demonstrate the theoretical results of the proposed method.

1. Introduction

Networked control systems (NCS) are frequently encoun-
tered in many fields of applications due to their suitable
and flexible structure [1–9]. However, in practical NCS, there
inevitably exists time delay and data packet dropouts because
of the introduction of the communication network [10–13].
Sensor faults and actuator faults also occur easily at the device
level because of its large scale and complicated structure [14],
which can have a negative impact on the system, such as
performance decline and instability. Thus, guaranteed cost
and fault-tolerant control of networked control systems has
become a new popular issue in the network control field.

To achieve stability requirements concerning sensor
faults or actuator faults, fault-tolerant control has been
investigated in many works [15–26]. Based on the Lyapunov
stability theorem, a methodology for the design of fault-
tolerant control systems for chemical plants with distributed
interconnected processing units was presented by N. H. El-
Farra and A. P. D. Gani [15]. Z. Qu and C. M. Ihlefeld devised
a fault-tolerant robust controller for a class of nonlinear

uncertain systems considering possible sensor faults and
developed a robust measure to identify the stability- and
performance-vulnerable failures [16]. Based on the integrity
control theory, a robust fault-tolerant controller for NCSwith
actuator faults was discussed by Y. N. Guo [17].The diagnosis
of actuator component faults and fault-tolerant control for a
class of networked control systems using adaptive observer
techniques was investigated in [18]. A switched model based
on probability for NCS was proposed in [19] to research
issues of fault-tolerant control when actuators age or become
partially disabled.

Recently, guaranteed cost control that can guarantee the
stability of a system and make it meet a certain performance
indicator has become popular in NCS [4–7, 27–29]. Stability
guaranteed active fault-tolerant control against actuators
failures in NCS was addressed by S. Li [27]. X. Y. Luo and
M. J. Shang proposed the so-called guaranteed cost active
fault-tolerant controller (AFTC) strategy in [28]. The issue of
guaranteed cost reliable control with regional pole constraint
against actuator failures was investigated by H. M. Soliman
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in [6]. In [7], X. Li investigated the issue of integrity against
actuator faults for NCS under variable-period sampling, in
which the existence conditions of a guaranteed cost fault-
tolerant control law was tested in terms of the Lyapunov sta-
bility theory. The resilient reliable dissipativity performance
index for systems including actuator faults and probabilistic
time delay signals is investigated by authors in [30, 31]. Unfor-
tunately, all the previously mentioned literature investigated
the guaranteed cost fault-tolerant control for NCS of single-
faults (just considering the condition that only actuator faults
occur or sensor faults occur). Few articles examine the
double-fault issue. In practical application, it is easy for the
sensors and actuators to become faulty simultaneously when
the NCS works in a poor environment and is affected by
external disturbance. Improving the control performance of
NCS when double-faults occur is important. This motivates
us to investigate 𝐻∞ guaranteed cost fault-tolerant control
of double-fault NCS, which is a necessary but challenge
task.

This paper develops a 𝐻∞ guaranteed cost fault-tolerant
control for a double-fault NCS to guarantee its stability. The
time-varying properties of sensor faults and actuator faults
are modelled as two time-varying and bounded parameter
matrices, and the networked control system is built as a
linear closed-loop system with transmission delays and data
packet dropouts. Different from [30, 31], here it is necessary
to deal with two dynamic matrices. One of them is located
at the left hand side of the gain matrix, and the other one is
located at the right hand side of the gain matrix. This brings
challenges to searching a feasible control gain. To solve such
problem, a piecewise delaymethod is proposed to analyse the
delay-dependent faulty system for reducing the conservatism.
The delay falling in each subinterval is treated as a case.
For different cases, different weighted technology is used to
derive the 𝐻∞ guaranteed cost fault-tolerant condition, and
the controller parameter for this NCS is obtained by solving
several sets of LMIs. Compared with [26, 32–34], the delay
considered in this paper can be continuously changed with
time.

Notation. 𝑅𝑛 denotes the n-dimensional Euclidean space.The
superscript “𝑇” stands for matrix transposition.The notation𝑋 > 0 means that the matrix 𝑋 is a real positive definite
matrix. 𝐼 is the identity matrix of appropriate dimensions.[ 𝑋 𝑍∗ 𝑌 ] denotes a symmetricmatrix, where*denotes the entries
implied by symmetry.

2. Modelling of Double-Fault NCS

The linear control plant of NCS with uncertain parameters
and external disturbance can be expressed as

𝑥󸀠 (𝑡) = (𝐴 + Δ𝐴) 𝑥 (𝑡) + (𝐵 + Δ𝐵) 𝑢 (𝑡) + 𝐻𝜔 (𝑡)
𝑦 (𝑡) = 𝐶𝑥 (𝑡) (1)

where 𝑥(𝑡) ∈ 𝑅𝑛, 𝑢(𝑡) ∈ 𝑅𝑚, 𝑦(𝑡) ∈ 𝑅𝑟, and 𝜔(𝑡) ∈𝐿2[0, ∞) ∈ 𝑅𝑛 represent state value, input, output, and
external disturbance, respectively. Separately, 𝐴, 𝐵, 𝐻, and𝐶 are matrices with appropriate dimensions; Δ𝐴 and Δ𝐵 are
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Figure 1: The structure of double-fault NCS.

matrices with uncertain time-varying parameters, satisfying[Δ𝐴, Δ𝐵] = 𝐷𝐹(𝑡)[𝐸1, 𝐸2]; 𝐹(𝑡) is an unknown matrix
function with Legesgue measurable properties, satisfying𝐹𝑇(𝑡)𝐹(𝑡) ≤ 𝐼; and 𝐷, 𝐸1, and 𝐸2 are constant matrices with
appropriate dimensions.

For the convenience of the later formulation, two con-
cepts can be initially introduced.

Definition 1. The sensor faults and actuator faults could occur
simultaneously, that is, there may be two types of faults at one
time; this kind of fault is called a double-fault.

Definition 2. The sensor faults and actuator faults do not
occur simultaneously, that is, there is only one type of fault
at one time; this kind of fault is called a single-fault.

The structure of a double-fault NCS is shown in Figure 1.
Transmission delays induced by the network are the sensor-
to-controller delay 𝜏𝑠𝑐 and the controller-to-actuator delay𝜏𝑐𝑎. These two delays can be combined when the feedback
controller is static. The state of the system is assumed to
be completely measurable. A piecewise continuous feedback
controller, which is realized by a zero-order hold (ZOH), is
employed:

𝑢 (𝑡) = 𝐾𝑥̃ (𝑡 − 𝜏𝑐𝑎) , 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1) , 𝑘 = 1, 2, ⋅ ⋅ ⋅ (2)

where 𝐾 is the state feedback gain matrix to be designed and𝑡𝑘 is the sampling instant.
Considering that sensor faults may occur, 𝑥𝐹𝑖 (𝑡) is used

to represent the data from the 𝑖-th sensor. In this paper, we
consider faults that include outage and loss of effectiveness. If
the 𝑖-th sensor is an outage, the corresponding sampling work
is interrupted, and the sampling data keeps the default value𝑥𝐹𝑖 (𝑡) = 0. If the 𝑖-th sensor loses effectiveness, the sampling
data is inaccurate and nonzero. We denote the sensor fault
model as

𝑥𝐹𝑖 (𝑡) = 𝑔𝑖 (𝑡) 𝑥𝑖 (𝑡) , 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛 (3)

where 𝑔𝑖(𝑡) is the time-varying sensor efficiency factor, 𝑔𝑖 = 1
represents that the 𝑖-th sensor is normal, 𝑔𝑖 = 0 represents
that its fault is outage, and 0 < 𝑔𝑖 < 1 or 𝑔𝑖 > 1 represents
that its fault is loss of effectiveness.The upper bound of sensor
efficiency factor 𝑔𝑖(𝑡) is denoted by a constant 𝑔𝑢𝑖 satisfying
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𝑔𝑢𝑖 > 1, while its lower bound is denoted by a constant 𝑔𝑙𝑖
satisfying 0 ≤ 𝑔𝑙𝑖 < 1.

Denoting 𝑥𝐹(𝑡) = [𝑥𝐹1 (𝑡) 𝑥𝐹2 (𝑡) ⋅ ⋅ ⋅ 𝑥𝐹𝑛 (𝑡)]𝑇, we have
𝑥𝐹 (𝑡) = 𝐺 (𝑡) 𝑥 (𝑡) (4)

where 𝐺(𝑡) = diag(𝑔1(𝑡), 𝑔2(𝑡), ⋅ ⋅ ⋅ , 𝑔𝑛(𝑡)) is the sensor fault
indicator matrix. Correspondingly, its upper bound matrix is𝐺𝑢 = diag(𝑔𝑢1, 𝑔𝑢2, ⋅ ⋅ ⋅ , 𝑔𝑢𝑛), and its lower bound matrix is𝐺𝑙 = diag(𝑔𝑙1, 𝑔𝑙2, ⋅ ⋅ ⋅ , 𝑔𝑙𝑛).

Data packet dropouts in NCS are also unavoidable
because of limited bandwidth. Considering that data packet
dropouts may occur, the network is modelled as a switch.
When the switch is located in 𝑆1 position, the data packet
containing 𝑥(𝑡𝑘) is transmitted, and the controller utilizes the
updated data. When it is located in the 𝑆2 position, the data
packet dropouts occur, and the controller uses the old data.
For a fixed sampling period ℎ, the dynamics of the switch can
be expressed as follows:

The NCS with no packet dropout at time 𝑡𝑘:
𝑥̃ (𝑡) = 𝐺 (𝑡𝑘 − 𝜏𝑠𝑐) 𝑥 (𝑡𝑘 − 𝜏𝑠𝑐) (5)

The NCS with one packet dropout at time 𝑡𝑘:
𝑥̃ (𝑡) = 𝐺 (𝑡𝑘 − 𝜏𝑠𝑐 − ℎ) 𝑥 (𝑡𝑘 − 𝜏𝑠𝑐 − ℎ) (6)

The NCS with 𝑑𝑘 ∈ 𝑍+ packet dropout at time 𝑡𝑘:
𝑥̃ (𝑡) = 𝐺 (𝑡𝑘 − 𝜏𝑠𝑐 − 𝑑𝑘ℎ) 𝑥 (𝑡𝑘 − 𝜏𝑠𝑐 − 𝑑𝑘ℎ) . (7)

Because the feedback controller is static, (2) can be expressed
as

𝑢 (𝑡)
= 𝐾𝐺 (𝑡𝑘 − 𝜏𝑐𝑎 − 𝜏𝑠𝑐 − 𝑑𝑘ℎ) 𝑥 (𝑡𝑘 − 𝜏𝑐𝑎 − 𝜏𝑠𝑐 − 𝑑𝑘ℎ) (8)

Considering that actuator faults may also occur, 𝑢𝐹𝑗 (𝑡) is
used to represent the signal from the 𝑗-th actuator. Similarly,
we denote the actuator fault model as

𝑢𝐹𝑖 (𝑡) = 𝛿𝑗 (𝑡) 𝑢𝑗 (𝑡) , 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑚 (9)

where 𝛿𝑗(𝑡) is the time-varying actuator efficiency factor, 𝛿𝑗 =1 represents that the 𝑗-th actuator is normal, 𝛿𝑗 = 0 represents
that its fault is an outage, and 0 < 𝛿𝑗 < 1 or 𝛿𝑗 > 1 denotes that
its fault is a loss of effectiveness. The upper bound of sensor
efficiency factor 𝛿𝑗(𝑡) is denoted by a constant 𝛿𝑢𝑗 satisfying𝛿𝑢𝑗 > 1, while its lower bound is denoted by a constant 𝛿𝑙𝑗
satisfying 0 ≤ 𝛿𝑙𝑗 < 1.

Denoting the faulty control signal 𝑢𝐹(𝑡) =
[𝑢𝐹1 (𝑡) 𝑢𝐹2 (𝑡) ⋅ ⋅ ⋅ 𝑢𝐹𝑚(𝑡) ]𝑇, we can obtain the fault-tolerant
control law as

𝑢𝐹 (𝑡) = Θ (𝑡) 𝑢 (𝑡) = Θ (𝑡) 𝐾𝐺 (𝑡𝑘 − 𝜏𝑐𝑎 − 𝜏𝑠𝑐 − 𝑑𝑘ℎ)
⋅ 𝑥 (𝑡𝑘 − 𝜏𝑐𝑎 − 𝜏𝑠𝑐 − 𝑑𝑘ℎ) (10)

whereΘ(𝑡) = diag(𝛿1(𝑡), 𝛿2(𝑡), ⋅ ⋅ ⋅ , 𝛿𝑚(𝑡)) is the actuator fault
indicator matrix. Correspondingly, its upper bound matrix is

Θ𝑢 = diag(𝛿𝑢1, 𝛿𝑢2, ⋅ ⋅ ⋅ , 𝛿𝑢𝑚), and its lower bound matrix isΘ𝑙 = diag(𝛿𝑙1, 𝛿𝑙2, ⋅ ⋅ ⋅ , 𝛿𝑙𝑚).
Let 𝜂(𝑡) = 𝑡 − 𝑡𝑘 + 𝜏𝑐𝑎 + 𝜏𝑠𝑐 + 𝑑𝑘ℎ; 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1); (10) can

now be expressed as follows:

𝑢𝐹 (𝑡) = Θ (𝑡) 𝑢 (𝑡) = Θ (𝑡) 𝐾𝐺 (𝑡 − 𝜂 (𝑡)) 𝑥 (𝑡𝑘 − 𝜂 (𝑡)) (11)

Obviously, the delay part 𝜂(𝑡) may vary with time 𝑡, and it
satisfies

𝜂𝑚 ≤ 𝜂 (𝑡) = 𝑡 − 𝑡𝑘 + 𝜏𝑐𝑎 + 𝜏𝑠𝑐 + 𝑑𝑘ℎ ≤ 𝜂𝑀
𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1) (12)

From the upper bounds𝐺𝑢, Θ𝑢 of fault indicator matrices
and lower bounds 𝐺𝑙, Θ𝑙 of fault indicator matrices, the
nonsingular mean-value matrices are separately obtained as

𝐺0 = diag (𝑔01, 𝑔02, ⋅ ⋅ ⋅ , 𝑔0𝑛) , 𝑔0𝑖 = 𝑔𝑢𝑖 + 𝑔𝑙𝑖2
Θ0 = diag (𝛿01, 𝛿02, ⋅ ⋅ ⋅ , 𝛿0𝑚) , 𝛿0𝑗 = 𝛿𝑢𝑗 + 𝛿𝑙𝑗2

(13)

Moreover, the following two time-varying matrices are
introduced:

𝐿 (𝑡 − 𝜂 (𝑡))
= diag (𝑙1 (𝑡 − 𝜂 (𝑡)) , 𝑙2 (𝑡 − 𝜂 (𝑡)) , ⋅ ⋅ ⋅ , 𝑙𝑛 (𝑡 − 𝜂 (𝑡))) ,

𝑙𝑖 (𝜂 (𝑡)) = 𝑔𝑖 (𝜂 (𝑡)) − 𝑔0𝑖𝑔0𝑖
Γ (𝑡) = diag (𝜆1 (𝑡) , 𝜆2 (𝑡) , ⋅ ⋅ ⋅ , 𝜆𝑚 (𝑡)) ,
𝜆𝑖 (𝑡) = 𝛿𝑗 (𝑡) − 𝛿0𝑗𝛿0𝑗

(14)

Obviously, we have

−1 ≤ 𝑔𝑙𝑖 − 𝑔0𝑖𝑔0𝑖 ≤ 𝑙𝑖 (𝑡 − 𝜂 (𝑡)) = 𝑔𝑖 − 𝑔0𝑖𝑔0𝑖 ≤ 𝑔𝑢𝑖 − 𝑔0𝑖𝑔0𝑖
= 𝑔𝑢𝑖 − 𝑔𝑙𝑖𝑔𝑢𝑖 + 𝑔𝑙𝑖 ≤ 1 (15)

Similarly, we have

−1 ≤ 𝜆𝑗 (𝑡) ≤ 1 (16)

In expressions from (13) to (16), 𝑖 and 𝑗 meet 𝑖 = 1, 2, ..., 𝑛,𝑗 = 1, 2, ..., 𝑚. Based on (15) and (16), we have

−𝐼𝑛×𝑛 ≤ 𝐿 (𝑡 − 𝜂 (𝑡)) ≤ 𝐼𝑛×𝑛
−𝐼𝑚×𝑚 ≤ Γ (𝑡) ≤ 𝐼𝑚×𝑚 (17)

From on (14), the following can be obtained:

𝑔𝑖 (𝑡 − 𝜂 (𝑡)) = 𝑔0𝑖 (1 + 𝑙𝑖 (𝑡 − 𝜂 (𝑡))) , 𝑖 = 1, 2 ⋅ ⋅ ⋅ , 𝑛;
𝛿𝑖 (𝑡) = 𝛿0𝑖 (1 + 𝜆𝑖 (𝑡)) , 𝑗 = 1, 2 ⋅ ⋅ ⋅ , 𝑚. (18)
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Naturally, the time-varying fault indicator matrices can be
rewritten as

𝐺 (𝑡 − 𝜂 (𝑡)) = 𝐺0 (𝐼 + 𝐿 (𝑡 − 𝜂 (𝑡))Θ (𝑡) = Θ0 (𝐼 + Γ (𝑡)) (19)

Inserting (19) into (11), we have

𝑢 (𝑡)
= Θ0 (𝐼 + Γ (𝑡)) 𝐾𝐺0 (𝐼 + 𝐿 (𝑡 − 𝜂 (𝑡))) 𝑥 (𝑡 − 𝜂 (𝑡)) (20)

Then, the new model of double-fault NCS can be obtained as
follows:

𝑥󸀠 (𝑡) = (𝐴 + Δ𝐴) 𝑥 (𝑡) + (𝐵 + Δ𝐵) Θ0 (𝐼 + Γ (𝑡))
⋅ 𝐾𝐺0 (𝐼 + 𝐿 (𝑡 − 𝜂 (𝑡))) 𝑥 (𝑡 − 𝜂 (𝑡)) + 𝐻𝜔 (𝑡)

𝑦 (𝑡) = 𝐶𝑥 (𝑡)
(21)

Remark 3. The networked control systems in faulty case can
be modelled as system (21) with the effects of time-varying
delay 𝜂(𝑡)whose upper bound and lower bound are described
in (12). Unlike the previousmodels, [17, 21, 27, 35], this model
is related to both sensor faults and actuator faults, the faults
are time-varying, which are reflected by the time-varying
parameters 𝐿(𝑡 − 𝜂(𝑡)) and Γ(𝑡). From (17), we undoubtedly
know the time-varying parameter 𝐿(𝑡 − 𝜂(𝑡)) satisfies 𝐿𝑇𝐿 =𝐿2 ≤ 𝐼, while the parameter Γ(𝑡) satisfies Γ𝑇Γ = Γ2 ≤ 𝐼.
Remark 4. From the descriptions of faults matrices, we
undoubtedly know if 𝑙𝑖 = 1/𝑔0𝑖 − 1 (𝑖 = 1, 2 ⋅ ⋅ ⋅ , 𝑛), we can
obtain 𝑔𝑖 = 1 and 𝐺0(𝐼 + 𝐿(𝑡 − 𝜂(𝑡))) = 𝐼, and then model (21)
is an actuator fault model. Similarly, if 𝜆𝑖 = (𝛿𝑗 −𝛿0𝑗)/𝛿0𝑗 (𝑗 =1, 2 ⋅ ⋅ ⋅ , 𝑚), we can obtain 𝛿𝑗 = 1 and Θ0(𝐼 + Γ(𝑡)) = 𝐼, and
then model (21) represents a sensor fault model. Therefore,
model (21) of a double-fault NCS contains cases of single-
faults, and the single-faults are a special formof double-faults.

In the following section, a fundamental preliminary result
is presented to guarantee the performance of a double-fault
NCS based on the delay information.

3. Performance Analysis of Double-Fault NCS

For the system model (21) established in Section 2, the cost
function is given as follows:

𝐽 = ∫∞
0

[𝑥𝑇 (𝑡) 𝑆1𝑥 (𝑡) + 𝑢𝑇 (𝑡) 𝑆2𝑢 (𝑡)] 𝑑𝑡
= ∫∞
0

{𝑥𝑇 (𝑡) 𝑆1𝑥 (𝑡)
+ [Θ0 (𝐼 + Γ) 𝐾𝐺0 (𝐼 + 𝐿) 𝑥 (𝑡 − 𝜂 (𝑡))]𝑇
⋅ 𝑆2Θ0 (𝐼 + Γ) 𝐾𝐺0 (𝐼 + 𝐿) 𝑥 (𝑡 − 𝜂 (𝑡))} 𝑑𝑡

(22)

where 𝑆1 and 𝑆2 are symmetric positive definite matrices.

Definition 5. Formodel (21) and its cost function (22), if there
exists a control gain matrix 𝐾 satisfying the conditions

(1) the closed-loop system is asymptotically stable when𝜔(𝑡) = 0;(2) for any zero initial condition and any nonzero vector𝜔(𝑡) ∈ 𝐿2[0, ∞), given 𝛾 > 0, the output 𝑦(𝑡) satisfies‖𝑦(𝑡)‖2 ≤ 𝛾‖𝜔(𝑡)‖2;(3) there exists a constant 𝐽0, and the cost function defined
as (22) satisfies 𝐽∞ ≤ 𝐽0,

then matrix 𝐾 is the 𝐻∞ guaranteed cost control gain of
double-faults NCS.

To analyse the stability of the system expediently, the
following lemmas are introduced.

Lemma 6 (see [36, 37]). For any matrices𝑊,𝑀,𝑁, 𝐹(𝑡) with
FT𝐹 ≤ 𝐼, and any scalar 𝜀 > 0, the inequality holds as

𝑊 + 𝑀𝐹 (𝑡) 𝑁 + 𝑁𝑇𝐹𝑇 (𝑡) 𝑀𝑇
≤ 𝑊 + 𝜀𝑀𝑀𝑇 + 𝜀−1𝑁𝑇𝑁 (23)

Lemma 7 (see [38]). If 𝜂1 ≤ 𝜂(𝑡) ≤ 𝜂2, for any matrices Π1,Π2, and Φ, the following inequalities are equivalent:(1) [𝜂(𝑡) − 𝜂1]Π1 + [𝜂2 − 𝜂(𝑡)]Π2 + Φ < 0;(2) [𝜂2 − 𝜂1]Π1 + Φ < 0, [𝜂2 − 𝜂1]Π2 + Φ < 0.
The fundamental preliminary result is presented in the

following theorem.

Theorem 8. Given symmetric positive definite matrices 𝑆1 and𝑆2, a set of constant 𝜂𝑚, 𝜂𝑀, 𝜌1 > 0, 𝜌2 > 0, and 𝛼 =(𝜂𝑀 − 𝜂𝑚)/2. If there exists a set of symmetric positive definite
matrices 𝑅𝑖 (𝑖 = 1, 2, 3) and matrix 𝑃 > 0, as well as matrices𝑀𝑙𝛽, 𝑀2𝛽, 𝑁𝑙𝛽, 𝑁2𝛽, 𝑈𝛽 (𝛽 = 1, 2, 3, 4, 5, 6, 7, 8), 𝐾, and a set
of constants, 𝜀 > 0 and 𝛾 > 0, satisfying the LMIs

[[[[[[[[[[[[[[[[
[

−𝜀𝐼 0 0 0 𝜀𝐷̃𝑇
∗ − (𝑆1 + 𝐶𝑇𝐶)−1 0 0 𝐼̃∗ ∗ −𝑆2−1 0 Σ̃∗ ∗ ∗ −Γ𝑙 Ω𝑙𝑘∗ ∗ ∗ ∗ Φ̃𝑙∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗

󳨀→

0 0 0 0 00 0 0 0 00 Θ0𝐾𝐺 0 Θ0 00 0 0 0 0
𝐸̃𝑇 Θ̃ 𝐼̃0 Δ 𝐾̃𝑇−𝜀𝐼 𝐸2Θ0𝐾𝐺0 0 𝐸2Θ0 0∗ −𝜌1𝑈5 0 0 (𝐾𝐺0)𝑇∗ ∗ −𝜌1−1𝑈5−1 0 0∗ ∗ ∗ −𝜌2𝐼 0∗ ∗ ∗ ∗ −𝜌2−1𝐼

]]]]]]]]]]]]]]]]
]

< 0

𝑙 = 1, 2; 𝑘 = 1, 2

(24)

where
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Φ̃1 =

[[[[[[[[[[[[[[[[[[
[

−𝑅1 + 𝑈1𝐴 + (𝑈1𝐴)𝑇 𝑅1 + (𝑈2𝐴)𝑇 + 𝑀11 (𝑈3𝐴)𝑇 − 𝑁11 (𝑈4𝐴)𝑇
∗ −𝑅1 + 𝑀12 + 𝑀12𝑇 𝑀13𝑇 − 𝑁12 𝑀14𝑇
∗ ∗ −𝑅3𝛼 − 𝑁12 − 𝑁12𝑇 𝑅3𝛼 − 𝑁14𝑇
∗ ∗ ∗ −𝑅3𝛼∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

󳨀→

𝑃 − 𝑈1 + (𝑈5𝐴)𝑇 Ψ̃1 + (𝑈6𝐴)𝑇 (𝑈7𝐴)𝑇 + (𝑈8𝐴)𝑇 + 𝑈1𝐻 0
−𝑈2 + 𝑀15𝑇 Ψ̃2 + 𝑀16𝑇 𝑈2𝐻 + 𝑀17𝑇 + 𝑀18𝑇 0
−𝑈3 − 𝑁15𝑇 Ψ̃3 − 𝑁16𝑇 𝑈3𝐻 − 𝑁17𝑇 − 𝑁18𝑇 0

−𝑈4 Ψ̃4 𝑈4𝐻 0
𝜂𝑚2𝑅1 + 𝛼 (𝑅2 + 𝑅3) − 𝑈5 − 𝑈5𝑇 Ψ̃5 − 𝑈6𝑇 𝑈5𝐻 − 𝑈7𝑇 − 𝑈8𝑇 0

∗ Ψ̃6 Ξ 0
∗ ∗ 𝑈7𝐻 + 𝑈8𝐻 + (𝑈7𝐻)𝑇 + (𝑈8𝐻)𝑇 0
∗ ∗ ∗ −𝛾2𝐼

]]]]]]]]]]]]]]]]]]
]

Φ̃2 =

[[[[[[[[[[[[[[[[[[[
[

−𝑅1 + 𝑈1𝐴 + (𝑈1𝐴)𝑇 𝑅1 + (𝑈2𝐴)𝑇 (𝑈3𝐴)𝑇 + 𝑀21 (𝑈4𝐴)𝑇 − 𝑁21
∗ −𝑅1 − 𝑅2𝛼 𝑅2𝛼 + 𝑀22 −𝑁22
∗ ∗ −𝑅2𝛼 + 𝑀23 + 𝑀23𝑇 𝑀24𝑇 − 𝑁23
∗ ∗ ∗ −𝑁24 − 𝑁24𝑇∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

󳨀→

𝑃 − 𝑈1 + (𝑈5𝐴)𝑇 Ψ̃1󸀠 + (𝑈6𝐴)𝑇 (𝑈7𝐴)𝑇 + (𝑈8𝐴)𝑇 + 𝑈1𝐻 0
−𝑈2 Ψ̃2󸀠 𝑈2𝐻 0

−𝑈3 + 𝑀25𝑇 Ψ̃3󸀠 + 𝑀26𝑇 𝑈3𝐻 + 𝑀27𝑇 + 𝑀28𝑇 0
−𝑈4 − 𝑁25𝑇 Ψ̃4󸀠 − 𝑁26𝑇 𝑈4𝐻 − 𝑁27𝑇 − 𝑁28𝑇 0

𝜂𝑚2𝑅1 + 𝛼 (𝑅2 + 𝑅3) − 𝑈5 − 𝑈5𝑇 Ψ̃5󸀠 − 𝑈6𝑇 𝑈5𝐻 − 𝑈7𝑇 − 𝑈8𝑇 0
∗ Ψ̃6󸀠 Ξ󸀠 0
∗ ∗ 𝑈7𝐻 + 𝑈8𝐻 + (𝑈7𝐻)𝑇 + (𝑈8𝐻)𝑇 0
∗ ∗ ∗ −𝛾2𝐼

]]]]]]]]]]]]]]]]]]]]
]

Γ1 = 𝛼𝑅2,
Γ2 = 𝛼𝑅3,

Ω11 = 𝛼𝑀1𝑇,
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Ω12 = 𝛼𝑁1𝑇,
Ω21 = 𝛼𝑀2𝑇,
Ω22 = 𝛼𝑁2𝑇,

𝑀1𝑇 = [𝑀11𝑇 𝑀12𝑇 𝑀13𝑇 𝑀14𝑇 𝑀15𝑇 𝑀16𝑇 𝑀17𝑇 𝑀18𝑇] ;
𝑀2𝑇 = [𝑀21𝑇 𝑀22𝑇 𝑀23𝑇 𝑀24𝑇 𝑀25𝑇 𝑀26𝑇 𝑀27𝑇 𝑀28𝑇] ;

𝑁1𝑇 = [𝑁11𝑇 𝑁12𝑇 𝑁13𝑇 𝑁14𝑇 𝑁15𝑇 𝑁16𝑇 𝑁17𝑇 𝑁18𝑇] ;
𝑁2𝑇 = [𝑁21𝑇 𝑁22𝑇 𝑁23𝑇 𝑁24𝑇 𝑁25𝑇 𝑁26𝑇 𝑁27𝑇 𝑁28𝑇] ;

Ξ = (𝑈7𝐵Θ0𝐾𝐺0)𝑇 + (𝑈8𝐵Θ0𝐾𝐺0)𝑇 + 𝑈6𝐻 − 𝑀17𝑇 − 𝑀18𝑇 + 𝑁17𝑇 + 𝑁18𝑇;
Ψ̃𝑖 = 𝑈𝑖𝐵Θ0𝐾𝐺0 + 𝑁1𝑖 − 𝑀1𝑖, (𝑖 = 1, 2, 3, 4, 5) ;

Ψ̃6 = 𝑈6𝐵Θ0𝐾𝐺0 + (𝑈6𝐵Θ0𝐾𝐺0)𝑇 − 𝑀16 − 𝑀16𝑇 + 𝑁16 + 𝑁16𝑇;
Ξ󸀠 = (𝑈7𝐵Θ0𝐾𝐺0)𝑇 + (𝑈8𝐵Θ0𝐾𝐺0)𝑇 + 𝑈6𝐻 − 𝑀27𝑇 − 𝑀28𝑇 + 𝑁27𝑇 + 𝑁28𝑇;

Ψ̃𝑖󸀠 = 𝑈𝑖𝐵Θ0𝐾𝐺0 + 𝑁2𝑖 − 𝑀2𝑖, (𝑖 = 1, 2, 3, 4, 5) ;
Ψ̃󸀠6 = 𝑈6𝐵Θ0𝐾𝐺0 + (𝑈6𝐵Θ0𝐾𝐺0) 𝑇 − 𝑀26 − 𝑀26𝑇 + 𝑁26 + 𝑁26𝑇;

𝐷̃ = [(𝑈1𝐷)𝑇 (𝑈2𝐷)𝑇 (𝑈3𝐷)𝑇 (𝑈4𝐷)𝑇 (𝑈5𝐷)𝑇 (𝑈6𝐷)𝑇 (𝑈7𝐷)𝑇 + (𝑈8𝐷)𝑇 0]𝑇 ;
𝐸̃ = [𝐸1 0 0 0 0 𝐸2Θ0𝐾𝐺0 0 0] ;

𝐼̃0 = [0 0 0 0 0 𝐼 0 0]𝑇 ;
𝐼̃ = [𝐼 0 0 0 0 0 0 0] ;

Θ̃ = [(𝑈1𝐵Θ0𝐾𝐺0)𝑇 (𝑈2𝐵Θ0𝐾𝐺0)𝑇 (𝑈3𝐵Θ0𝐾𝐺0)𝑇 (𝑈4𝐵Θ0𝐾𝐺0)𝑇 (𝑈5𝐵Θ0𝐾𝐺0)𝑇 (𝑈6𝐵Θ0𝐾𝐺0)𝑇 (𝑈7𝐵𝐾𝐺0)𝑇 + (𝑈8𝐵𝐾𝐺0)𝑇 0]𝑇 ;
Δ = [(𝑈1𝐵Θ0)𝑇 (𝑈2𝐵Θ0)𝑇 (𝑈3𝐵Θ0)𝑇 (𝑈4𝐵Θ0)𝑇 (𝑈5𝐵Θ0)𝑇 (𝑈6𝐵Θ0)𝑇 (𝑈7𝐵Θ0)𝑇 + (𝑈8𝐵Θ0)𝑇 0]𝑇 ;

𝐾̃ = [0 0 0 0 0 𝐾𝐺0 0 0] ;
Σ̃ = [0 0 0 0 0 Θ0𝐾𝐺0 0 0] ,

(25)

then model (21) is asymptotically stable with the 𝐻∞ norm
bound 𝛾. In addition, the upper bound 𝐽0 of cost function 𝐽 is
given as

𝐽0 = 𝑥𝑇 (0𝑡) 𝑃𝑥 (0) + 𝜂𝑚 ∫0
−𝜂𝑚

∫0
𝑠

𝑥󸀠𝑇 (𝜏) 𝑅1𝑥󸀠 (𝜏) 𝑑𝑠𝑑𝜏
+ ∫−𝜂𝑚
−𝜂1

∫0
𝑠

𝑥󸀠𝑇 (𝜏) 𝑅2𝑥󸀠 (𝜏) 𝑑𝑠𝑑𝜏
+ ∫−𝜂1
−𝜂𝑀

∫0
𝑠

𝑥󸀠𝑇 (𝜏) 𝑅3𝑥󸀠 (𝜏) 𝑑𝑠𝑑𝜏

(26)

Proof. First, with the definition of 𝛼 = (𝜂𝑀 − 𝜂𝑚)/2 and 𝜂1 =𝜂𝑚+𝛼, the interval of delay is distributed into two subintervals
as follows:

𝜂 (𝑡) ∈ [𝜂𝑚, 𝜂𝑀] = [𝜂𝑚, 𝜂1] ∪ [𝜂1, 𝜂𝑀] . (27)

Then, we consider the Lyapunov-Krasovskii functional as
follows:

V (𝑡) = 𝑥𝑇 (𝑡) 𝑃𝑥 (𝑡)
+ 𝜂𝑚 ∫𝑡

𝑡−𝜂𝑚

∫𝑡
𝑠

𝑥󸀠𝑇 (𝜏) 𝑅1𝑥󸀠 (𝜏) 𝑑𝑠𝑑𝜏
+ ∫𝑡−𝜂𝑚
𝑡−𝜂1

∫𝑡
𝑠

𝑥󸀠𝑇 (𝜏) 𝑅2𝑥󸀠 (𝜏) 𝑑𝑠𝑑𝜏
+ ∫𝑡−𝜂1
𝑡−𝜂𝑀

∫𝑡
𝑠

𝑥󸀠𝑇 (𝜏) 𝑅3𝑥󸀠 (𝜏) 𝑑𝑠𝑑𝜏

(28)

where matrix 𝑃 satisfies 𝑃 > 0 and 𝑅𝑖 (𝑖 = 1, 2, 3)
are symmetric positive definite matrices with appropriate
dimensions. For the convenience of writing, we denote 𝐿 =𝐿(𝑡 − 𝜂(𝑡)) and Γ = Γ(𝑡) in the following expressions.
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Calculating the derivative of Lyapunov-Krasovskii function
and based on (21), we have

V󸀠 (𝑡) = 2𝑥𝑇 (𝑡) 𝑃𝑥󸀠 (𝑡) + 𝜂2𝑚𝑥󸀠𝑇 (𝑡) 𝑅1𝑥󸀠 (𝑡)
− 𝜂𝑚 ∫𝑡

𝑡−𝜂𝑚

𝑥󸀠𝑇 (𝑠) 𝑅1𝑥󸀠 (𝑠) 𝑑𝑠 + (𝜂1 − 𝜂𝑚) 𝑥󸀠𝑇 (𝑡)
⋅ 𝑅2𝑥󸀠 (𝑡) − ∫𝑡−𝜂𝑚

𝑡−𝜂1

𝑥󸀠𝑇 (𝑠) 𝑅2𝑥󸀠 (𝑠) 𝑑𝑠 + (𝜂𝑀 − 𝜂1)
⋅ 𝑥󸀠𝑇 (𝑡) 𝑅3𝑥󸀠 (𝑡) − ∫𝑡−𝜂1

𝑡−𝜂𝑀

𝑥󸀠𝑇 (𝑠) 𝑅3𝑥󸀠 (𝑠) 𝑑𝑠
+ 2 [𝜀𝑇 (𝑡) 𝜔𝑇 (𝑡)] 𝑈 [(𝐴 + Δ𝐴) 𝑥 (𝑡)
+ (𝐵 + Δ𝐵) Θ0 (𝐼 + Γ) 𝐾𝐺0 (𝐼 + 𝐿) 𝑥 (𝑡 − 𝜂 (𝑡))
+ 𝐻𝜔 (𝑡) − 𝑥󸀠 (𝑡)]

(29)

where V󸀠(𝑡) = lim sup𝛿󳨀→0+(1/𝛿)[V(𝑡 + 𝛿) − V(𝑡)] [39].
Based on Jessen’s inequality, we have

− 𝜂𝑚 ∫𝑡
𝑡−𝜂𝑚

𝑥󸀠𝑇 (𝑠) 𝑅1𝑥󸀠 (𝑠) 𝑑𝑠 ≤ [𝑥𝑇 (𝑡) , 𝑥𝑇 (𝑡 − 𝜂𝑚)]
⋅ [−𝑅1 𝑅1𝑅1 −𝑅1] [ 𝑥 (𝑡)

𝑥 (𝑡 − 𝜂𝑚)]
(30)

− ∫𝑡−𝜂𝑚
𝑡−𝜂1

𝑥󸀠𝑇 (𝑠) 𝑅2𝑥󸀠 (𝑠) 𝑑𝑠
≤ 1𝛼 [𝑥𝑇 (𝑡 − 𝜂𝑚) , 𝑥𝑇 (𝑡 − 𝜂1)]
⋅ [−𝑅2 𝑅2𝑅2 −𝑅2] [𝑥 (𝑡 − 𝜂𝑚)𝑥 (𝑡 − 𝜂1)]

(31)

− ∫𝑡−𝜂1
𝑡−𝜂𝑀

𝑥󸀠𝑇 (𝑠) 𝑅3𝑥󸀠 (𝑠) 𝑑𝑠
≤ 1𝛼 [𝑥𝑇 (𝑡 − 𝜂1) , 𝑥𝑇 (𝑡 − 𝜂𝑀)]
⋅ [−𝑅3 𝑅3𝑅3 −𝑅3] [ 𝑥 (𝑡 − 𝜂1)𝑥 (𝑡 − 𝜂𝑀)]

(32)

where 𝛼 = (𝜂𝑀 − 𝜂𝑚)/2. For the convenience of the following
discussion, we define

𝜀𝑇 (𝑡) = [𝑥𝑇 (𝑡) , 𝑥𝑇 (𝑡 − 𝜂𝑚) , 𝑥𝑇 (𝑡 − 𝜂1) , 𝑥𝑇 (𝑡 − 𝜂𝑀)
⋅ 𝑥󸀠𝑇 (𝑡) , 𝑥𝑇 (𝑡 − 𝜂 (𝑡)) , 𝜔𝑇 (𝑡)] ; (33)

Case 1. If 𝜂(𝑡) ∈ [𝜂𝑚, 𝜂1], weighted technology based on the
principle of Newton-Leibniz is introduced as follows:

2 [𝜀𝑇 (𝑡) 𝜔𝑇 (𝑡)] 𝑀1 [𝑥 (𝑡 − 𝜂𝑚) − 𝑥 (𝑡 − 𝜂 (𝑡))
− ∫𝑡−𝜂𝑚
𝑡−𝜂(𝑡)

𝑥󸀠𝑇 (𝑠) 𝑑𝑠] = 0
(34)

and

2 [𝜀𝑇 (𝑡) 𝜔𝑇 (𝑡)] 𝑁1 [𝑥 (𝑡 − 𝜂 (𝑡)) − 𝑥 (𝑡 − 𝜂1)
− ∫𝑡−𝜂(𝑡)
𝑡−𝜂1

𝑥󸀠𝑇 (𝑠) 𝑑𝑠] = 0
(35)

Because 𝑅2 > 0, we have
− 2 [𝜀𝑇 (𝑡) 𝜔𝑇 (𝑡)] 𝑀1 ∫𝑡−𝜂𝑚

𝑡−𝜂(𝑡)
𝑥󸀠 (𝑠) 𝑑𝑠 ≤ (𝜂 (𝑡) − 𝜂𝑚)

⋅ [𝜀𝑇 (𝑡) 𝜔𝑇 (𝑡)] 𝑀1𝑅−12 𝑀1𝑇 [𝜀𝑇 (𝑡) 𝜔𝑇 (𝑡)]𝑇
+ ∫𝑡−𝜂𝑚
𝑡−𝜂(𝑡)

𝑥󸀠𝑇 (𝑠) 𝑅2𝑥󸀠 (𝑠) 𝑑𝑠
(36)

and

− 2 [𝜀𝑇 (𝑡) 𝜔𝑇 (𝑡)] 𝑁1 ∫𝑡−𝜂(𝑡)
𝑡−𝜂1

𝑥󸀠 (𝑠) 𝑑𝑠 ≤ (𝜂1 − 𝜂 (𝑡))
⋅ [𝜀𝑇 (𝑡) 𝜔𝑇 (𝑡)] 𝑁1𝑅−12 𝑁1𝑇 [𝜀𝑇 (𝑡) 𝜔𝑇 (𝑡)]𝑇
+ ∫𝑡−𝜂(𝑡)
𝑡−𝜂1

𝑥󸀠𝑇 (𝑠) 𝑅2𝑥󸀠 (𝑠) 𝑑𝑠
(37)

Therefore,

− 2 [𝜀𝑇 (𝑡) 𝜔𝑇 (𝑡)] 𝑀1 ∫𝑡−𝜂𝑚
𝑡−𝜂(𝑡)

𝑥󸀠 (𝑠) 𝑑𝑠
− 2 [𝜀𝑇 (𝑡) 𝜔𝑇 (𝑡)] 𝑁1 ∫𝑡−𝜂(𝑡)

𝑡−𝜂1

𝑥󸀠 (𝑠) 𝑑𝑠
≤ (𝜂 (𝑡) − 𝜂𝑚)
⋅ [𝜀𝑇 (𝑡) 𝜔𝑇 (𝑡)] 𝑀1𝑅−12 𝑀1𝑇 [𝜀𝑇 (𝑡) 𝜔𝑇 (𝑡)]𝑇
+ (𝜂1 − 𝜂 (𝑡))
⋅ [𝜀𝑇 (𝑡) 𝜔𝑇 (𝑡)] 𝑁1𝑅−12 𝑁1𝑇 [𝜀𝑇 (𝑡) 𝜔𝑇 (𝑡)]𝑇
+ ∫𝑡−𝜂𝑚
𝑡−𝜂1

𝑥󸀠𝑇 (𝑠) 𝑅2𝑥󸀠 (𝑠) 𝑑𝑠

(38)

In addition, 𝑦𝑇(𝑡)𝑦(𝑡)−𝛾2𝜔𝑇(𝑡)𝜔(𝑡) both on the left and right
sides of equality (29) and 𝑥𝑇(𝑡)𝑆1𝑥(𝑡) + [Θ0(𝐼 + Γ)𝐾𝐺0(𝐼 +𝐿)𝑥(𝑡 − 𝜂(𝑡))]𝑇𝑆2Θ0(𝐼 + Γ)𝐾𝐺0(𝐼 + 𝐿)𝑥(𝑡 − 𝜂(𝑡)) on the right
of the equal sign “=”, and then inserting (30), (32), (34), (35),
(38) to the obtained inequality, we have

V󸀠 (𝑡) + 𝑦𝑇 (𝑡) 𝑦 (𝑡) − 𝛾2𝜔𝑇 (𝑡) 𝜔 (𝑡)
≤ [𝜀𝑇 (𝑡) 𝜔𝑇 (𝑡)] Φ1 [𝜀𝑇 (𝑡) 𝜔𝑇 (𝑡)]𝑇
+ (𝜂 (𝑡) − 𝜂𝑚)
⋅ [𝜀𝑇 (𝑡) 𝜔𝑇 (𝑡)] 𝑀1𝑅−12 𝑀1𝑇 [𝜀𝑇 (𝑡) 𝜔𝑇 (𝑡)]𝑇
+ (𝜂1 − 𝜂 (𝑡))
⋅ [𝜀𝑇 (𝑡) 𝜔𝑇 (𝑡)] 𝑁1𝑅−12 𝑁1𝑇 [𝜀𝑇 (𝑡) 𝜔𝑇 (𝑡)]𝑇

(39)

where
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Φ1 =

[[[[[[[[[[[[[[[[[[[
[

Ξ1 𝑅1 + [𝑈2 (𝐴 + Δ𝐴)]𝑇 + 𝑀11 [𝑈3 (𝐴 + Δ𝐴)]𝑇 − 𝑁11 [𝑈4 (𝐴 + Δ𝐴)]𝑇
∗ −𝑅1 + 𝑀12 + 𝑀12𝑇 𝑀13𝑇 − 𝑁12 𝑀14𝑇
∗ ∗ −𝑅3𝛼 − 𝑁12 − 𝑁12𝑇 𝑅3𝛼 − 𝑁14𝑇
∗ ∗ ∗ −𝑅3𝛼∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

󳨀→

𝑃 − 𝑈1 + [𝑈5 (𝐴 + Δ𝐴)]𝑇 Ψ1 + [𝑈6 (𝐴 + Δ𝐴)]𝑇 [𝑈7 (𝐴 + Δ𝐴)]𝑇 + [𝑈8 (𝐴 + Δ𝐴)]𝑇 + 𝑈1𝐻 0
−𝑈2 + 𝑀15𝑇 Ψ2 + 𝑀16𝑇 𝑈2𝐻 + 𝑀17𝑇 + 𝑀18𝑇 0
−𝑈3 − 𝑁15𝑇 Ψ3 − 𝑁16𝑇 𝑈3𝐻 − 𝑁17𝑇 − 𝑁18𝑇 0

−𝑈4 Ψ4 𝑈4𝐻 0
𝜂𝑚2𝑅1 + 𝛼 (𝑅2 + 𝑅3) − 𝑈5 − 𝑈5𝑇 Ψ5 − 𝑈6𝑇 𝑈5𝐻 − 𝑈7𝑇 − 𝑈8𝑇 0

∗ Ψ6 Ξ2 0
∗ ∗ 𝑈7𝐻 + 𝑈8𝐻 + (𝑈7𝐻)𝑇 + (𝑈8𝐻)𝑇 0
∗ ∗ ∗ −𝛾2𝐼

]]]]]]]]]]]]]]]]]]
]

Ξ1 = −𝑅1 + 𝑈1 (𝐴 + Δ𝐴) + [𝑈1 (𝐴 + Δ𝐴)]𝑇 + 𝐶𝑇𝐶 + 𝑆1,
Ξ2 = [𝑈7 (𝐵 + Δ𝐵) Θ0 (𝐼 + Γ) 𝐾𝐺0 (𝐼 + 𝐿)]𝑇 + [𝑈8 (𝐵 + Δ𝐵) Θ0 (𝐼 + Γ) 𝐾𝐺0 (𝐼 + 𝐿)]𝑇 + 𝑈6𝐻 − 𝑀17𝑇 − 𝑀18𝑇 + 𝑁17𝑇

+ 𝑁18𝑇,
Ψ𝑖 = 𝑈𝑖 (𝐵 + Δ𝐵) Θ0 (𝐼 + Γ) 𝐾𝐺0 (𝐼 + 𝐿) + 𝑁1𝑖 − 𝑀1𝑖, (𝑖 = 1, 2, 3, 4, 5) ;
Ψ6 = 𝑈6 (𝐵 + Δ𝐵) Θ0 (𝐼 + Γ) 𝐾𝐺0 (𝐼 + 𝐿)

+ [𝑈6 (𝐵 + Δ𝐵) Θ0 (𝐼 + Γ) 𝐾𝐺0 (𝐼 + 𝐿)]𝑇 [Θ0 (𝐼 + Γ) 𝐾𝐺0 (𝐼 + 𝐿)]𝑇 𝑆2Θ0 (𝐼 + Γ) 𝐾𝐺0 (𝐼 + 𝐿) − 𝑀16 − 𝑀16𝑇 + 𝑁16
+ 𝑁16𝑇

(40)

if
Φ1 + (𝜂 (𝑡) − 𝜂𝑚) 𝑀1𝑅−12 𝑀1𝑇

+ (𝜂1 − 𝜂 (𝑡)) 𝑁1𝑅−12 𝑁1𝑇 < 0 (41)

Next, we need to acquire the inequality (24) through a
transformation based on inequality (41), which is equivalent
to the following inequalities by applying the theory given in
Lemma 7 and the Schur complement, also used byD. Yue [38]
in the previous study:

[− (𝜂1 − 𝜂𝑚)−1 𝑅2 𝑀1𝑇∗ Φ1 ] < 0 (42)

[− (𝜂1 − 𝜂𝑚)−1 𝑅2 𝑁1𝑇∗ Φ1 ] < 0 (43)

Premultiplying and postmultiplying the inequalities above by
diag((𝜂1 − 𝜂𝑚)𝐼, 𝐼), we have

[−𝛼𝑅2 Ω1𝑘
∗ Φ1 ] < 0 (44)

Applying the theory of the Schur complement to inequality
(44), we have

[[[[[[
[

− (𝑆1 + 𝐶𝑇𝐶)−1 0 0 𝐼̃
∗ −𝑆2−1 0 Σ
∗ ∗ −𝛼𝑅2 Ω1𝑘
∗ ∗ ∗ Φ󸀠1

]]]]]]
]

< 0 (45)

where
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Φ1󸀠 =

[[[[[[[[[[[[[[[[[[[
[

Ξ1󸀠 𝑅1 + [𝑈2 (𝐴 + Δ𝐴)]𝑇 + 𝑀11 [𝑈3 (𝐴 + Δ𝐴)]𝑇 − 𝑁11 [𝑈4 (𝐴 + Δ𝐴)]𝑇
∗ −𝑅1 + 𝑀12 + 𝑀12𝑇 𝑀13𝑇 − 𝑁12 𝑀14𝑇
∗ ∗ −𝑅3𝛼 − 𝑁12 − 𝑁12𝑇 𝑅3𝛼 − 𝑁14𝑇
∗ ∗ ∗ −𝑅3𝛼∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

󳨀→

𝑃 − 𝑈1 + [𝑈5 (𝐴 + Δ𝐴)]𝑇 Ψ1 + [𝑈6 (𝐴 + Δ𝐴)]𝑇 [𝑈7 (𝐴 + Δ𝐴)]𝑇 + [𝑈8 (𝐴 + Δ𝐴)]𝑇 + 𝑈1𝐻 0
−𝑈2 + 𝑀15𝑇 Ψ2 + 𝑀16𝑇 𝑈2𝐻 + 𝑀17𝑇 + 𝑀18𝑇 0
−𝑈3 − 𝑁15𝑇 Ψ3 − 𝑁16𝑇 𝑈3𝐻 − 𝑁17𝑇 − 𝑁18𝑇 0−𝑈4 Ψ4 𝑈4𝐻 0

𝜂𝑚2𝑅1 + 𝛼 (𝑅2 + 𝑅3) − 𝑈5 − 𝑈5𝑇 Ψ5 − 𝑈6𝑇 𝑈5𝐻 − 𝑈7𝑇 − 𝑈8𝑇 0∗ Ψ6󸀠 Ξ2 0
∗ ∗ 𝑈7𝐻 + 𝑈8𝐻 + (𝑈7𝐻)𝑇 + (𝑈8𝐻)𝑇 0∗ ∗ ∗ −𝛾2𝐼

]]]]]]]]]]]]]]]
]

Ξ1󸀠 = −𝑅1 + 𝑈1 (𝐴 + Δ𝐴) + [𝑈1 (𝐴 + Δ𝐴)]𝑇
Ψ6󸀠 = 𝑈6 (𝐵 + Δ𝐵) Θ0 (𝐼 + Γ) 𝐾𝐺0 (𝐼 + 𝐿) + [𝑈6 (𝐵 + Δ𝐵) Θ0 (𝐼 + Γ) 𝐾𝐺0 (𝐼 + 𝐿)]𝑇 − 𝑀16 − 𝑀16𝑇 + 𝑁16 + 𝑁16𝑇,

Σ = [0 0 0 0 0 Θ0 (𝐼 + Γ) 𝐾𝐺0 (𝐼 + 𝐿) 0 0] .

(46)

Inequality (44) can be written as

[[[[
[

− (𝑆1 + 𝐶𝑇𝐶)−1 0 0 𝐼̃∗ −𝑆2−1 0 Σ∗ ∗ −𝛼𝑅2 Ω1𝑘∗ ∗ ∗ Φ󸀠󸀠1
]]]]
]

+ [[[
[

000̃𝐷
]]]
]

𝐹 [[[
[

000̂
𝐸𝑇

]]]
]

𝑇

+ [[[
[

000̂
𝐸𝑇

]]]
]

𝐹𝑇[[[[
[

000
𝐷̃

]]]]
]

𝑇

< 0
(47)

where

Φ1󸀠󸀠 =

[[[[[[[[[[[[[[[[[[[
[

−𝑅1 + 𝑈1𝐴 + (𝑈1𝐴)𝑇 𝑅1 + (𝑈2𝐴)𝑇 + 𝑀11 (𝑈3𝐴)𝑇 − 𝑁11 (𝑈4𝐴)𝑇
∗ −𝑅1 + 𝑀12 + 𝑀12𝑇 𝑀13𝑇 − 𝑁12 𝑀14𝑇
∗ ∗ −𝑅3𝛼 − 𝑁12 − 𝑁12𝑇 𝑅3𝛼 − 𝑁14𝑇
∗ ∗ ∗ −𝑅3𝛼∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

󳨀→
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𝑃 − 𝑈1 + (𝑈5𝐴)𝑇 Ψ1󸀠󸀠 + (𝑈6𝐴)𝑇 (𝑈7𝐴)𝑇 + (𝑈8𝐴)𝑇 + 𝑈1𝐻 0
−𝑈2 + 𝑀15𝑇 Ψ2󸀠󸀠 + 𝑀16𝑇 𝑈2𝐻 + 𝑀17𝑇 + 𝑀18𝑇 0
−𝑈3 − 𝑁15𝑇 Ψ3󸀠󸀠 − 𝑁16𝑇 𝑈3𝐻 − 𝑁17𝑇 − 𝑁18𝑇 0

−𝑈4 Ψ4󸀠 𝑈4𝐻 0
𝜂𝑚2𝑅1 + 𝛼 (𝑅2 + 𝑅3) − 𝑈5 − 𝑈5𝑇 Ψ5󸀠󸀠 − 𝑈6𝑇 𝑈5𝐻 − 𝑈7𝑇 − 𝑈8𝑇 0

∗ Ψ6󸀠󸀠 Ξ2󸀠󸀠 0
∗ ∗ 𝑈7𝐻 + 𝑈8𝐻 + (𝑈7𝐻)𝑇 + (𝑈8𝐻)𝑇 0
∗ ∗ ∗ −𝛾2𝐼

]]]]]]]]]]]]]]]]]]
]

Ξ2󸀠󸀠 = [𝑈7𝐵Θ0 (𝐼 + Γ) 𝐾𝐺0 (𝐼 + 𝐿)]𝑇 + [𝑈8𝐵Θ0 (𝐼 + Γ) 𝐾𝐺0 (𝐼 + 𝐿)]𝑇 + 𝑈6𝐻 − 𝑀17𝑇 − 𝑀18𝑇 + 𝑁17𝑇 + 𝑁18𝑇,
Ψ𝑖󸀠󸀠 = 𝑈𝑖𝐵Θ0 (𝐼 + Γ) 𝐾𝐺0 (𝐼 + 𝐿) + 𝑁1𝑖 − 𝑀1𝑖, (𝑖 = 1, 2, 3, 4, 5) ;

Ψ6󸀠 = 𝑈6𝐵Θ0 (𝐼 + Γ) 𝐾𝐺0 (𝐼 + 𝐿) + [𝑈6𝐵Θ0 (𝐼 + Γ) 𝐾𝐺0 (𝐼 + 𝐿)]𝑇 − 𝑀16 − 𝑀16𝑇 + 𝑁16 + 𝑁16𝑇
𝐸̂ = [𝐸1 0 0 0 0 𝐸2Θ0 (𝐼 + Γ) 𝐾𝐺0 (𝐼 + 𝐿) 0 0] .

(48)

With the definition of scalar 𝜀 > 0, we apply the theory given
in Lemma 6 to (47), also used by Y. Wang and L. Xie [37],
in which the uncertain matrix 𝐹 can be eliminated, and a
sufficient condition of (47) is obtained.

[[[[[[
[

− (𝑆1 + 𝐶𝑇𝐶)−1 0 0 𝐼̃
∗ −𝑆2−1 0 Σ
∗ ∗ −𝛼𝑅2 Ω1𝑘
∗ ∗ ∗ Φ󸀠󸀠1

]]]]]]
]

+ 𝜀 [[[[[
[

0
𝐷
0
𝐷̃

]]]]]
]

[[[[[
[

0
𝐷
0
𝐷̃

]]]]]
]

𝑇

+ 𝜀−1
[[[[[[
[

0
0
0

𝐸̂𝑇

]]]]]]
]

[[[[[[
[

0
0
0

𝐸̂𝑇

]]]]]]
]

𝑇

< 0

(49)

Applying the Schur complement to inequality (49), we have

[[[[[[[[[[[[[
[

−𝜀𝐼 0 0 0 𝜀𝐷̃𝑇 0
∗ − (𝑆1 + 𝐶𝑇𝐶)−1 0 0 𝐼̃ 0
∗ ∗ −𝑆2−1 0 Σ 0
∗ ∗ ∗ −𝛼𝑅2 Ω1𝑘 0
∗ ∗ ∗ ∗ Φ󸀠󸀠1 𝐸̂𝑇
∗ ∗ ∗ ∗ ∗ −𝜀𝐼

]]]]]]]]]]]]]
]

< 0

(50)

There exists 𝜌1 > 0, 𝜌2 > 0. Based on (17) and Remark 3 in
Section 2, we know that 𝐿𝑇𝐿 ≤ 𝐼 and Γ𝑇Γ ≤ 𝐼. According

to expressions (47), (49), and (50), we obviously know that𝑈5 > 0. Using Lemma 6 again, we have

Θ0 (𝐼 + Γ) 𝐾𝐺0𝐿 + [Θ0 (𝐼 + Γ) 𝐾𝐺0𝐿]𝑇
≤ 𝜌1−1Θ0 (𝐼 + Γ) 𝐾𝐺0𝑈5−1 [Θ0 (𝐼 + Γ) 𝐾𝐺0]𝑇

+ 𝜌1𝑈5
(51)

and

Θ0Γ𝐾𝐺0 + (Θ0Γ𝐾𝐺0)𝑇
≤ 𝜌2−1Θ0Θ0𝑇 + 𝜌2 (𝐾𝐺0)𝑇𝐾𝐺0

(52)

Based on inequalities (51), (52) and the Schur complement,
we know inequality (24) is a sufficient condition of inequality
(50), while inequality (50) is equivalent to inequality (41).
Therefore, we can undoubtedly obtain inequality (24) as
a sufficient condition of inequality (41). Thus, based on
inequality (39) and (41), we know(1) if𝜔(𝑡) ≡ 0, obviously, we have V󸀠(𝑡) < 0, so system (21)
is asymptotically stable;(2) if 𝑥(0) ≡ 0, we know V(0) = 0. In addition, it can be
obtained that V(∞) ≥ 0.

Therefore,

∫∞
0

V󸀠 (𝑡) + 𝑦𝑇 (𝑡) 𝑦 (𝑡) − 𝛾2𝜔𝑇 (𝑡) 𝜔 (𝑡) 𝑑𝑡
= V (∞) + ∫∞

0
𝑦𝑇 (𝑡) 𝑦 (𝑡) − 𝛾2𝜔𝑇 (𝑡) 𝜔 (𝑡) 𝑑𝑡 < 0

(53)

Thus,

∫∞
0

𝑦𝑇 (𝑡) 𝑦 (𝑡) < ∫∞
0

𝛾2𝜔𝑇 (𝑡) 𝜔 (𝑡) 𝑑𝑡 (54)
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Because 𝜔(𝑡) ∈ 𝐿2[0, ∞), we have
󵄩󵄩󵄩󵄩𝑦 (𝑡)󵄩󵄩󵄩󵄩 ≤ 𝛾 ‖𝜔 (𝑡)‖𝑇 . (55)

It is known that model (21) is asymptotically stable with the𝐻∞ norm bound 𝛾.
Moreover, according to (39) and (41), we have

V󸀠 (𝑡) ≤ −𝑥𝑇 (𝑡) 𝑆1𝑥 (𝑡)
− [Θ0 (𝐼 + Γ) 𝐾𝐺0 (𝐼 + 𝐿) 𝑥 (𝑡 − 𝜂 (𝑡))]𝑇

⋅ 𝑆2Θ0 (𝐼 + Γ) 𝐾𝐺0 (𝐼 + 𝐿) 𝑥 (𝑡 − 𝜂 (𝑡))
(56)

Through the integral operation, it can be determined that𝐽 ≤ V(0). In addition, by inserting 𝑡 = 0 into the Lyapunov-
Krasovskii function shown as expression (28), the upper
bound of cost function 𝐽 can be obtained and shown as
expression (26). Therefore, the theorem is verified if 𝑙 = 1.
Case 2. If 𝜂(𝑡) ∈ [𝜂1, 𝜂𝑀], weighted technology based on the
principle of Newton-Leibniz is introduced as follows:

2 [𝜀𝑇 (𝑡) 𝜔𝑇 (𝑡)] 𝑀2 [𝑥 (𝑡 − 𝜂1) − 𝑥 (𝑡 − 𝜂 (𝑡))
− ∫𝑡−𝜂1
𝑡−𝜂(𝑡)

𝑥󸀠𝑇 (𝑠) 𝑑𝑠] = 0
(57)

2 [𝜀𝑇 (𝑡) 𝜔𝑇 (𝑡)] 𝑁2 [𝑥 (𝑡 − 𝜂 (𝑡)) − 𝑥 (𝑡 − 𝜂𝑀)
− ∫𝑡−𝜂(𝑡)
𝑡−𝜂𝑀

𝑥󸀠𝑇 (𝑠) 𝑑𝑠] = 0
(58)

Because 𝑅3 > 0, we have

− 2 [𝜀𝑇 (𝑡) 𝜔𝑇 (𝑡)] 𝑀2 ∫𝑡−𝜂1
𝑡−𝜂(𝑡)

𝑥󸀠 (𝑠) 𝑑𝑠 ≤ (𝜂 (𝑡) − 𝜂1)
⋅ [𝜀𝑇 (𝑡) 𝜔𝑇 (𝑡)] 𝑀2𝑅−13 𝑀2𝑇 [𝜀𝑇 (𝑡) 𝜔𝑇 (𝑡)]𝑇
+ ∫𝑡−𝜂1
𝑡−𝜂(𝑡)

𝑥󸀠𝑇 (𝑠) 𝑅3𝑥󸀠 (𝑠) 𝑑𝑠
(59)

− 2 [𝜀𝑇 (𝑡) 𝜔𝑇 (𝑡)] 𝑁2 ∫𝑡−𝜂(𝑡)
𝑡−𝜂𝑀

𝑥󸀠 (𝑠) 𝑑𝑠 ≤ (𝜂𝑀 − 𝜂 (𝑡))
⋅ [𝜀𝑇 (𝑡) 𝜔𝑇 (𝑡)] 𝑁2𝑅−13 𝑁1𝑇 [𝜀𝑇 (𝑡) 𝜔𝑇 (𝑡)]𝑇
+ ∫𝑡−𝜂(𝑡)
𝑡−𝜂𝑀

𝑥󸀠𝑇 (𝑠) 𝑅3𝑥󸀠 (𝑠) 𝑑𝑠
(60)

Therefore,

− 2 [𝜀𝑇 (𝑡) 𝜔𝑇 (𝑡)] 𝑀2 ∫𝑡−𝜂1
𝑡−𝜂(𝑡)

𝑥󸀠 (𝑠) 𝑑𝑠

− 2 [𝜀𝑇 (𝑡) 𝜔𝑇 (𝑡)] 𝑁2 ∫𝑡−𝜂(𝑡)
𝑡−𝜂𝑀

𝑥󸀠 (𝑠) 𝑑𝑠
≤ (𝜂 (𝑡) − 𝜂1)
⋅ [𝜀𝑇 (𝑡) 𝜔𝑇 (𝑡)] 𝑀2𝑅−13 𝑀2𝑇 [𝜀𝑇 (𝑡) 𝜔𝑇 (𝑡)]𝑇
+ (𝜂𝑀 − 𝜂 (𝑡))
⋅ [𝜀𝑇 (𝑡) 𝜔𝑇 (𝑡)] 𝑁2𝑅−13 𝑁2𝑇 [𝜀𝑇 (𝑡) 𝜔𝑇 (𝑡)]𝑇

+ ∫𝑡−𝜂1
𝑡−𝜂𝑀

𝑥󸀠𝑇 (𝑠) 𝑅3𝑥󸀠 (𝑠) 𝑑𝑠

(61)

In addition, 𝑦𝑇(𝑡)𝑦(𝑡)−𝛾2𝜔𝑇(𝑡)𝜔(𝑡) both on the left and right
sides of equality (29) and 𝑥𝑇(𝑡)𝑆1𝑥(𝑡) + [Θ0(𝐼 + Γ)𝐾𝐺0(𝐼 +𝐿)𝑥(𝑡−𝜂(𝑡))]𝑇𝑆2Θ0(𝐼+Γ)𝐾𝐺0(𝐼+𝐿)𝑥(𝑡−𝜂(𝑡)) on the right side
of equal sign “=”. By inserting (30), (31), (57), (58), and (61)
into the obtained inequality, the item − ∫𝑡−𝜂1

𝑡−𝜂𝑀
𝑥󸀠𝑇(𝑠)𝑅3𝑥󸀠(𝑠)𝑑𝑠

can be offset, while the item − ∫𝑡−𝜂𝑚
𝑡−𝜂1

𝑥󸀠𝑇(𝑠)𝑅2𝑥󸀠(𝑠)𝑑𝑠 is offset
in Case 1. Then, in the same methods of transformation as
Case 1, the inequality (24) when 𝑙 = 2 can be obtained.
Therefore, the proof is complete.

Remark 9. In the two different cases, a variational weighting
matrix and Jessen’s inequalities are used to derive the 𝐻∞
guaranteed cost fault-tolerant condition of the system, in
which more delay information is employed to reduce the
conservatism.

The next section will provide sufficient conditions for
designing the guaranteed cost fault-tolerant control for a
double-fault NCS.

4. Guaranteed Cost Fault-Tolerant Control of
Double-Fault NCS

Inequality (24) is not linear with respect to the gain matrices
of the controller, so it is needs to be reformulated into LMIs
via a change of variables.

Theorem 10. Given symmetric positive definite matrices 𝑆1
and 𝑆2, a set of constant 𝜂𝑚, 𝜂𝑀, 𝜌1 > 0, 𝜌2 > 0, 𝜆𝑖 (𝑖 = from
1 to 7), and 𝛼 = (𝜂𝑀 − 𝜂𝑚)/2. If there exists a set of symmetric
positive definite matrices 𝑅̃𝑗 (𝑗 = 1, 2, 3),𝑋, andmatrix 𝑃̃ > 0,
as well as matrices 𝑀̃1𝛽, 𝑀̃2𝛽, 𝑁̃1𝛽, 𝑁̃2𝛽, (𝛽 =from 1 to 8),
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𝑌, and a set of constants, 𝜀 > 0 and 𝜇 > 0, satisfying the
LMIs

[[[[[[[[[[[[[[[[[[[[[[[[[
[

−𝜀𝐼 0 0 0 𝜀𝐷𝑇
∗ − (𝑆1 + 𝐶𝑇𝐶)−1 0 0 Π
∗ ∗ −𝑆2−1 0 Σ
∗ ∗ ∗ −Γ𝑙 Ω𝑙𝑘
∗ ∗ ∗ ∗ Φ𝑙∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

0 0 0 0 0
0 0 0 0 0
0 Θ0𝑌 0 Θ0 0
0 0 0 0 0

𝐸𝑇 Θ 𝑋 Δ 𝑌𝑇
−𝜀𝐼 𝐸2Θ0𝑌 0 𝐸2Θ0 0
∗ −𝜌1𝑋𝑇 0 0 𝑌𝑇
∗ ∗ −𝜌1−1𝑋 0 0
∗ ∗ ∗ −𝜌2𝐼 0
∗ ∗ ∗ ∗ −𝜌2−1𝐼

]]]]]]]]]]]]]]]]]]]]]
]

< 0

𝑙 = 1, 2; 𝑘 = 1, 2
(62)

where

Φ̆1 =

[[[[[[[[[[[[[[[[[[[[
[

−𝑅̃1 + 𝜆1𝐴𝑋𝑇 + 𝜆1𝑋𝐴𝑇 𝑅̃1 + 𝜆2𝑋𝐴𝑇 + 𝑀̃11 𝜆3𝑋𝐴𝑇 − 𝑁̃11 𝜆4𝑋𝐴𝑇
∗ −𝑅̃1 + 𝑀̃12 + 𝑀̃12𝑇 𝑀̃13𝑇 − 𝑁̃12 𝑀̃14𝑇
∗ ∗ −𝑅̃3𝛼 − 𝑁̃12 − 𝑁̃12𝑇 𝑅̃3𝛼 − 𝑁̃14𝑇
∗ ∗ ∗ −𝑅̃3𝛼∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

󳨀→

𝑃̃ − 𝜆1𝑋𝑇 + 𝑋𝐴𝑇 Ψ1 + 𝜆5𝑋𝐴𝑇 𝜆6𝑋𝐴𝑇 + 𝜆7𝑋𝐴𝑇 + 𝜆1𝐻𝑋𝑇 0
−𝜆2𝑋𝑇 + 𝑀̃15𝑇 Ψ2 + 𝑀̃16𝑇 𝜆2𝐻𝑋𝑇 + 𝑀̃17𝑇 + 𝑀̃18𝑇 0
−𝜆3𝑋𝑇 − 𝑁̃15𝑇 Ψ3 − 𝑁̃16𝑇 𝜆3𝐻𝑋𝑇 − 𝑁̃17𝑇 − 𝑁̃18𝑇 0

−𝜆4𝑋𝑇 Ψ4 𝜆4𝐻𝑋𝑇 0
𝜂𝑚2𝑅̃1 + 𝛼 (𝑅̃2 + 𝑅̃3) − 𝑋𝑇 − 𝑋 Ψ5 − 𝜆5𝑋 𝐻𝑋𝑇 − 𝜆6𝑋 − 𝜆7𝑋 0

∗ Ψ6 Ξ 0
∗ ∗ 𝜆6𝐻𝑋𝑇 + 𝜆7𝐻𝑋𝑇 + 𝜆6𝑋𝐻𝑇 + 𝜆7𝑋𝐻𝑇 0
∗ ∗ ∗ −𝜇𝐼

]]]]]]]]]]]]]]]]
]

Φ̃2 =

[[[[[[[[[[[[[[[[[[[[
[

−𝑅̃1 + 𝜆1𝐴𝑋𝑇 + 𝜆1𝑋𝐴𝑇 𝑅̃1 + 𝜆2𝑋𝐴𝑇 𝜆3𝑋𝐴𝑇 + 𝑀̃21 𝜆4𝑋𝐴𝑇 − 𝑁̃21
∗ −𝑅̃1 − 𝑅̃2𝛼 𝑅̃2𝛼 + 𝑀̃22 −𝑁̃22
∗ ∗ −𝑅̃2𝛼 + 𝑀̃23 + 𝑀̃23𝑇 𝑀̃24𝑇 − 𝑁̃23
∗ ∗ ∗ −𝑁̃24 − 𝑁̃24𝑇∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

󳨀→
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𝑃̃ − 𝜆1𝑋𝑇 + 𝑋𝐴𝑇 Ψ1󸀠 + 𝜆5𝑋𝐴𝑇 𝜆6𝑋𝐴𝑇 + 𝜆7𝑋𝐴𝑇 + 𝜆1𝐻𝑋𝑇 0
−𝜆2𝑋𝑇 Ψ2󸀠 𝜆2𝐻𝑋𝑇 0

−𝜆3𝑋𝑇 + 𝑀̃25𝑇 Ψ3󸀠 + 𝑀̃26𝑇 𝜆3𝐻𝑋𝑇 + 𝑀̃27𝑇 + 𝑀̃28𝑇 0
−𝜆4𝑋𝑇 − 𝑁̃25𝑇 Ψ4󸀠 − 𝑁̃26𝑇 𝜆4𝐻𝑋𝑇 − 𝑁̃27𝑇 − 𝑁̃28𝑇 0

𝜂𝑚2𝑅̃1 + 𝛼 (𝑅̃2 + 𝑅̃3) − 𝑋 − 𝑋𝑇 Ψ5󸀠 − 𝜆5𝑋 𝐻𝑋𝑇 − 𝜆6𝑋 − 𝜆7𝑋 0
∗ Ψ̆6󸀠 Ξ󸀠 0
∗ ∗ 𝜆6𝐻𝑋𝑇 + 𝜆7𝐻𝑋𝑇 + 𝜆6𝑋𝐻𝑇 + 𝜆7𝑋𝐻𝑇 0
∗ ∗ ∗ −𝜇𝐼

]]]]]]]]]]]]]]]]]]]]
]

Γ1 = 𝛼𝑅2
Γ1 = 𝛼𝑅̃2,
Γ2 = 𝛼𝑅̆3,

Ω11 = 𝛼𝑀̃1𝑇,
Ω12 = 𝛼𝑁̃1𝑇,
Ω21 = 𝛼𝑀̃2𝑇,
Ω̆22 = 𝛼𝑁̃2𝑇,

𝑀̃1𝑇 = [𝑀̃11𝑇 𝑀̃12𝑇 𝑀̃13𝑇 𝑀̃14𝑇 𝑀̃15𝑇 𝑀̃16𝑇 𝑀̃17𝑇 𝑀̃18𝑇] ;
𝑀̃2𝑇 = [𝑀̃21𝑇 𝑀̃22𝑇 𝑀̃23𝑇 𝑀̃24𝑇 𝑀̃25𝑇 𝑀̃26𝑇 𝑀̃27𝑇 𝑀̃28𝑇] ;

𝑁̃1𝑇 = [𝑁̃11𝑇 𝑁̃12𝑇 𝑁̃13𝑇 𝑁̃14𝑇 𝑁̃15𝑇 𝑁̃16𝑇 𝑁̃17𝑇 𝑁̃18𝑇] ;
𝑁2𝑇 = [𝑁̃21𝑇 𝑁̃22𝑇 𝑁̃23𝑇 𝑁̃24𝑇 𝑁̃25𝑇 𝑁̃26𝑇 𝑁̃27𝑇 𝑁̃28𝑇] ;

Ξ = 𝜆6 (𝐵Θ0𝑌)𝑇 + 𝜆7 (𝐵Θ0𝑌)𝑇 + 𝜆5𝐻𝑋𝑇 − 𝑀̃17𝑇 − 𝑀̃18𝑇 + 𝑁̃17𝑇 + 𝑁̃18𝑇;
Ψ𝑖 = 𝜆𝑖𝐵Θ0𝑌 + 𝑁̃1𝑖 − 𝑀̃1𝑖, (𝑖 = 1, 2, 3, 4) ;

Ψ5 = 𝐵Θ0𝑌 + 𝑁̃1𝑖 − 𝑀̃1𝑖,
Ψ6 = 𝜆5𝐵Θ0𝑌 + 𝜆5 (𝐵Θ0𝑌)𝑇 − 𝑀16 − 𝑀16𝑇 + 𝑁16 + 𝑁16𝑇;

Ξ󸀠 = 𝜆6 (𝐵Θ0𝑌)𝑇 + 𝜆7 (𝐵Θ0𝑌)𝑇 + 𝜆5𝐻𝑋𝑇 − 𝑀̃27𝑇 − 𝑀̃28𝑇 + 𝑁̃27𝑇 + 𝑁̃28𝑇;
Ψ𝑖󸀠 = 𝜆𝑖𝐵Θ0𝑌 + 𝑁̃2𝑖 − 𝑀̃2𝑖, (𝑖 = 1, 2, 3, 4) ;

Ψ5󸀠 = 𝐵Θ0𝑌 + 𝑁̃2𝑖 − 𝑀̃2𝑖;
Ψ6󸀠 = 𝜆5𝐵Θ0𝑌 + 𝜆5 (𝐵Θ0𝑌)𝑇 − 𝑀̃26 − 𝑀̃26𝑇 + 𝑁̃26 + 𝑁̃26𝑇;

𝐷 = [𝜆1𝐷𝑇 𝜆2𝐷𝑇 𝜆3𝐷𝑇 𝜆4𝐷𝑇 𝐷𝑇 𝜆5𝐷𝑇 𝜆6𝐷𝑇 + 𝜆7𝐷𝑇 0]𝑇 ;
𝐸 = [𝐸1𝑋𝑇 0 0 0 0 𝐸2Θ0𝑌 0 0] ;

𝑋 = [0 0 0 0 0 𝑋𝑇 0 0]𝑇 ;
Π = [𝑋𝑇 0 0 0 0 0 0 0] ;
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Θ = [(𝜆1𝐵Θ0𝑌)𝑇 (𝜆2𝐵Θ0𝑌)𝑇 (𝜆3𝐵Θ0𝑌)𝑇 (𝜆4𝐵Θ0𝑌)𝑇 (𝐵Θ0𝑌)𝑇 (𝜆5𝐵Θ0𝑌)𝑇 (𝜆6𝐵𝑌)𝑇 + (𝜆7𝐵𝑌)𝑇 0]𝑇 ;
Δ = [(𝜆1𝐵Θ0)𝑇 (𝜆2𝐵Θ0)𝑇 (𝜆3𝐵Θ0)𝑇 (𝜆4𝐵Θ0)𝑇 (𝐵Θ0)𝑇 (𝜆5𝐵Θ0)𝑇 (𝜆6𝐵Θ0)𝑇 + (𝜆7𝐵Θ0)𝑇 0]𝑇 ;

𝑌 = [0 0 0 0 0 𝑌 0 0] ;
Σ = [0 0 0 0 0 Θ0𝑌 0 0] ,

(63)

then the 𝐻∞ guaranteed cost control gain 𝐾 = 𝑌𝑋−𝑇𝐺0−1 can
rendermodel (21) to be asymptotically stable with the𝐻∞ norm
bound 𝛾 = √𝜇. 
e upper bound 𝐽0 of cost function 𝐽 is given
as

𝐽0 = 𝑥𝑇 (0) 𝑋−1𝑃̃𝑋−𝑇𝑥 (0)
+ 𝜂𝑚 ∫0

−𝜂𝑚

∫0
𝑠

𝑥󸀠𝑇 (𝜏) 𝑋−1𝑅̃1𝑋−𝑇𝑥󸀠 (𝜏) 𝑑𝑠𝑑𝜏
+ ∫−𝜂𝑚
−𝜂1

∫0
𝑠

𝑥󸀠𝑇 (𝜏) 𝑋−1𝑅̃2𝑋−𝑇𝑥󸀠 (𝜏) 𝑑𝑠𝑑𝜏
+ ∫−𝜂1
−𝜂𝑀

∫0
𝑠

𝑥󸀠𝑇 (𝜏) 𝑋−1𝑅̃3𝑋−𝑇𝑥󸀠 (𝜏) 𝑑𝑠𝑑𝜏.

(64)

Proof. The proof is based on a suitable transformation and
a change of variables allowing us to obtain inequality (24)
in Theorem 8. First, we define 𝑈5 = 𝑈0, 𝑈𝑖 = 𝜆𝑖𝑈0 (𝑖 =
from 1 to 4), 𝑈6 = 𝜆5𝑈0 in (24). Because we consider the
dimension of state𝑥is equal to that of outside disturbance𝜔 in this paper, we can also define 𝑈7 = 𝜆6𝑈0, 𝑈8 =𝜆7𝑈0. Obviously, (24) implies 𝑈5 > 0, so 𝑈0 is nonsingular.
Then, using the analysis method of D. Yue [40] and Z. Wang
[41], pre- and postmultiplying both sides of inequality (24)
with diag(𝐼, 𝐼, 𝐼, 𝑋, 𝑋̃, 𝐼, 𝑋, 𝐼, 𝐼, 𝐼) and its transpose, where𝑋̃ = diag(𝑋, 𝑋, 𝑋, 𝑋, 𝑋, 𝑋, 𝑋, 𝑋) and 𝑋 = 𝑈0−1, introducing
new variables 𝑋𝑃𝑋𝑇 = 𝑃̃; 𝑋𝑅𝑗𝑋𝑇 = 𝑅̃𝑗 (𝑗 = 1, 2, 3);𝑋𝑀𝑙𝛽𝑋𝑇 = 𝑀̃𝑙𝛽, 𝑋𝑁𝑙𝛽𝑋𝑇 = 𝑁̃𝑙𝛽 (𝑙 = 1, 2; 𝛽 = 1, 2, ⋅ ⋅ ⋅ , 8);𝐾𝐺0𝑋𝑇 = 𝑌 and 𝜇 = 𝛾2. From the definition of 𝐺0, we know𝐺0 is invertible, so 𝐾 can be obtained by calculating 𝐾 =𝑌𝑋−𝑇𝐺0−1. It is easy to see that 10 and (64) respectively imply
(24) and (26). Therefore, from Theorem 8, we can complete
the proof.

To obtain the optimal bound 𝐽∗ shown in (26), the
commonly used method is to consider it as an optimization
problem like [42], in which the expression of initial state 𝑥(𝑡)
(𝑡 ∈ [−𝜂𝑀, 0]) needs to be known. The expression of initial
state is not given in this paper. Therefore, the optimization
method used in [42] cannot be used here. A practical method
to obtain 𝐽∗, also used by D. Yue [43], is employed as follows.

Suppose 𝑥󸀠(𝑡) is bounded if 𝑡 ∈ [−𝜂𝑀, 0] and satisfying𝑥󸀠𝑇(𝜏)𝑥󸀠(𝜏) ≤ ℓ. In addition, suppose that there exists 𝛽𝑖 >0 (𝑖 = 1, 2, 3), satisfying
𝑋−1𝑅̃𝑖𝑋−𝑇 ≤ 𝛽𝑖𝐼 𝑖 = 1, 2, 3
𝑋−1𝑃̃𝑋−𝑇 ≤ 𝛽4𝐼 (65)

Inserting this into (64), we have

𝐽0 ≤ 𝛽4𝑥𝑇 (0) 𝑥 (0) + 0.5ℓ𝛽1𝜂𝑚3 + 0.5ℓ𝛽2 (𝜂12 − 𝜂𝑚2)
+ 0.5ℓ𝛽3 (𝜂𝑀2 − 𝜂12) = 𝐽∗ (66)

Applying the Schur complement to the inequalities above, we
have

[−𝛽𝑖𝐼 𝑋−1
∗ −𝑅𝑖−1] < 0 𝑖 = 1, 2, 3

[−𝛽4𝐼 𝑋−1
∗ −𝑃−1] < 0

(67)

Then, combining 10 and (67), 𝑅̃𝑖−1, 𝑅̃𝑖 (𝑖 = 1, 2, 3),
𝑃̃−1, 𝑃̃,𝑋−1, 𝑋 exist simultaneously. We cannot directly use
the LMI tools to solve the problem. Defining 𝑅̃𝑖−1 = 𝑅̂𝑖
(𝑖 = 1, 2, 3), 𝑃̃−1 = 𝑃̂, 𝑋−1 = 𝑋̂ and using the idea of the
cone complementary linearization algorithm, the guaranteed
cost fault-tolerant controller of system (21) and the value of
optimal performance indicator 𝐽∗ can be obtained in the
following method:

Minimize: 𝑡𝑟𝑎𝑐𝑒 (𝑅̃1𝑅̂1 + 𝑅̃2𝑅̂2 + 𝑅̃3𝑅̂3 + 𝑃̃𝑃̂ + 𝑋̃𝑋̂)
+ 𝛽4 + 0.5𝛽1𝜂𝑚3 + 0.5𝛽2 (𝜂12 − 𝜂𝑚2)
+ 0.5𝛽3 (𝜂𝑀2 − 𝜂12)

Subject to: 𝐼𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑖𝑒𝑠 (62) ,
[−𝛽𝑖𝐼 𝑋̂

∗ −𝑅̂𝑖] < 0 (𝑖 = 1, 2, 3) ,

[−𝛽4𝐼 𝑋̂
∗ −𝑃̂] < 0,

[𝑋 𝐼
∗ 𝑋̂] ≥ 0,

[𝑅̂1 𝐼
∗ 𝑅̃1] ≥ 0,

[𝑅̂2 𝐼
∗ 𝑅̃2] ≥ 0,
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[𝑅̂3 𝐼
∗ 𝑅̃3] ≥ 0,

[𝑃̂ 𝐼
∗ 𝑃̃] ≥ 0,

𝑅̃𝑖 > 0 (𝑖 = 1, 2, 3) .
(68)

5. Simulations

Example 11. Consider inverted pendulum model that can
usually be modelled as (1), and the system parameters are
given as follows:

𝐴 = [−2 1.11
0 4 ] ,

𝐵 = [0.1
−4] ,

𝐶 = [−0.3151 0.1
0.11 0.3] ,

𝐻 = [0.15 −0.56
−0.1 0.32 ] ,

Δ𝐴 = [0.04 sin 𝑡 0.15 sin 𝑡
−0.2 sin 𝑡 0.75 sin 𝑡] ,

Δ𝐵 = [0.02 sin 𝑡
−0.1 sin 𝑡] ,

𝐷 = [ 0.1
−0.5] ,

𝐹 (𝑡) = sin 𝑡.

(69)

Therefore, we have

𝐸1 = [0.4 1.5] ,
𝐸2 = 0.2. (70)

For this simulation, the initial state of system is assumed𝑥(0) = [2 −1]𝑇, and the external disturbance is considered as
𝜔(𝑡) = { [0.15 −0.5]𝑇 3𝑠 ≤ 𝑡 ≤ 4𝑠

0 𝑜𝑡ℎ𝑒𝑟𝑠 . Here, we take the upper

bound of time-varying delay as 𝜂𝑀 = 0.3𝑠 and its lower bound
as 𝜂𝑚 = 0𝑠, namely, 0 ≤ 𝜂(𝑡) ≤ 0.3. In addition, the fault
bounds of the system are given in Table 1.

Table 1: The bounds of faults.

Symbol Upper bound Lower bound
Actuator
faultsΘ 1.36 0.09

Sensor
Faults𝐺

[
[

1.65 0
0 1.75]

]
[
[

0 0
0 0.15]

]
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Figure 2: The time-varying delay in double-fault NCS.

We choose the parameters as follows:

𝜆1 = 0.1,
𝜆2 = 0.15,
𝜆3 = −0.64,
𝜆4 = 0.3,
𝜆5 = 𝜆6 = 0.35,
𝜆7 = 1.8,
𝑆2 = 0.31,
𝜌1 = 3000,
𝜌2 = 220.32,
ℓ = 1,

𝑆1 = [100.13 0
0 92.07] .

(71)

By taking advantage of the LMI tool box and inserting the
above parameters into inequalities 10 and (68), we can obtain
the 𝐻∞ guaranteed cost control gain

𝐾 = 𝑌𝑋−𝑇𝐺0−1 = [8.5163 15.1398] (72)

with 𝛾 = √𝜇 = 195.2516.
The corresponding optimal performance indicator (the

upper bound value of guaranteed cost function) is 𝐽∗ =8316.2563.
The time-varying delay is shown in Figure 2. In Figure 3,

(a) is the actuator fault, which is a piecewise-linear function.
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Figure 3: The time-varying faults.
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Figure 4: The state response curve of double-fault NCS.
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Figure 5: The control input of double-fault NCS.

It keeps the minimum value from 1.3𝑠 to 1.7𝑠, while it keeps
the maximum value from 3.7𝑠 to 4.3𝑠. The sensor faults are
shown as (b), which is sinusoidal. It should be noted that
the green dotted line represents the fault of sensor 1, while
the blue solid line represents the fault of sensor 2. Through
the state response of the double-fault NCS shown in Figure 4
and corresponding control signal shown in Figure 5, we know
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Figure 6: The state response curve of double-fault NCS.

the 𝐻∞ guaranteed cost controller designed in this paper is
able to make the double-fault NCS asymptotically stable. The
system gets preliminarily steady at 2𝑠, and its state can return
to the equilibrium position in a certain period of time when
the NCS is affected by external disturbance. Compared with
the state response of worse stability shown in Figure 6 when
the method proposed in [28] is used for this double-fault
problem, it sufficiently proves the effectiveness and feasibility
of the method proposed in this paper.

To better illustrate the effectiveness of the method pro-
posed in this paper, the following example is presented.

Example 12. Consider the parameters of system (1) as follows:

𝐴 = [[[[[
[

0.21 0 0.35 1
0 −5.3 −5.86 3.23

3.65 −1.1 −1.56 −0.89
0 0 −1.58 −2.85

]]]]]
]

,

𝐵 = [5.59 1.2 −0.89 1.3]𝑇 ,
𝐶 = [1.7 0.2 0.15 −0.18] ,
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Figure 7: The state response curve of double-fault NCS.

Δ𝐴 = [[[
[

0.82 sin 𝑡 0 0 00 0.12 sin 𝑡 0 00 0 −0.58 sin 𝑡 00 0 0 1.01 sin 𝑡
]]]
]

,

Δ𝐵 = [[[
[

−0.15 sin 𝑡0.08 sin 𝑡0−0.28 sin 𝑡
]]]
]

,

𝐻 = [[[
[

−0.41 0.96 0.52 00.06 −0.57 0 0.211.21 0 0.59 0−0.32 −0.11 −0.35 −0.03
]]]
]

,

𝐷 = 𝐼4×4,
𝐹 (𝑡) = diag (sin 𝑡, sin 𝑡, sin 𝑡, sin 𝑡) .

(73)

Therefore, we have

𝐸1 = diag (0.82, 0.12, −0.58, 1.01) ,
𝐸2 = [−0.15 0.08 0 −0.28]𝑇 . (74)

For this simulation, the initial state of system is assumed
as 𝑥(0) = [1.21 −0.51 0.23 −0.18]𝑇, and the external
disturbance is considered as

𝜔 (𝑡) = {{{
[0.15 cos 𝑡 0.15 cos 𝑡 −0.12 sin 𝑡 −0.25 cos 𝑡]𝑇 6𝑠 ≤ 𝑡 ≤ 8𝑠
0 𝑜𝑡ℎ𝑒𝑟𝑠. (75)

The uncertain time-varying delay satisfies 0 ≤ 𝜂(𝑡) ≤0.23𝑠. In addition, the fault bounds of the system are given
in Table 2. Other parameters are selected as follows:

𝜆1 = 1.2,
𝜆2 = −2.03,
𝜆3 = 1.68,
𝜆4 = −2.3,
𝜆5 = −1.05,
𝜆6 = 6.05,
𝜆7 = 5.12,
𝑆1 = diag (198.88, 156.34, 87.09, 128.76) ,
𝑆2 = 5.86,

𝜌1 = 57.98,
𝜌2 = 18.79,
ℓ = 1.

(76)

By taking advantage of the LMI tool box and submitting
these parameters above into inequalities 10 and (68), we can
obtain the 𝐻∞ guaranteed cost control gain

𝐾 = 𝑌𝑋−𝑇𝐺0−1
= [−1.7256 1.5512 −0.8571 0.7451]

with 𝛾 = √𝜇 = 581.9806.
(77)

The corresponding optimal performance indicator is 𝐽∗ =6502.1047. From the state response shown in Figure 7 and
control signal shown in Figure 8, we undoubtedly know
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Table 2: The bounds of faults.

Symbol Upper bound Lower bound
Actuator
faultsΘ 1.50 0.12

Sensor
Faults𝐺

[[[[[[[
[

1.85 0 0 0
0 1.60 0 0
0 0 1.25 0
0 0 0 1.65

]]]]]]]
]

[[[[[[[
[

0.25 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0.15

]]]]]]]
]
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Figure 8: The control input of double-fault NCS.

the double-fault NCS is asymptotically stable when the 𝐻∞
guaranteed cost controller is used. This further demonstrates
the feasibility and effectiveness of the method proposed in
this paper.

6. Conclusions

The issues of modelling and 𝐻∞ guaranteed cost fault-
tolerant control of double-fault networked control systems
have been addressed.The closed-loopmodel of a double-fault
NCS is set up with regard to the influences of transmission
delay, packet dropout, uncertain parameters, and external
disturbance. In addition, the piecewise delay method is pro-
posed to reduce the conservatism when analysing the delay-
dependent faulty system. With the help of Lee Y S’s lemma,
the sufficient condition of guaranteed cost fault-tolerant
for time-varying double-fault NCS is introduced using the
Lyapunov-Krasovskii theory and weighted technology. The
method of designing a guaranteed cost fault-tolerant con-
troller for this NCS is given based on LMI. Our next research
task will be choosing more reasonable values of parameters𝜆𝑖 (𝑖 = 1, 2, 3, 4, 5, 6, 7) to reduce the conservatism further. Of
course, the study on scheduling policy of double-fault NCS is
also a challenge but indispensable work.
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