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Electrical resistance tomography (ERT) is used to reconstruct the resistance/conductivity distribution. Usually, a uniform
distribution is assumed as the initial condition to obtain a generic sensitivity matrix, which may be very different from a
theoretical sensitivity matrix, resulting in a large error. (e aim of this study is to analyse the difference between a generalized
sensitivity matrix and a theoretical sensitivity matrix and to improve image reconstruction. (e effect of the generic sensitivity
matrix and theoretical sensitivity matrix on image reconstruction is analyzed. (e error caused by the use of the generic
sensitivity matrix is estimated. To reduce the error, an improved iterative image reconstruction algorithm is proposed, which is
based on calculation of the error between the generic sensitivity matrix and the theoretical sensitivity matrix, and a correction
coefficient with a penalty. During the iterative process, the resistivity distribution and sensitivity matrix are alternatively
corrected. Simulation and experimental results show that the proposed algorithm can improve the quality of images, e.g., of
two-phase distributions.

1. Introduction

As a fast, nonradiation, nonintrusive, and low-cost im-
aging technique, electrical resistance tomography (ERT)
[1] has been developed for visualizing the internal con-
ductivity distribution of industrial processes, by providing
2D/3D images. ERT has been widely used for chemical [2],
food processing [3], biology [4], geology [5], and other
industrial applications [6]. In ERT, usually a current is
injected to a pair of electrodes and the boundary voltages
are measured from other pairs of electrodes [7]. A par-
ticular difficulty for ERT is that its “soft field” [8] makes
the inverse problem be nonlinear and ill posed, and hence
the spatial resolution is limited. Various image recon-
struction algorithms have been developed for ERT, such as
linear back-projection (LBP) [9], Landweber iteration
[10], and Tikhonov regularization [11]. Usually, a uniform

distribution is assumed as the initial condition to obtain a
generic sensitivity matrix.

Recently, several modified algorithms have been pro-
posed. For example, Zhang [12] and Xiao et al. [13], re-
spectively, used the results obtained by Landweber iteration
and Newton–Raphson algorithms as the initial condition for
updating a sensitivity matrix. (ese modified algorithms can
reduce the reconstruction error caused by a generic sensi-
tivity matrix and improve the image quality.

In this paper, the effect of the generic sensitivity matrix
on image quality is analyzed, and a new image recon-
struction algorithm is proposed, which is based on calcu-
lating the error introduced by the generic sensitivity matrix
according to the variation in the boundary voltage. (is
algorithm includes a penalty factor, which can correct the
sensitivity matrix during the iterative image reconstruction
process.
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2. Principle of ERT

2.1. Mathematical Model. An ERT sensor is shown in
Figure 1 [14]. It shows that a current is injected into a pair
of adjacent electrodes and the voltages between the
remaining pairs of adjacent electrodes are measured. (e
injection and measurement are sequentially conducted
until each adjacent electrode pair is used for current in-
jection. For a 16-electrode ERT sensor, 104 independent
measurements can be obtained.

When a perturbation Δσ≪ σ0 (uniform conductivity) is
small, according to the sensitivity coefficient principle, a
linearised model for current injection and voltage mea-
surement (see Figure 1) is given by [15]

S · Δσ � ΔZ, (1)

where ΔZ � [ΔZ1,ΔZ1, . . . ,ΔZMZ
]T is a MZ × 1

vector of change in measured boundary voltage, Δσ �

[Δσ1,Δσ2, . . . ,ΔσMσ
]T is a Mσ × 1 vector of change in

conductivity, and S � [Sij]MZ×Mσ
is a calculated sensitivity

matrix, where Sij is the sensitivity coefficient of the jth
pixel relative to the ith measurement.

Once the change in boundary voltage ΔZ and the sen-
sitivity matrix S have been obtained, a vector of change in
conductivity Δσ can be calculated, e.g., using Landweber
iteration algorithm [10]

Δσk+1 � Δσk + α · ST ΔZ − S · Δσk( ,

Δσ1 � STΔZ,

⎧⎨

⎩ (2)

where Δσk is a vector of change in conductivity at the kth
iteration and α is the step length.

From Δσ, the conductivity distribution vector σ can be
obtained by

σ � Q σ0 + Δσ , (3)

where Q[ ] is the projection operator [16], so that the
conductivity distribution is limited between 0 and 1.

2.2. Effect of Sensitivity Matrix on Image Reconstruction.
In equation (2), the sensitivity matrix S changes with the
conductivity distribution σ, causing serious ill posedness and
nonlinearity, as shown in Figure 2. σ can be solved by F(σ) �

Z [17], where Z is the boundary voltage vector. It is common
that the sensitivity matrix is used to estimate the boundary
voltage based on the conductivity distribution, which is
called forward projection:

Sσ � Z. (4)

In practice, the sensitivity matrix S cannot be used to
solve the problem because S changes with the conductivity
distribution σ. (erefore, only the uniform field sensitivity
matrix S0 can be used to find the approximate solution to the
conductivity distribution by equation (1). Figure 3 shows a
reconstructed image using a theoretical sensitivity matrix
and another image using a generic sensitivity matrix based
on a uniform field distribution.

Comparing Figure 3(a) with 3(b), it can be seen that the
area of discrete-phase is enlarged and the edge of two phases
is not distinct with artifacts near the boundary, i.e., the image
is significantly degraded. (e main reason for this is that the
sensitivity matrix in equation (1) is only suitable for the case,
where the additional perturbation Δσ of the sensing field is
small [17] and the error is larger with a larger Δσ.

3. Error Penalty Reconstruction Based on
Landweber Iteration

3.1. Error Introduced by Generic Sensitivity Matrix.
Assuming that the theoretical sensitivity matrix S is known,
the following equation can be obtained from equation (4):

S · σ − S0 · σ0 � Z − Z0, (5)

where Z0 is the boundary voltage vector of uniform field σ0.
Because S cannot be obtained when σ is unknown, the

inverse problem is usually solved by equation (1) using a
generic sensitivity matrix S0. Equation (1) can be rewritten as

S0 · Δσ � ΔZ, (6)

where ΔZ � Ζ − Ζ0. (en, equation (6) can be expanded to

S0σ − S0σ0 � Z − Z0. (7)

Comparing with equation (5), the theoretical sensitivity
matrix S is replaced by the generic sensitivity matrix S0. To
analyse the error, equation (7) is rewritten as

Sσ − S0σ0 + S0 − S( σ � Z − Z0, (8)

and hence

η � S0 − S( σ. (9)

It is the error vector introduced when the theoretical
sensitivity matrix is replaced. For simplicity, η is called
“matrix substitution error” in this paper, which can be ig-
nored when Δσ � (σ − σ0) is small. However, when the
conductivity distribution changes significantly compared
with the uniform field, η also becomes larger and would
result in a larger reconstruction error.

If the conductivity distribution σ can be found, which is
close enough to the real distribution σ as the initial distri-
bution, and its corresponding sensitivity matrix S can be
used as the initial sensitivity matrix, then

Sσ − Sσ � Z − Z. (10)

As a result, the error η � (S − S)σ can be effectively
reduced, improving the image quality.

3.2. Sensitivity Matrix Correction with Penalty Factor.
Considering Landweber’s solution as the initial distribution σ
in equation (10), the distribution is obtained by the generic
sensitivity matrix and the size of the error η is different from
each other for different distribution. To reduce the error, the
change in distribution calculated by conventional Landweber
iterative algorithm needs to be constrained differently
according to the distribution. In equation (9), it can be seen
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Figure 2: Di�erent conductivity distributions and corresponding sensitivity matrix. (a) Conductivity distribution of D1. (b) Mean of
sensitivity matrix of D1. (c) Uniform distribution. (d) Mean of sensitivity matrix of uniform distribution.
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Figure 1: 16-electrode ERT sensor model. (a) Uniform conductivity. (b) Perturbed conductivity.
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Figure 3: Reconstructed image of model D1. (a) Using theoretical sensitivity matrix of D1. (b) Using sensitivity matrix of uniform �eld.
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that if the difference between the generic sensitivity matrix S0
and the theoretical sensitivity matrix S is small, the error η is
small and the reconstruction result Δσ is accurate.(e greater
difference between them would result in the larger error of
reconstruction.(erefore, a penalty factor μ associated with η
is chosen to penalize the error of Δσ. However, the theoretical
error η cannot be obtained when the true distribution σ is
unknown. (erefore, it is necessary to use other related
known quantities to determine the penalty factor μ.

In equation (4), the measured boundary voltage vector Z
is related to the theoretical sensitivity matrix S and the true
distribution σ. (erefore, a method is proposed to estimate
the error η using the change in boundary voltage ΔZ. (e
relative changes in the boundary voltage is

μ �
|ΔZ|

Z0



. (11)

It is set as the penalty factor. From equations (5) and (9),
it can be seen that μ would increase as η increases. A cor-
rection coefficient is defined as

β � B − μ. (12)

It is used to correct Δσ obtained by Landweber algo-
rithm, where B is a constant. Considering the convergence
rate and stability, B can be selected between 0.5 and 1.5.
(en, equation (3) can be rewritten as

σ � Q σ0 + β · Δσ . (13)

After the conductivity distribution is corrected, a corrected
sensitivity matrix S can be obtained. (en, the corrected
distribution σ and sensitivity matrix S can be used as the initial
value in equation (10), to further reduce the image error.

3.3. Improved Landweber Algorithm. (e following is about
approximating the true field distribution by multiple cor-
rections. During this process, the error changes as

ηp � Sp − S, (14)

where p � 0, 1, . . . , P is the correction time, Sp is the sen-
sitivity matrix corresponding to the pth distribution cor-
rected. When p � 0, the initial value is corresponding to the
uniform field.

(e correction factor for the p+ 1st correction is ad-
justed as

βp+1 � B − μp+1, (15)

where μp+1 � |ΔZp|/|Zp| and ΔZp � Z − Zp, Zp is the cal-
culated boundary voltage corresponding to σp after the pth
correction. Because μp+1 is related to the error ηp, with the
approximation, whether or not further correction of the
sensitivity matrix is needed can be determined by μp+1:

μp+1
<ε, Noneed to correct the sensitivity matrix,

≥ε, Need to correct the sensitivity matrix.


(16)

(e improved reconstruction algorithm is shown in
Figure 4 with the following steps:

Step 1: input the boundary voltage measurement Z and
the uniform field conductivity distribution σ0.
Step 2: calculate the sensitivity matrix Sp and change in
boundary voltage value ΔZp using σp, and then calculate
the correction coefficient βp+1.
Step 3: calculate the approximate increment of con-
ductivity distribution Δσp after M iterations using the
conventional Landweber iterate algorithm.
Step 4: correct Δσp using βp+1.
Step 5: determine whether or not it is necessary to
correct the sensitivity matrix. If necessary, return to
Step 2. If not, output the conductivity distribution σp+1.

4. Simulation and Results

4.1. Experimental Conditions. MatLab is used for simulation.
(e configuration of the simulated ERTsensor is listed below:

(i) Circular inner diameter: 50mm
(ii) Liquid conductivity: 1 S/m
(iii) Gas conductivity: 0 S/m
(iv) Number of electrodes: 16
(v) Excitation and measurement mode: current injec-

tion to adjacent electrode pair and voltage mea-
surement from the other adjacent electrode pairs
(see Figure 1)

(vi) Number of independent measurement: 104
(vii) Number of finite elements: 1536 (see Figure 5)

To verify the proposed algorithm, three algorithms are
used to reconstruct images for the four models, as shown in
Figure 6. A uniform field is used as the initial distribution.
(e three algorithms are shown in Table 1.

In Algorithm 1 (uncorrected), the conventional Land-
weber iterative algorithm [10] is used and the sensitivity
matrix is not corrected during the iterative process. In
Algorithm 2 [12] (βp+1 � 1), βp+1 � 1. M � 500, when p � 1,
and M � 100, when p> 1. p � 0, 1, . . . , P, P � 10 and ε � 0.
In Algorithm 3 (βp+1 � 1.2 − (|ΔZp|/|Zp|)), the algorithm
proposed in this paper is used, βp+1 � B − (|ΔZp|/|Zp|),

B � 1.2. M � 500, when p � 1, and M � 100, when p> 1.
p � 0, 1 . . . P, P � 10 and ε � 0.

A reconstruction error and a correlation coefficient are
used to evaluate the reconstruction results. (e smaller the
reconstruction error and the greater the reconstruction
correlation means higher image quality [10]:

Reconstruction error �
‖σ − σ‖

‖σ‖
× 100%,

Correlation coefficient �


K
i�1 σi − σ(  σi − σ 

����������������������


K
i�1 σi − σ( 

2


K
i�1 σi − σ 

2
 ,

(17)

where σ is the calculated conductivity distribution, σ is the
true conductivity distribution, andK� 1536 is the number of
elements in the sensing area.
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Quantitative analysis is performed by calculating the
square sum of the substitution error of the matrix:

Matrix substitution error ηp

�����

����� � Sp − S  · σ
�����

�����. (18)

4.2. Results and Analysis

4.2.1. Results with Noise Free Data. Without considering
noise, the above three algorithms are used for reconstruction
and the results are shown in Figure 7. With Algorithm 1, the

reconstructed images with 500 iterations, 600 iterations, and
1400 iterations are given. For Algorithms 2 and 3, the
reconstructed images after 1, 2, and 10 corrections are given,
and the images correspond to iterations 500 times, 600
times, and 1400 times. (e third column (βp+1 � 1.2
− (|ΔZp|/|Zp|)) is obtained using Algorithm 3.

In Figure 7, the first column is obtained by Algorithm 1,
the second column by Algorithm 2, and the third column by
Algorithm 3. As can be seen, after sensitivity matrix cor-
rection (2nd column and 3rd column), the artifacts of the
reconstructed images are reduced and the boundary between
two phases is clear. Comparing with Algorithm 2 (the 2nd
column in Figure 7), Algorithm 3 reduces the artifacts of
reconstruction images, where the contour of the discrete
phase shrinks obviously and is close to the actual model
distribution, as shown in Figure 6.

Quantitative analyses of the reconstructed images are
showed in Figures 8 and 9. Note that the sensitivity matrix is
not corrected in Algorithm 1, and the number of corrections
represents the number of iterations corresponding to the
other two algorithms.

From Figures 8 and 9, it can be seen that the quality of
the images obtained by Algorithm 3 are obviously im-
proved. For models D2 and D3, the differences between
the model boundary voltage and the uniform field
boundary voltage are relatively small (see Figure 10(a))
and the initial correction coefficient is larger (see
Figure 10(b)). After the first time distribution correction,
the distributions reconstructed by Algorithm 3 have larger
image errors (as shown in Figures 8(b) and 8(c)) and lower
correlations (as shown in Figures 9(b) and 9(c)), but the
quality of reconstructed images obtained after the sub-
sequent correction are improved, compared with Algo-
rithms 1 and 2. For the models D1 and D4, the initial
changes in voltage are greater (see Figure 10(a)). After
punitive restraint on the reconstruction distribution, the
reconstruction errors are decreased (as shown in
Figures 8(a) and 8(d)) and reconstruction correlation
coefficients are obviously increased (as shown in
Figures 9(a) and 9(d)).

Quantitative analysis of matrix substitution error is
shown in Figure 11. It can be seen that for the models D1,
D3, and D4 that the square sum of the matrix substitution
error ‖ηp‖ is significantly reduced after the sensitivity
matrix is modified by the proposed algorithm. For the
model D2, ‖ηp‖ increases after the first correction, the
reason for this is the constant term B � 1.2, which makes
the β> 1 (see Figure 10(b)), resulting in over relaxation.
However, the error after the second correction is
markedly reduced. (e error in the subsequent correction
process has also been in a downward trend. Compared
with Algorithm 2 (βp+1 � 1) and Algorithm 3, if the initial
matrix substitution error ‖η0‖ is small (see Figures 11(b)
and 11(c)), both algorithms can effectively reduce the
matrix substitution error ‖ηp‖, and the effect of the
penalty factor is not obvious. However, when the initial
error ‖η0‖ is large (see Figures 11(a) and 11(d)), the re-
duction of the error ‖ηp‖ after the correction of the
sensitivity matrix is more obvious with Algorithm 3. It
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Figure 4: Block diagram of improved Landweber iterate algorithm.
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Table 1: Algorithm table.

Algorithm 1 [10, 16] Δσ1 � STΔZ
Δσk+1 � Δσk + α · ST(ΔZ − S · Δσk)
σ � Q[σ0 + ΔσM]




Algorithm 2 [12]
Δσp � ΔσM(SP,ΔZP)(Conventional Landweber)
σp+1 � Q[σp + βp+1Δσp]
βp+1 � 1




Algorithm 3 Δσp � ΔσM(SP, ΔZP)(Conventional Landweber)
σp+1 � Q[σp + βp+1Δσp]
βp+1 � B − (|ΔZp|/|Zp|)
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Figure 6: Four conductivity distribution models for simulation. (a) Model D1 (b) Model D2. (c) Model D3. (d) Model D4.
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Figure 7: Continued.
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Figure 7: Reconstruction of three algorithms without noise. (a) Reconstructed image of model D1. (b) Reconstructed image of model D2.
(c) Reconstructed image of model D3. (d) Reconstructed image of model D4.
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Figure 8: Reconstruction errors of three algorithms without noise. (a) D1. (b) D2. (c) D3. (d) D4.
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can also be seen from Figures 8 and 9 that for the models
D1 and D4, the decrease in error and the improvement of
the correlation coe�cient is more signi�cantly with Al-
gorithm 3.

Because the correction requires additional calculation of
the sensitivity matrix, the amount of computation increases
signi�cantly. �erefore, the number of matrix corrections

must be limited. It can be seen in Figures 8 and 9 that after
twice corrections, the quality of the reconstructed images has
been greatly improved and the sensitivity matrix has only
been recalculated once at this time. �erefore, the distri-
bution after correcting twice can be used as the �nal result.
Figure 12 shows data comparison with di�erent algorithms
in terms of the reconstruction error and correlation

Uncorrected
βp+1 = 1

0.65

0.7

0.75

0.8

C
or

re
lat

io
n 

co
ef

fic
ie

nt

2 3 4 5 6 7 8 9 101
Correction times

βp+1 = 1.2 – (|∆Zp|/|Zp|) 

(c)

Uncorrected
βp+1 = 1

0.45

0.5

0.55

0.6

0.65

0.7

C
or

re
lat

io
n 

co
ef

fic
ie

nt
2 3 4 5 6 7 8 9 101

Correction times

βp+1 = 1.2 – (|∆Zp|/|Zp|) 

(d)

Figure 9: Correlation coe�cients of three algorithms without noise. (a) D1. (b) D2. (c) D3. (d) D4.
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Figure 10: Penalty factors and correction coe�cients of four models. (a) Penalty factors/relative changes in boundary voltage. (b)
Correction Coe�cients.
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coefficient after corrected twice. It can be seen that errors are
obviously reduced and correlations improved with Algo-
rithm 3.

From the quantitative analyses, it can be found that the
reconstruction errors are significantly reduced with the
proposed algorithm and the correlations improved.

4.2.2. Results with Noisy Data. Because noise is inevitable
and affects image reconstruction, it is necessary to an-
alyse the antinoise ability of the algorithm. By adding
random noise to the boundary voltage vector, the signal-
to-noise ratio (SNR) becomes 30 dB. (e three

algorithms are used to perform 600 iterations for the four
models. (e obtained images are shown in Figure 13.
With Algorithms 2 and 3, the sensitivity matrices are
corrected once and reconstructed distributions are
corrected twice.

It can be seen in Figure 13 that reconstructed images by
Algorithm 3 are less distorted with fewer artifacts than those
obtained by the other two algorithms. Quantitative analyses
of the reconstructed images with noise data are showed in
Figure 14. It can be seen that the errors of reconstructed
distributions obtained by Algorithm 3 are lower (see
Figure 14(a)) and correlation coefficients are greater (see
Figure 14(b)).
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Figure 11: Matrix substitution error ‖ηp‖. (a) D1. (b) D2. (c) D3. (d) D4.
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Figure 12: (a) Reconstruction errors and (b) image correlation coe�cients with di�erent algorithms after 600 iterations.

–20

0

–10

–20

0 20

0

–10

–20

–20 0 20

0.5
0.4
0.3
0.2
0.1
0

0

–10

–20

–20 0 20

20

10

20

10

1
0.9
0.8
0.7
0.6

20

10

Uncorrected βp+1 = 1 βp+1 = 1.2 – (|ΔZp|/|Zp|)

(a)

20

10

0

–10

–20

–20 0 20

20

10

0

–10

–20

–20 0 20

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

20

10

0

–10

–20

–20 0 20

Uncorrected βp+1 = 1 βp+1 = 1.2 – (|ΔZp|/|Zp|)

(b)

20

10

0

–10

–20

–20 0 20

20

10

0

–10

–20

–20 0 20

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

20

10

0

–10

–20

–20 0 20

Uncorrected βp+1 = 1 βp+1 = 1.2 – (|ΔZp|/|Zp|)

(c)

Figure 13: Continued.
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From the above results, it is concluded that the recon-
struction error can be e�ectively reduced and the correlation
can be improved by the proposed algorithm.

4.2.3. Experimental Results. Experiment was conducted to
validate the proposed algorithm. �e experimental setup is
shown in Figure 15, which was developed at the University
of Leeds. Con�gurations of the experimental system are
listed below.

(i) Injected current: 15.10mA
(ii) Current Frequency: 9600Hz
(iii) Diameter of test �led: 50mm
(iv) ERT sensor: single plane 16-electrodes.

Six distribution models are selected, as shown in Fig-
ure 16. �e three algorithms are used to reconstruct six

models. �e reconstructed images after 600 iterations with
real data are shown in Figure 17.

It can be seen from Figure 17 that the proposed al-
gorithm e�ectively distinguishes targets. For both
models, the artifacts with the proposed algorithm are
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Figure 13: Reconstructed images after 600 iterations with noise. (a) Reconstructed images of D1. (b) Reconstructed images of D2. (c)
Reconstructed images of D3. (d) Reconstructed images of D4.
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Figure 14: (a) Reconstruction errors and (b) image correlation coe�cients of di�erent algorithms after 600 iterations with noise.

Figure 15: Experimental setup of the ERT test system.
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Figure 17: Continued.
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less and the two-phase boundary of the distribution is
clear.

5. Conclusions

In this paper, an image reconstruction algorithm for ERT is
proposed. It is based on correction of the sensitivity matrix
and Landweber iteration. �e error introduced by the

initial sensitivity matrix is estimated using the relative
variation in the boundary voltage. According to the esti-
mated value, the correction coe�cient with a penalty factor
is obtained and the distribution reconstructed from
Landweber iteration and the initial sensitivity matrix are
corrected. To improve the reconstruction accuracy, the
distribution and sensitivity matrix are alternatively
corrected.
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Figure 17: Reconstructed images after 600 iterations with real data. (a) Reconstructed images of Model 1. (b) Reconstructed images of
Model 2. (c) Reconstructed images ofModel 3. (d) Reconstructed images ofModel 4. (e) Reconstructed images ofModel 5. (f ) Reconstructed
images of Model 6.
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Both simulation and experimental results show that the
boundary between two phases of the distribution can be
reconstructed by the proposed algorithm clearly. (e arti-
facts are less and the distribution is more accurate than the
traditional Landweber algorithm and the algorithm without
the penalty factor. Quantitative analysis shows that the
proposed algorithm is effective in reducing errors in par-
ticular when the initial error is large.

(e correlation between the variation in the boundary
voltage and the matrix substitution error is analyzed. In the
future, research will be carried out on correlation to further
reduce the image error and improve the reconstruction
accuracy.
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