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As the traditional methods of insulator fault detection rely on the low-level feature extraction of images and classifier design, it is
difficult to achieve fault detection of insulator for images with complex background. To address this issue, a fault detection method
using second-order full convolutional network (SOFCN) is proposed in this paper. Firstly, the first-order FCN is used to learn
the image features to segment insulator areas from images with complex background. Secondly, the mathematical morphology
reconstruction operation is used to improve the segmentation result to get the accurate localization of the insulator areas. Finally,
the FCNnetwork is used again to detect the insulator fault and obtain the fault region. Experiments show that the proposed SOFCN
is not only able to obtain accurate insulator region, but also able to effectively suppress the interference of noninsulator region.
Compared to the conventional methods, the proposed SOFCN obtains higher recognition accuracy without feature extraction and
the selection of a classifier. Moreover, the computational complexity of the proposed method is low. Furthermore, compared to the
classical CNN and FCN segmentation methods, the proposed SOFCN can effectively suppress complex background interference
to improve the accuracy of insulator fault detection.

1. Introduction

As the core component of the power line, insulator is exposed
to the outside for a long time and eroded by the external force
in natural, which is prone to breakage, dropping, and aging.
Once insulator fails towork, whichwill cause the interruption
of the entire transmission line or widespread power failure.
To ensure the safe and reliable operation of the entire
transmission line, it is necessary to timely and effectively
check the transmission line insulators and find troubleshoot-
ing [1–6]. With the development of smart grid technology,
unmanned aerial vehicle (UAV) inspection technology is
relatively mature in the application of power transmission
line inspection [7, 8]. Compared with the traditional manual
inspection, the UAV inspection has a clear advantage because
it can go deep into the high-voltage working area to achieve
automatic inspection. Besides, automatic inspection greatly
reduces the workload, shortens the inspection cycle, and
reduces the false detection rate as well. Therefore, insulator
recognition based on aerial images becomes an important

evidence used for judging the operation state of the transmis-
sion line.

A lot of relevant researches on the fault detection of
insulators for aerial images have been reported in recent years
[9–15]. Jiang et al. [16] proposed the method of insulator
fault recognition based on multifeature fusion. The method
improves the accuracy of fault recognition. But it generates
poor results for insulator images with complex background
since the selected threshold value is fixed. For the prob-
lem, Xu et al. [17] proposed a new algorithm for insulator
image segmentation by using the idea of local mean value.
This method improves the segmentation effect of insulator
images with multiple peaks and valleys, but the segmentation
effect is still largely affected by the segmentation threshold.
Therefore, Shan et al. [18] achieved insulator defect detection
by combining the morphological features and the AdaBoost
classifier. Compared with unsupervised learning algorithms,
this approach had strong capabilities of self-adaption and
self-learning, for it accumulates multiple weak classifiers into
strong classifiers and learns insulator features from training
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samples. Liu et al. [19] proposed an insulator detection
method using deep convolutional neural networks. The
method can effectively detect insulators, and thus it has a
strong robustness, but it has a low computational efficiency
and it is unsuitable for images with complex background. Tao
et al. [20] proposed a new deep CNN cascade structure for
insulator location and defect detection.The method achieves
the requirement of high robustness and accuracy for insulator
defect detection. Cheng et al. [21] employed faster R-CNN
framework to learn and identify aerial insulators.Themethod
has a high recognition accuracy and efficiency, and it is able
to accurately identify various types of insulator. However,
this method is invalid in the case of occlusion issue between
insulators. Although the methods mentioned above achieve
the fault detection of insulators, they have two shortcomings.
On the one hand, the traditional method requires extracting
features of insulators by designing feature descriptors. On the
other hand, the traditional approaches obtain a low accuracy
of fault recognition for complex images because the proposed
model is only effective for simple images.

Aiming at the two problems, an insulator self-explosion
fault detectionmethod using second-order full convolutional
network (SOFCN) model is proposed for insulator images
with complex background. Firstly, the insulator region is
marked to generate label images used for training network.
The image features are learned by using the first-order FCN,
and then the insulator region is segmented. Secondly, the
mathematical morphology reconstruction operation is used
to optimize the segmentation result, so that the accurate
location of insulator area can be obtained. Finally, based on
the regional insulator image, the second FCNnetwork is used
to detect the fault insulators. This method can effectively
suppress the interference of noninsulator regions and thus
improve the recognition accuracy of fault insulators.

2. Convolutional Neural Network

Traditional insulator fault recognitionmethods require man-
ual feature descriptors and classifier design, which leads
to a result that only shallow image features are extracted.
Moreover, feature extraction results are poor for insulator
images with complex background. Therefore, the conven-
tional approaches easily result in missed detection, false
detection, and low recognition rate. With the extensive
application of deep learning in visual recognition, speech
recognition, natural language processing, and image classi-
fication and segmentation, it adapts to the characteristics
of big data and automatically extracts features in layers,
which provides a new way for insulator fault detection based
on aerial photography images. Moreover, insulator fault
detection using deep learning has become a new research
hotspot [22–29].

At present, insulator fault detection methods using deep
learning mainly depend on the general convolutional neural
network (CNN). Compared with the traditional approaches,
CNN can automatically learn hierarchical image features,
where the shallow convolutional layer has a small per-
ception field and it is therefore used for learning local

regional features. The deeper convolutional layer has a large
perception field, which is used for learning more abstract
high-level semantic features.The deep convolutional network
takes into account the global and local information of the
image. At the same time, the abstract features learned by
deeper convolution layers are insensitive to the size, position,
and direction of the object, which is thus suitable for insulator
fault detection.However, themethod only classifies the image
pixels and considers the image blocks around the pixels as
the input of the CNN for training and prediction. Thus, the
method cannot obtain the segmentation result directly. Due
to the redundancy in the adjacent pixel blocks, the amount of
image input data is too large and the processing speed is slow.
Simultaneously, as the size of pixel neighborhood is difficult
to be determined and the spatial location information of
images cannot be taken into account efficiently, the accurate
contour of objects cannot be well obtained [30].

FCN is a fully convolutional network that realizes the
leap from image classification to segmentation; it is thus
able to improve CNN for image semantic segmentation.
Compared with the traditional CNN, FCN is an end-to-end
network that does not limit the input image size, which can
perform dense prediction without the full connection layer.
It eventually generates segmentation maps of any size and
improves the processing speed and segmentation accuracy.
However, the loss of detailed information is a problem caused
by the expansion of the perceptual field of view in the FCN
network.When an insulator imagewith complex background
is directly used for fault detection, it is difficult to accurately
locate the insulator area, which results in false detection [31–
34].

3. Method

3.1. Area Insulator Segmentation. The FCN network is an
end-to-end and pixel-to-pixel training that allows the net-
work to make pixel-level predictions, and it obtains higher
segmentation accuracy without any preprocessing. The FCN
model replaces the fully connected layer in the convolutional
neural network with the convolutional layer without limiting
the size of the input image. For different-size insulator images,
feature extraction is carried out by automatic delamination.
Compared with the traditional method of artificial feature
extraction, the effective features of insulator images can be
extracted, and the recognition accuracy of insulator images
can be improved.

Figure 1 shows the typical VGG-16 FCN network struc-
ture, where convolution and pooling operations are repeat-
edly performed for five times. After the operation of each
group, the original image size is the half of the image at
previous layer. After the fifth conv5 and pool5 operations,
the image size is reduced to 1/32 of the original image size,
followed by two convolution operations.The obtained feature
map is a high-dimensional vector named heatmap, and it rep-
resents architecture between the whole original image. If the
heatmap is directly upsampled, then the obtained prediction
result is coarse and the local detail information is missing. To
improve the final segmentation result, the 1/32-size heatmap
is first upsampled two times, and the enlarged image is fused
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Figure 1: FCN network structure.

with the featuremap at the layer of pool4. Repeating the
previous operation and the enlarged image is further fused
with the featuremap at the layer of pool3. Finally, the 8 times’
upsampling is performed to obtain the segmented image.The
FCN network structure comprehensively considers the local
and global information of the insulator image, and it is thus
able to improve the final segmentation accuracy.The detailed
operation of convolution and pooling, and the FCN network
training process are presented as follows.

FCN convolution process is

𝛼𝑙𝑗 = 𝑓(∑
𝑖∈𝑁𝑗

𝑐𝑜𝑛V2 (𝛼𝑙−1𝑗 , 𝑘𝑙𝑖𝑗) + 𝑏𝑙𝑗) (1)

where 𝑙 is the number of layers in which the convolution
layer is located, 𝑁𝑗 is the input feature map combination,𝑘𝑙𝑖𝑗 is the convolution kernel matrix, 𝑏𝑙𝑗 is the bias, and 𝑓 is
the activation function; we use the linear correction function
ReLU in this paper.

FCN pooling process is

𝛼𝑙𝑗 = 𝑓 (𝑑𝑜𝑤𝑛 (𝛼𝑙−1𝑗 )) (2)

where 𝑑𝑜𝑤𝑛(⋅) is the sampling function and the maximum
pooling function is used in the paper.

Forward propagation process of FCN network is as
follows.

The process is similar to that of BP neural network, and
it computes the actual output of training samples after layer-
by-layer transmission.

𝑧𝑙+1 = 𝑤𝑙+1𝛼𝑙 + 𝑏𝑙+1 (3)

𝛼(𝑙+1) = 𝑓 (𝑧𝑙+1) (4)

where 𝑙 is the number of layers of the neural network, 𝑧𝑙+1 is
the weighted input of the 𝑙 + 1 layer of neurons, 𝛼 is input
data for each layer of the corresponding images, 𝑤 and 𝑏
are the weight and bias of each layer of neurons in the full
convolutional neural network, and 𝑓 is a linear correction
function ReLU.

FCN network backpropagation process is as follows.
The process is the reverse transfer process of gradient or

error. The detailed formula is given as follows:

𝐽 (𝑤, 𝑏) = 1𝑚
𝑚∑
𝑖=1

12 (𝑦𝑖 − ℎ𝑤,𝑏𝑥𝑖)2 (5)

where 𝐽(𝑤, 𝑏) is the objective function, ℎ𝑤,𝑏𝑥𝑖 is standard
output, and 𝑦𝑖 is predicted value. By minimizing an objective
function using the stochastic gradient descent method, the
optimal values of 𝑤 and 𝑏 can be obtained.

3.2. Morphological Reconstruction Filter. Morphological
reconstruction can filter noises and useless texture details
while preserving the contour details of important objects. For
the insulator image preliminarily segmented by FCN, it often
includes some false detection areas, so the morphological
reconstruction filter is used to accurately locate the insulator
region. Let 𝑓 and 𝑔 be an image defined on the same discrete
domain D and a mask image, respectively. The mask image 𝑔
is reconstructed by the identified image𝑓 until it is stabilized.
We have the specific reconstruction process.

Erosion reconstruction operation process is as follows.
Let 𝑓 ≥ 𝑔, 𝑅𝜀𝑔(𝑓) denotes erosion reconstruction;

𝑅𝜀𝑔 (𝑓) = 𝜀(𝑖)𝑔 (𝑓) (6)

where 𝑖 is the number of iterations and 𝑖 satisfies 𝜀(𝑖)𝑔 (𝑓) =𝜀(𝑖+1)𝑔 (𝑓).
Dilation reconstruction operation process is as follows.
Let 𝑓 ≤ 𝑔 and 𝑅𝛿𝑔(𝑓) denote erosion reconstruction;

𝑅𝛿𝑔 (𝑓) = 𝛿(𝑖)𝑔 (𝑓) (7)

where 𝑖 satisfies 𝛿(𝑖)𝑔 (𝑓) = 𝛿(𝑖+1)𝑔 (𝑓).
In Figure 2, we can see that the segmented result obtained

by FCN includes lots of false insulator areas because the
tower and other background are similar to insulators, which
will bring interference to the later fault detection. After
reconstructing and filtering, the false areas are removed and
the real insulator areas are maintained.

3.3. Fault Detection Based on Regional Insulator. To detect
fault insulators, the obtained image including insulator areas
as shown in Figure 2 is multiplied with the original image,
which is able to remove the complex background such as
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Figure 3: Fault detection based on obtained insulator areas.

the pole and tower line in the original image. The result
is simpler than the original image and it is considered as
training images that are the input of the second-order FCN
network. Finally, the trained model is used to detect fault
insulator. The proposed framework is shown in Figure 3.

3.4. Algorithm Description. The single-layer FCN network
leads to the loss of the target location and other detailed
information due to the expansion of the perception field
of the pooling layer and the polymerization context. For
the insulator image of complex background, it is difficult to
accurately locate the regional insulator when the fault detec-
tion is directly performed, which causes false detection of
partial background as the foreground, and the improvement
of accurate fault identification rate is limited. Therefore, an
insulator fault detection method using the SOFCN model is
proposed. As shown in Figure 4, the SOFCN model includes
a two-layer FCN network. The first layer FCN is used for the
positioning of the insulator region, and the region insulator
image is first segmented in a complex background. The
second-stage FCN network can identify the fault insulators.
For the initial segmentation of the insulator region image,
the morphological reconstruction is used to filter out the
false detection of the background as the foreground, after
accurately locating the region insulator, and multiply it with
the original image as the input set of the second layer FCN
network for fault detection. The steps of the algorithm are
presented as follows.

Input: Aerial insulator image

Step 1. Initialize the FCN network, where in the convolution
kernel size is 3∗3, the learning rate is 10−14, and the number

of iterations is 100,000 times, and the input insulator image is
normalized to the size of 400∗600.
Step 2. Input the training images and the corresponding label
images into the first-order FCN network and then train the
network.

Step 3. Perform morphological reconstruction filtering on
the initially segmented insulator image to obtain detected
insulator images.

Step 4. Multiply the reconstructed image by the original
image to obtain a region insulator image that removes the
background of the original image.

Step 5. The region insulator images and label images are
inputted into the second-order FCN network model, and
then train the network.

Step 6. Output the detection result of fault insulators.

Output: Detection result of fault insulators.

4. Experimental Results and Analysis

To demonstrate the effectiveness of the algorithm, the paper
compares the regional insulators and fault recognition effects
separated by the proposed SOFCN with the traditional
morphological erosion combined branch segmentation algo-
rithm, CNN segmentation algorithm, and FCN segmentation
algorithm.

4.1. Dataset. The testing images in this paper are derived
from theUAV330kv line inspection insulator image.They are
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Figure 4: Second-order FCN model.

composed of 300 insulator images. The experimental envi-
ronment is IW4206-2Q deep learning workstation, Ubuntu
16.04 64-bit operating system, 64 GB memory, NVIDIA
GeForce GTX1080∗2 graphics card, and CPU E5-1602V4.

4.2. Comparison of Regional Insulator Segmentation Results.
The detection results of insulators on images with simple
background are shown in Figure 5.The figure shows that both
the comparative approaches and the proposed SOFCN can
accurately detect the region of insulator. However, the tradi-
tionalmethod requires artificialmorphological segmentation
and the selection of the connected segmentation threshold;
it thus has a low practicality. Compared with the traditional
method, CNN extracts feature maps by automatic layering
to locate the insulator region. However, because CNN only
classifies image pixels, the image blocks around the pixels
are applied as input of the network to train and predict, and
the results of the segmentation are indirectly obtained.There
is redundancy in adjacent pixel blocks, too large amount
of image input data, and slow processing speed. Moreover,
it is difficult to decide the neighborhood window of pixels,
and the spatial position information in the image cannot be
considered, and it is not well recognized that the specific
contour of the object is difficult to accurately segment.
Compared with the CNN segmentation method, the FCN
network fuses the low-level features by forward iteration to
improve the segmentation accuracy of the region insulator.
The proposed SOFCN is further reconstructed and filtered
based on the FCN segmentation, which can also realize fine
segmentation of insulator regions in simple background.

The results of insulator segmentation in complex back-
ground regions are shown in Figure 6.

In Figure 6, the insulator images have complex back-
ground; it is difficult to determine the segmentation threshold
by using traditional methods. For complex insulator images
with multiple segmentation thresholds, they are greatly
affected by similar backgrounds, such as pole and tower and
lines, and the segmentation effect is poor. Compared with the
traditional method, CNN can realize the coarse positioning
of the insulator region, but the segmentation effect is rougher
due to the problem of determining the neighborhood size

of the pixel. Compared with the CNN method, the FCN
segmentation method directly predicted the pixels without
limiting the size of the input image and improved the
processing speed. At the same time, the insulator region
segmentation results were relatively fine which combined the
high-dimensional features and low-order features. However,
due to the expansion of the perceptual field of view in
the FCN network, the polymerization context leads to the
loss of detailed information such as the target position. For
insulator images with complex backgrounds, it is difficult to
accurately locate the regional insulators, which causes partial
background false detection to be an insulator region. In the
SOFCN, themorphological filtering operation is added to the
FCN network when the insulator region is segmented, and
the background which is misdetected as the insulator region
is filtered out. Then the precise segmentation of the insulator
region is realized.

4.3. Fault Recognition Effect Comparison. Because the tradi-
tional morphological corrosion combined with the branch
method can only realize the segmentation of partial insulator
images, it is difficult to recognize the complex background
insulator fault. Therefore, the paper compares and analyzes
the insulator fault recognition effect of this algorithm with
CNN segmentation algorithm and FCN segmentation algo-
rithm.

The ceramic insulator fault detection effect is shown in
Figure 7. To facilitate the intuitive observation of the fault
identification effect, we superimposed the identified faults on
the original images for comparative analysis.

It can be seen from Figure 7 that pixel neighborhood
size is difficult to be determined, spatial location information
cannot be taken into account, and the fault segmentation is
rough when using CNN segmentation method for insulator
fault detection. Especially when the distance between two
faults is close, it is easy to be mistakenly detected as a fault.
In comparison, the FCN segmentation method integrates the
high-dimensional feature and low-level feature information
to improve the segmentation accuracy. However, due to
the enlargement of the perceptual horizon in the pooling
layer and the polymerization of contexts, details such as
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(a) (b) (c) (d) (e)

Figure 5: Insulator segmentation results for simple background area. (a) Original images. (b) Traditional method. (c) CNN. (d) FCN. (e)
SOFCN.

Table 1: Segmentation accuracy (SA%) of three algorithms on six
ceramic insulator images with different backgrounds in Figure 7.

Methods A B C D E F
CNN [31] 0.9959 0.9913 0.9988 0.9936 0.9985 0.9929
FCN [34] 0.9967 0.9968 0.9991 0.9964 0.9980 0.9960
SOFCN 0.9976 0.9980 0.9995 0.9987 0.9988 0.9991

target location are lost, part of the background is mistakenly
detected as the fault part, and the fault recognition accuracy
is limited. In contrast, the reconstruction filtering method is
used to filter the background that is mistakenly detected as
the foreground by the initial FCN segmentation. The image
of the regional insulator is obtained. Based on the regional
insulator image, fault recognition is conducted, effectively
removing the interference from the fault recognition caused
by the complex background.

To accurately evaluate the insulator segmentation effect,
the paper introduces the pixel prediction accuracy of the
segmentation image 𝑆𝐴 as the evaluation index of the recon-
struction result. The specific formula is as follows:

𝑆𝐴 = 𝑐∑
𝑖=1

𝐴 𝑖 ∩ 𝐶𝑖∑𝑐𝑗=1 𝐶𝑗 (8)

where 𝑐 is the class of image pixels, 𝐴 𝑖 is the set of i-th pixels
that predict the correct prediction image, 𝐶𝑖 is the set of i-th
pixels of the standard image, 𝐶𝑗 is the set of j-th pixels of the
standard image, and 𝑆𝐴 is the pixel prediction accuracy.

The corresponding prediction accuracy is shown in
Table 1.

To analyze the accuracy of insulator fault recognition, we
introduce the pixel prediction accuracy rate SA as compara-
tive analysis.

It can be seen from Table 1 that the CNN segmentation
result is rough and the fault recognition accuracy is low.
Compared with CNN, the FCN segmentation has a finer fault
recognition accuracy, but there is partial misidentification.
Compared with FCN, the SOFCN reduces the false recogni-
tion rate and improves the detection accuracy.

The glass insulator inspection effect is shown in Figure 8.
In Figure 8, influenced by factors such as light, the

pixel points at the glass insulator are very close to the
background,which leads to the fault detection of the insulator
directly when CNN and FCN are used, the fault location
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(a) (b) (c) (d) (e)

Figure 6: Insulator segmentation result for complex background area. (a) Original images. (b) Traditional method. (c) CNN. (d) FCN. (e)
SOFCN.

Table 2: Segmentation accuracy (SA%) of three algorithms on six
glass insulator images with different backgrounds in Figure 8.

Methods A B C D E F
CNN[31] 0.9944 0.9939 0.9931 0.9830 0.9915 0.9886
FCN[34] 0.9890 0.9912 0.9920 0.9890 0.9900 0.9886
SOFCN 0.9987 0.9991 0.9976 0.9971 0.9976 0.9953

is missed or mistakenly detected as the background, and
the recognition effect is poor. In contrast, the proposed
SOFCN is based on the regional insulator to detect the
fault, which avoids the interference caused by the similar
background, recognizes the fault of glass insulator, and
improves the accuracy of the glass insulator fault detection.
The detailed fault recognition accuracy rate is shown in
Table 2.

It can be seen that the detection accuracy of CNN and
FCN is low according to Table 2.There are many phenomena
of missed detection and false detection of insulator faults,
and the recognition effect is poor. Compared with CNN

and FCN segmentation algorithm, the accuracy of insula-
tor fault recognition in the proposed SOFCN is obviously
improved, which is an effective insulator fault detection
method.

5. Conclusion

Aiming at the fault identification of aerial insulators in images
with complex background, this paper proposed a method
using SOFCN model for insulator fault detection. Firstly,
the first-order FCN is used to learn the image features,
and thus insulator regions are extracted from complex
background. Then the mathematical morphology recon-
struction operation is used to optimize the segmentation
result to obtain the accurate positioning of the insulator
regions. Finally, the SOFCN network is used to detect the
insulator fault. The method can effectively eliminate the
interference of complex background of noninsulated region.
Compared with conventional CNN and FCN, the segmen-
tation accuracy is obviously improved, and the insulator
fault in images with complex background can be accurately
identified.
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Figure 7: Fault detection results of ceramic insulator. (a) Original images. (b) CNN fault detection. (c) CNN results superposition. (d) FCN
fault detection. (e) FCN results superposition. (f) SOFCN fault detection. (g) SOFCN results superposition.
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Figure 8: Glass insulator test results. (a) Original images. (b) CNN fault detection. (c) CNN results superposition. (d) FCN fault detection.
(e) FCN results superposition. (f) SOFCN fault detection. (g) SOFCN results superposition.
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