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In decision-theoretic rough set (DTRS), the decision costs are used to generate the thresholds for characterizing the probabilistic
approximations. Similar to other rough sets, many generalized DTRS can also be formed by using different binary relations.
Nevertheless, it should be noticed that most of the processes for calculating binary relations do not take the labels of samples into
account, which may lead to the lower discrimination; for example, samples with different labels are regarded as indistinguishable.
To fill such gap, the main contribution of this paper is to propose a pseudolabel strategy for constructing new DTRS. Firstly, a
pseudolabel neighborhood relation is presented, which can differentiate samples by not only the neighborhood technique but
also the pseudolabels of samples. Immediately, the pseudolabel neighborhood decision-theoretic rough set (PLNDTRS) can be
constructed. Secondly, the problem of attribute reduction is explored, which aims to further reduce the PLNDTRS related decision
costs. A heuristic algorithm is also designed to find such reduct. Finally, the clustering technique is employed to generate the
pseudolabels of samples; the experimental results over 15 UCI data sets tell us that PLNDTRS is superior to DTRS without using
pseudolabels because the former can generate lower decision costs. Moreover, the proposed heuristic algorithm is also effective in
providing satisfied reducts. This study suggests new trends concerning cost sensitivity problem in rough data analysis.

1. Introduction

Different from classical rough set and its various generaliza-
tions [1–3], decision-theoretic rough set (DTRS) [4–6] has
beendemonstrated to be useful inmany cost related problems
[7–11]. Such model introduces not only the Bayesian decision
but also the minimal risk into the construction of lower
and upper approximations. Immediately, the thresholds for
defining approximations have clear explanations.

From the viewpoint of granular computing [12], binary
relation provides us with an effective mechanism for realizing
information granulation. Therefore, the model of DTRS is
used to characterize the relationship between the result of
information granulation (information granules) and decision
classes through considering the problem of costs. Con-
sequently, DTRS may contain two important aspects: (1)
information granulation and (2) decision costs. On the one
hand, different types of information granulations may be
used to construct different models [4, 13–19]. For example,
the classical DTRS is formed based on the indiscernibility

relation [4]; similar to Pawlak’s rough set, such model is
only useful in analyzing categorical data; Li et al. [16] have
proposed a neighborhood based DTRS, in which the result
of information granulation is expressed by neighborhoods of
samples; Song et al. [15] have proposed a fuzzy based DTRS,
in which the result of information granulation is reflected
by fuzzy relation. These representative results are suitable
for analysing data with continuous or even mixed values.
On the other hand, different problems related to costs also
provide us with more directions for studying DTRS [20, 21].
For instance, Dou et al. [10] have taken the characteristics of
multiplicity and variability of costs into consideration; they
proposed three different multicost based DTRS; Liang et al.
[22] have introduced the interval-value based cost intoDTRS,
which enlarges the application range of DTRS; to solve the
problemofmulticlass decision effectively, Yang et al. [23] have
proposed a sequential three-way approach.

From discussions above, it should be emphasized that
thoughdifferent binary relations have been used in construct-
ingDTRS, few of them take the labels of samples into account.
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Figure 1: A small example.

Therefore, the ability to discriminate may not perform well.
This is mainly because for any two samples their similarity
is only determined by attributes or features regardless of
the labels of such two samples. Consequently, samples with
different labels may meet the requirement of binary relation,
which will produce the extra decision costs [5].

What is more, in the studies of neighborhood systems
[24–26], is that using distance functions is a very common
and useful method. For example, Hu et al. [27] proposed
a neighborhood based rough set model, which is easy to
understand and implement; Li et al. [16] have replaced the
equivalence class used in traditional DTRS by neighborhood
relation. Correspondingly, we can use the neighborhood
relation in this paper.

Take a binary classification task as an example (see
Figure 1). There are 5 samples in the neighborhood of sample𝑦 except 𝑦 itself. That is, any one of the samples 𝑥𝑖 (𝑖 =1, 2, 3, 4, 5) and 𝑦 satisfies the neighborhood relation. In
addition, samples 𝑥1, 𝑥2, and 𝑥3 have the label of triangle,
while 𝑥4 and 𝑥5 have the label of square. Obviously, 𝑦
will be misclassified if the majority rule is employed; such
misclassification may produce additional cost if the cost
sensitivity problem is considered. To reduce this type of
the misclassification and the corresponding cost, a natural
thinking is to use a smaller scale of neighborhood [28].
However, it does not always work. For example, in Figure 1,
if the value of radius keeps reducing, then it is possible that
only𝑥2 is in the neighborhood of𝑦 if the reflexivity is ignored.
In this case, 𝑦 will also be misclassified.

Why reducing the value of radius is not always an
effective way? This is mainly because the distance between
samples is only determined by the condition attributes or
features, while ignoring the label information of samples.
The lower quality of attributes may not be good enough for
providing better discrimination. From this point of view,
new technique for measuring the similarity between samples,
which considers the information provided by the labels, has
become a necessity.

As we all know, in rough set theory, decision attribute
offers us the labels of samples. However, these labels cannot
be directly used, mainly because the labels over decision
attribute are used to generate decision classes for constructing
approximations. It is unreasonable to approximately charac-
terize the decision classes by using the information which is
derived from the decision attribute itself. For such reason,
new sources of the labels of samples should be considered.

Fortunately, motivated by the results of pseudolabel strategy
in unsupervised and semisupervised learning tasks [29–34],
we know that the pseudolabels of samples provide us with
another representation of labels. Therefore, it may be a useful
attempt for us to introduce the pseudolabel strategy into
DTRS.

Figure 2 reports the framework of our study. It must
be emphasized that our research is based on neighborhood
related DTRS. The reason is that neighborhood is suitable
for dealing with complex data with simple structure. Further-
more, neighborhood offers us a natural structure of multi-
granularity with the variation of radii. Obviously, following
Figure 2, our main contribution is the pseudolabel strategy.
In other words, the neighborhood of sample is determined
by not only the binary relation, but also the pseudolabels.
Correspondingly, the superiority of the pseudolabel strategy
is that it can take the labels of samples into account, which the
discrimination of samples can be improved.

The remainder of this paper is organized as follows.
The basic knowledge about decision-theoretic rough set
and neighborhood rough set is presented in Section 2. In
Section 3, the model of pseudolabel neighborhood decision-
theoretic rough set (PLNDTRS) is proposed. To further
reduce the decision costs, the problem of attribute reduction
is explored in Section 4. In Section 5, not only the experimen-
tal comparisons will be presented, but also the effectiveness
of our strategy will be analyzed. The paper is ended with
conclusions and perspectives for future work in Section 6.

2. Preliminary Knowledge

2.1. Decision-	eoretic Rough Set. In this section, some basic
notions aboutDTRS [5, 16] are presented. Similar to the intro-
duction of other rough sets, the concept of decision system
should be firstly described for simplifying the subsequent
discussions.

Definition 1. A decision system can be represented as 𝐷𝑆 =<𝑈,𝐴𝑇, 𝑑 >, in which𝑈 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} is a nonempty finite
set of samples, called the universe; 𝐴𝑇 is the set of condition
attributes; 𝑑 is the decision attribute. ∀𝑥 ∈ 𝑈, 𝑑(𝑥) expresses
the label of sample 𝑥, and 𝑎(𝑥) denotes the value that 𝑥 holds
on condition attribute 𝑎 (∀𝑎 ∈ 𝐴𝑇).

Given a decision system 𝐷𝑆, the classification task will
be considered in this paper and then labels of samples are
discrete. Consequently, an equivalence relation over 𝑑 can be
obtained such that IND(𝑑)={(𝑥, 𝑦) ∈ 𝑈 × 𝑈 : 𝑑(𝑥) = 𝑑(𝑦)}.
Immediately,𝑈/IND(𝑑) = {𝑋1, 𝑋2, . . . , 𝑋𝑞} is regarded as the
partition determined by IND(𝑑). ∀𝑋𝑘 ∈ 𝑈/IND(𝑑), 𝑋𝑘 is
the set of samples with same label and then it is referred to
as the 𝑘-th decision class. Specially, the decision class which
contains sample 𝑥 is denoted by [𝑥]𝑑.

To know what is DTRS, the following notions should be
given. LetΩ = {𝑋, ∼ 𝑋} indicate that a sample 𝑥 is in𝑋 or out
of𝑋, that is, the states of 𝑥.The conditional probability of 𝑥 in𝑋 can be obtained such that Pro(𝑋|[𝑥]) = |𝑋 ∩ [𝑥]|/|[𝑥]|, in
which [𝑥] is the information granule [35, 36] of 𝑥 generated
by using condition attributes and |𝑋| is the cardinal number
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Figure 2: The framework of this paper.

Table 1:The loss function regarding the costs of three actions in two
states.

𝑋 ∼ 𝑋
𝑎𝑃 𝜆𝑃𝑃 𝜆𝑃𝑁𝑎𝐵 𝜆𝐵𝑃 𝜆𝐵𝑁𝑎𝑁 𝜆𝑁𝑃 𝜆𝑁𝑁
of set 𝑋. For example, the equivalence classes derived by
the equivalence relation over condition attributes 𝐴𝑇 can be
regarded as information granules.

Furthermore, ∀𝑋 ⊆ 𝑈, three actions in A = {𝑎𝑃, 𝑎𝐵, 𝑎𝑁}
indicate 𝑥 belongs to 𝑋 or 𝑥 belongs to 𝑋 possibly or 𝑥 does
not belong to 𝑋. Therefore, the loss function regarding the
costs of three actions in two different states is given in Table 1.
In Table 1, 𝜆∗𝑃 (∗ ∈ {𝑃, 𝐵,𝑁}) denote the costs for taking
action 𝑎𝑃, 𝑎𝐵, or 𝑎𝑁 when the 𝑥 actual belongs to 𝑋, and𝜆∗𝑁 (∗ ∈ {𝑃, 𝐵,𝑁}) denote the costs for taking action 𝑎𝑃, 𝑎𝐵,
or 𝑎𝑁 when the 𝑥 actual does not belong to𝑋.

Following the costs shown in Table 1 and the conditional
probability, the Bayesian costs for three different decisions
can be defined as

R𝑃 = 𝑅 (𝑎𝑃 | [𝑥])
= 𝜆𝑃𝑃 ⋅ Pro (𝑋 | [𝑥]) + 𝜆𝑃𝑁 ⋅ Pro (∼ 𝑋 | [𝑥]) ;

R𝐵 = 𝑅 (𝑎𝐵 | [𝑥])
= 𝜆𝐵𝑃 ⋅ Pro (𝑋 | [𝑥]) + 𝜆𝐵𝑁 ⋅ Pro (∼ 𝑋 | [𝑥]) ;

R𝑁 = 𝑅 (𝑎𝑁 | [𝑥])
= 𝜆𝑁𝑃 ⋅ Pro (𝑋 | [𝑥]) + 𝜆𝑁𝑁 ⋅ Pro (∼ 𝑋 | [𝑥]) .

(1)

Correspondingly, the following minimum-cost decision
rules can be derived:

(P) If R𝑃 ≤ R𝐵 and R𝑃 ≤ R𝑁, then 𝑥 ∈ POS(𝑋);
(B) If R𝐵 ≤ R𝑃 and R𝐵 ≤ R𝑁, then 𝑥 ∈
BND(𝑋);
(N) If R𝑁 ≤ R𝑃 and R𝑁 ≤ R𝐵, then 𝑥 ∈
NEG(𝑋);

where POS(𝑋) denotes the positive region of 𝑋, BND(𝑋)
denotes the boundary region of 𝑋, and NEG(𝑋) denotes

the negative region of 𝑋. Samples in POS(𝑋) indicate that
these samples belong to𝑋 determinately, samples in BND(𝑋)
indicate that these samples belong to𝑋 possibly, and samples
in NEG(𝑋) indicate that these samples do not belong to𝑋.

Since Pro(𝑋 | [𝑥]) + Pro(∼ 𝑋 | [𝑥]) = 1, we also assume
a reasonable loss function with the conditions such that 0 ≤𝜆𝑃𝑃 ≤ 𝜆𝐵𝑃 ≤ 𝜆𝑁𝑃 and 0 ≤ 𝜆𝑁𝑁 ≤ 𝜆𝐵𝑁 ≤ 𝜆𝑃𝑁; decision rules
(P), (B), and (N) can be expressed as [10, 37]:

(P) If Pro(𝑋 | [𝑥]) ≥ 𝛼 and Pro(𝑋 | [𝑥]) ≥𝛾, then 𝑥 ∈ POS(𝑋);
(B) If Pro(𝑋 | [𝑥]) ≤ 𝛼 and Pro(𝑋 | [𝑥]) ≥𝛽, then 𝑥 ∈ BND(𝑋);
(N) If Pro(𝑋 | [𝑥]) ≤ 𝛽 and Pro(𝑋 | [𝑥]) ≤𝛾, then 𝑥 ∈ NEG(𝑋);

where three parameters 𝛼, 𝛽, and 𝛾 are
𝛼 = 𝜆𝑃𝑁 − 𝜆𝐵𝑁(𝜆𝑃𝑁 − 𝜆𝐵𝑁) + (𝜆𝐵𝑃 − 𝜆𝑃𝑃) ;
𝛽 = 𝜆𝐵𝑁 − 𝜆𝑁𝑁(𝜆𝐵𝑁 − 𝜆𝑁𝑁) + (𝜆𝑁𝑃 − 𝜆𝐵𝑃) ;
𝛾 = 𝜆𝑃𝑁 − 𝜆𝑁𝑁(𝜆𝑃𝑁 − 𝜆𝑁𝑁) + (𝜆𝑁𝑃 − 𝜆𝑃𝑃) .

(2)

In addition, if we assume the following condition for the
loss function [5, 37]:

(𝜆𝑁𝑃 − 𝜆𝐵𝑃)(𝜆𝐵𝑁 − 𝜆𝑁𝑁) > (𝜆𝐵𝑃 − 𝜆𝑃𝑃)(𝜆𝑃𝑁 − 𝜆𝐵𝑁) , (3)

then we have 0 ≤ 𝛽 < 𝛾 < 𝛼 ≤ 1. In this case, the final
decision rules associated with the conditional probability and
thresholds can be obtained:

(P) If Pro(𝑋 | [𝑥]) ≥ 𝛼, then 𝑥 ∈ POS(𝑋);
(B) If 𝛽 < Pro(𝑋 | [𝑥]) < 𝛼, then 𝑥 ∈ BND(𝑋);
(N) If Pro(𝑋 | [𝑥]) ≤ 𝛽, then 𝑥 ∈ NEG(𝑋).



4 Mathematical Problems in Engineering

If we denote 𝑝 = Pro(𝑋 | [𝑥]), then we have the following
Bayesian costs for three different rules:

Cost of positive rule : 𝑝 ⋅ 𝜆𝑃𝑃 + (1 − 𝑝) ⋅ 𝜆𝑃𝑁;
Cost of boundary rule : 𝑝 ⋅ 𝜆𝐵𝑃 + (1 − 𝑝) ⋅ 𝜆𝐵𝑁;
Cost of negative rule : 𝑝 ⋅ 𝜆𝑁𝑃 + (1 − 𝑝) ⋅ 𝜆𝑁𝑁.

(4)

From discussions above, the decision-theoretic based
lower and upper approximations of 𝑋 ⊆ 𝑈 are

𝑋(𝛼,𝛽) = {𝑥 ∈ 𝑈 : Pro (𝑋 | [𝑥]) ≥ 𝛼} ; (5)

𝑋(𝛼,𝛽) = {𝑥 ∈ 𝑈 : Pro (𝑋 | [𝑥]) > 𝛽} . (6)

The pair [𝑋(𝛼,𝛽), 𝑋(𝛼,𝛽)] is referred to as a decision-
theoretic rough set of 𝑋, POS(𝑋) = 𝑋(𝛼,𝛽) is the decision-
theoretic positive region of 𝑋, BND(𝑋) = 𝑋(𝛼,𝛽) − 𝑋(𝛼,𝛽) is
the decision-theoretic boundary region of𝑋, and NEG(𝑋) =
𝑈 − 𝑋(𝛼,𝛽) is the decision-theoretic negative region of𝑋.

2.2. Neighborhood Rough Set. Neighborhood rough set is
another generalization of classical rough set. There are two
main advantages for neighborhood rough set: (1) it is suitable
for dealing with continuous data or even mixed data, mainly
because the neighborhood relation is constructed based
on the consideration of distance between samples; (2) the
scale of neighborhood provides us with a flexible technique
to measure the granularity [38] and then the structure of
multigranularity [39, 40] can be naturally formed.

Definition 2. Given a decision system 𝐷𝑆 and a neighbor-
hood radius 𝛿 ∈ (0, 1], ∀𝐴 ⊆ 𝐴𝑇, the neighborhood relation
in terms of 𝐴 can be defined as [27]:

𝛿𝐴 = {(𝑥, 𝑦) ∈ 𝑈 × 𝑈 : Δ𝐴 (𝑥, 𝑦) ≤ 𝛿} , (7)

∀𝑥 ∈ 𝑈; the neighborhood of 𝑥 is then defined as

𝛿𝐴 (𝑥) = {𝑦 ∈ 𝑈 : Δ𝐴 (𝑥, 𝑦) ≤ 𝛿} , (8)

where Δ is a metric function and the Euclidean distance is a
widely accepted form such that

Δ𝐴 (𝑥, 𝑦) = √∑
𝑎∈𝐴

(𝑎 (𝑥) − 𝑎 (𝑦))2. (9)

Obviously, the neighborhood relation shown in Equation
(7) is one of the binary relations; it is reflexive and symmetric.
Moreover, it is not difficult to observe that the neighborhood
relation produces neighborhood based information granule
[41], in which samples are considered similar to the central
sample. The size of the neighborhood is determined by the
radius 𝛿. If different values of 𝛿 are used, then different
results of neighborhood relationswill be generated.Generally
speaking, smaller value of 𝛿will generate finer neighborhood
relation while greater value of 𝛿 will generate coarser neigh-
borhood relation.

Definition 3. Given a decision system𝐷𝑆, ∀𝑋 ⊆ 𝑈, and ∀𝐴 ⊆𝐴𝑇, the neighborhood lower and upper approximations of𝑋
with respect to 𝐴 are defined as

𝑁𝐴 (𝑋) = {𝑥 ∈ 𝑈 : 𝛿𝐴 (𝑥) ⊆ 𝑋} ; (10)

𝑁𝐴 (𝑋) = {𝑥 ∈ 𝑈 : 𝛿𝐴 (𝑥) ∩ 𝑋 ̸= 0} . (11)

The pair [𝑁𝐴(𝑋), 𝑁𝐴(𝑋)] is referred to as a neighbor-
hood rough set of 𝑋.

Proposition 4. [27] Given a decision system𝐷𝑆 and two radii
such that 𝛿1 ≤ 𝛿2, then we have 𝛿1(𝑥) ⊆ 𝛿2(𝑥) for each 𝑥 ∈ 𝑈.
Proposition 5. [27] Given a decision system 𝐷𝑆, ∀𝐴 ⊆ 𝐴𝑇,∀𝑥 ∈ 𝑈, and 𝛿 ∈ (0, 1], then we have 𝛿𝐴𝑇(𝑥) ⊆ 𝛿𝐴(𝑥).
Proposition 6. [27] Given a decision system 𝐷𝑆, ∀𝐴 ⊆ 𝐴𝑇,∀𝑥 ∈ 𝑈, and 𝛿 ∈ (0, 1], then we have 𝑁𝐴(𝑋) ⊆ 𝑁𝐴𝑇(𝑋) and𝑁𝐴(𝑋) ⊇ 𝑁𝐴𝑇(𝑋).

Propositions 5 and 6 tell us that if the number of used
attributes is increasing, then the size of the neighborhoodwill
be reduced; it follows that the lower approximation will be
expanded and the upper approximation will be narrowed.

2.3. Neighborhood Decision-	eoretic Rough Set. One of the
main motivations of neighborhood decision-theoretic rough
set (NDTRS) is that the classical DTRS can only be used to
deal with categorical data. Therefore, to further expand the
applications of DTRS, the information granule [𝑥] in DTRS
is replaced by neighborhood in NDTRS; that is, ∀𝐴 ⊆ 𝐴𝑇;
the conditional probability is Pro(𝑋 | 𝛿𝐴(𝑥)) = |𝑋 ∩𝛿𝐴(𝑥)|/|𝛿𝐴(𝑥)|. Immediately, given a decision system 𝐷𝑆,∀𝑋 ⊆ 𝑈, and ∀𝐴 ⊆ 𝐴𝑇, the neighborhood decision-theoretic
based lower and upper approximations of𝑋 are [16]

𝑁(𝛼,𝛽)𝐴 (𝑋) = {𝑥 ∈ 𝑈 : Pro(𝑋 | 𝛿𝐴 (𝑥) ≥ 𝛼} ; (12)

𝑁(𝛼,𝛽)𝐴 (𝑋) = {𝑥 ∈ 𝑈 : Pro(𝑋 | 𝛿𝐴 (𝑥) > 𝛽} . (13)

Correspondingly, the positive, boundary and negative
regions of𝑋 are

POS(𝛼,𝛽)𝐴 (𝑋) = 𝑁(𝛼,𝛽)𝐴 (𝑋) ;
BND(𝛼,𝛽)𝐴 (𝑋) = 𝑁(𝛼,𝛽)𝐴 (𝑋) − 𝑁(𝛼,𝛽)𝐴 (𝑋) ;
NEG(𝛼,𝛽)𝐴 (𝑋) = 𝑈 − 𝑁(𝛼,𝛽)𝐴 (𝑋) .

(14)

3. Pseudolabel Neighborhood
Decision-Theoretic Rough Set (PLNDTRS)

Though NDTRS uses the neighborhood relation to replace
the indiscernibility relation for realizing information gran-
ulation, the derived neighborhoods are still closely related
to the distances which are determined by the values of
condition attributes or features. However, it is well known
that the Euclidean distance does not always perform well for
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distinguishing samples, especially in high-dimensional data.
Therefore, new techniques have become the necessary issues
to be addressed.

Following the construction of distance based neighbor-
hood relation, that is, Equation (7), it is not difficult to observe
that such strategy does not take the labels of samples into
consideration. Therefore, it is possible that different samples
with different labels may fall into the same neighborhood.
From this point of view, if the labels of samples are used, then
such situation may be relieved. Nevertheless, the raw labels
of samples in decision system are not suitable for directly
using, mainly because we cannot approximate the decision
classes generated by decision attribute through using the label
provided by the decision attribute itself. For such reason, we
will further expand decision system 𝐷𝑆 by additional infor-
mation of pseudolabels. The sources of pseudolabels may be
derived from clustering analysis, classification analysis, label
propagation [42], and so on.

Formally, a pseudolabel decision system can be repre-
sented as 𝐷𝑆𝑃𝐿 =< 𝑈,𝐴𝑇, 𝑑, 𝑑𝑃𝐿𝐴𝑇 >, in which 𝑈, 𝐴𝑇, and 𝑑
are similar to those in decision system 𝐷𝑆, respectively; 𝑑𝑃𝐿𝐴𝑇
is the pseudolabel decision attribute, ∀𝑥 ∈ 𝑈, 𝑑𝑃𝐿𝐴𝑇(𝑥) is the
pseudolabel of𝑥 that is derived froma learning approach over𝐴𝑇. And the learning approach is 𝑘-means clustering in this
paper.

Since both condition attributes and pseudolabels of sam-
ples exist in the pseudolabel neighborhood decision sys-
tem, we can define the following pseudolabel neighborhood
relation for replacing the traditional neighborhood relation
shown in Equation (7).

Definition 7. Given a pseudolabel decision system 𝐷𝑆𝑃𝐿 and
a neighborhood radius 𝛿 ∈ (0, 1], ∀𝐴 ⊆ 𝐴𝑇, the pseudolabel
neighborhood relation is defined as

𝛿𝑃𝐿𝐴 = {(𝑥, 𝑦) ∈ 𝑈 × 𝑈 : Δ𝐴 (𝑥, 𝑦) ≤ 𝛿 ∧ 𝑑𝑃𝐿𝐴 (𝑥)
= 𝑑𝑃𝐿𝐴 (𝑦)} . (15)

Following Definition 7, ∀𝑥 ∈ 𝑈, the pseudolabel neigh-
borhood of 𝑥 is then defined as

𝛿𝑃𝐿𝐴 (𝑥)
= {𝑦 ∈ 𝑈 : Δ𝐴 (𝑥, 𝑦) ≤ 𝛿 ∧ 𝑑𝑃𝐿𝐴 (𝑥) = 𝑑𝑃𝐿𝐴 (𝑦)} . (16)

Obviously, in Definition 7, two constraints have been
employed to construct the pseudolabel neighborhood rela-
tion: (1) similar to previous neighborhood relation shown in
Equation (7), the distance between two samples should be less
than or equal to the given radius; (2) two samples must have
same pseudolabel.

Proposition 8. Given a pseudolabel decision system 𝐷𝑆𝑃𝐿,∀𝐴 ⊆ 𝐴𝑇, we have 𝛿𝑃𝐿𝐴 (𝑥) ⊆ 𝛿𝐴(𝑥).
Proof. It can be derived directly from Equations (8) and (16).

The above proposition tells us that, by comparing the tra-
ditional approach, our pseudolabel strategy can derive a finer

neighborhood relation which provides higher performance
of discrimination, mainly because the samples with different
pseudolabels should be deleted from the neighborhood.

Naturally, following Equation (16), the pseudolabel neigh-
borhood decision-theoretic rough set (PLNDTRS) can be
formed as Definition 9 shows.

Definition 9. Given a pseudolabel decision system 𝐷𝑆𝑃𝐿,∀𝑋 ⊆ 𝑈, and ∀𝐴 ⊆ 𝐴𝑇, the pseudolabel neighborhood lower
and upper approximations of 𝑋 are

𝑃𝐿𝑁(𝛼,𝛽)𝐴 (𝑋) = {𝑥 ∈ 𝑈 : Pro (𝑋 | 𝛿𝑃𝐿𝐴 (𝑥)) ≥ 𝛼} ; (17)

𝑃𝐿𝑁(𝛼,𝛽)𝐴 (𝑋) = {𝑥 ∈ 𝑈 : Pro (𝑋 | 𝛿𝑃𝐿𝐴 (𝑥)) > 𝛽} . (18)

The pair [𝑃𝐿𝑁(𝛼,𝛽)𝐴 (𝑋), 𝑃𝐿𝑁(𝛼,𝛽)𝐴 (𝑋)] is referred to as a
PLNDTRS of 𝑋. Correspondingly, the pseudolabel positive,
boundary, and negative regions of 𝑋 are

PLPOS(𝛼,𝛽)𝐴 (𝑋) = 𝑃𝐿𝑁(𝛼,𝛽)𝐴 (𝑋) ;
PLBND(𝛼,𝛽)𝐴 (𝑋) = 𝑃𝐿𝑁(𝛼,𝛽)𝐴 (𝑋) − 𝑃𝐿𝑁(𝛼,𝛽)𝐴 (𝑋) ;
PLNEG(𝛼,𝛽)𝐴 (𝑋) = 𝑈 − 𝑃𝐿𝑁(𝛼,𝛽)𝐴 (𝑋) .

(19)

Example 10. For readers’ convenience, we can take an exam-
ple to show the difference between NDTRS and PLNDTRS.
Figure 3 shows us a binary classification problem. Two
classes of samples are represented by blue “⋅” and red “+”,
respectively.

(1) Let us investigate subfigure (a); suppose that 𝑥 is a
testing sample for classification; based on the given radius 𝛿,
8 samples fall into the neighborhood of 𝑥 except 𝑥 itself; they
are𝑦1, . . . , 𝑦8. Obviously, samples𝑦1 , 𝑦4, and𝑦6 have the label
of blue “⋅” and samples 𝑦2, 𝑦3, 𝑦5, 𝑦7, and 𝑦8 have the label of
red “+”. We then conclude that 𝑥 will be misclassified if the
majority rule is employed, mainly because the majority rule
classifies sample 𝑥 into the class of red “+” while the real label
of 𝑥 is blue “⋅”.

Furthermore, if the value of 𝛼 is 0.3, then by Euation (12),
we can conclude that 𝑥 belongs to the lower approximations
of both two different classes. The reason is that Pro(𝑋1 |𝛿𝐴(𝑥)) = 0.44 and Pro(𝑋2 | 𝛿𝐴(𝑥)) = 0.56 if 𝑋1 indicates
the class of blue “⋅” while𝑋2 indicates the red “+”. Obviously,
it is an inconsistent case and there is a conflict between two
different lower approximations.

(2) Let us investigate subfigure (b) which shows us both
the real labels and the pseudolabels of samples. The real
labels are same to those in subfigure (a); the pseudo labels of
samples are denoted by “△” and “ ⃝”, respectively. Obviously,𝑦1, 𝑦2, 𝑦3, 𝑦7, and 𝑦8 have the same pseudolabel (“ ⃝”) while𝑦4, 𝑦5, 𝑦6, and 𝑥 have another same pseudolabel (“△”). Based
on the expression of Definition 7, 𝑦1, 𝑦2, 𝑦3, 𝑦7, and 𝑦8 should
be deleted from the neighborhood of 𝑥, mainly because,
by comparing 𝑥, these samples have different pseudolabels.
Immediately, 𝑦4, 𝑦5, and 𝑦6 are in the pseudolabel neigh-
borhood of sample 𝑥. Therefore, sample 𝑥 can be correctly
classified if the majority rule is used.
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(b) PLNDTRS

Figure 3: The difference between NDTRS and PLNDTRS.

In addition, if the value of 𝛼 is 0.3, then, by Equation (17),
we can observe that 𝑥 belongs to the lower approximation
of the class of blue “⋅” while it does not belong to the
lower approximation of the class of red “+”, mainly because
Pro(𝑋1 | 𝛿𝑃𝐿𝐴 (𝑥)) = 0.75 and Pro(𝑋2 | 𝛿𝑃𝐿𝐴 (𝑥)) = 0.25. In
other words, there is no conflict between such two different
lower approximations.

The above example tells us that our pseudolabel neigh-
borhood approach can not only provide us with better
classification performance, but also remove the conflict case
between the results of lower approximations.

Similar to what have been addressed for NDTRS in [16],
we can also obtain the following results for PLNDTRS.

Proposition 11. Given a pseudolabel decision system 𝐷𝑆𝑃𝐿
and two values 𝛼1, 𝛼2, if 𝛼1 ≤ 𝛼2, then ∀𝐴 ⊆ 𝐴𝑇 and ∀𝑋 ⊆ 𝑈;
we have PLPOS(𝛼2,𝛽)𝐴 (𝑋) ⊆ PLPOS(𝛼1,𝛽)𝐴 (𝑋).
Proof. ∀𝑦 ∈ PLPOS(𝛼2,𝛽)𝐴 (𝑋), by Definition 9 and Equation
(19), we have Pro(𝑋 | 𝛿𝑃𝐿𝐴 (𝑦)) ≥ 𝛼2. Since 𝛼1 ≤ 𝛼2, we
then have Pro(𝑋 | 𝛿P𝐿𝐴 (𝑦)) ≥ 𝛼1; it follows that 𝑦 ∈
PLPOS(𝛼1,𝛽)𝐴 (𝑋); that is, PLPOS(𝛼2,𝛽)𝐴 (𝑋) ⊆ PLPOS(𝛼1,𝛽)𝐴 (𝑋) is
proved.

Proposition 12. Given a pseudolabel decision system 𝐷𝑆𝑃𝐿
and two values 𝛽1, 𝛽2, if 𝛽1 ≤ 𝛽2, then ∀𝐴 ⊆ 𝐴𝑇 and ∀𝑋 ⊆ 𝑈;
we have PLBND(𝛼,𝛽2)𝐴 (𝑋) ⊆ PLBND(𝛼,𝛽1)𝐴 (𝑋).
Proof. For ∀𝑦 ∈ PLBND(𝛼,𝛽2)𝐴 (𝑋), by Definition 9, we have
Pro(𝑋 | 𝛿𝑃𝐿𝐴 (𝑦)) > 𝛽2. Since 𝛽1 ≤ 𝛽2, we then have Pro(𝑋 |𝛿𝑃𝐿𝐴 (𝑦)) > 𝛽1; it follows that 𝑦 ∈ PLBND(𝛼,𝛽1)𝐴 (𝑋); that is,
PLBND(𝛼,𝛽2)𝐴 (𝑋) ⊆ PLBND(𝛼,𝛽1)𝐴 (𝑋) is proved.

The above two propositions suggest that we can also
adjust the size of positive region or the boundary region of𝑋 by modifying the values of 𝛼 and 𝛽 in PLNDTRS.

4. Attribute Reduction in PLNDTRS

4.1. Aim of Attribute Reduction. Attribute reduction [43]
plays a crucial role in the development of rough set. Different
from previous feature selections in the field of Machine
Learning, attribute reduction has clear explanations with
respect to different constraints. For example, if the positive
region is expected to be preserved, then attribute reduction
may be defined as aminimal subset of the condition attributes
which preserves the positive region.

Up to now, through considering various constraints,
a lot of the researchers have proposed so many different
definitions of attribute reductions [43–48]. It should be
noticed that, for DTRS related attribute reductions, decision
costs provide us with an interesting topic [11, 49, 50]. In other
words, it is frequently expected that, through using attribute
reduction, the obtained subset of the condition attributesmay
provide lower or minimal value of decision cost. Therefore,
in the following of this section, the attribute reduction will be
further explored for achieving lower decision cost based on
PLNDTRS.

Firstly, given a pseudolabel decision system 𝐷𝑆𝑃𝐿, let us
review how to calculate the decision costs. ∀𝐴 ⊆ 𝐴𝑇 and
suppose that𝑈/IND(𝑑) = {𝑋1, 𝑋2, . . . , 𝑋𝑞}; the total decision
cost is

COST𝑃𝐿𝐴 = COSTPLPOS
𝐴 + COSTPLBND

𝐴

+ COSTPLNEG
𝐴 ; (20)

where

COSTPLPOS
𝐴 = 𝑞∑

𝑗=1

∑
𝑥∈PLPOS(𝛼,𝛽)

𝐴
(𝑋𝑗)

(Pro (𝑋𝑗 | 𝛿𝑃𝐿𝐴 (𝑥))

⋅ 𝜆𝑃𝑃 + (1 − Pro (𝑋𝑗 | 𝛿𝑃𝐿𝐴 (𝑥))) ⋅ 𝜆𝑃𝑁) ;
(21)
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Table 2: A small example of pseudolabel decision system.

𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑑 𝑑𝑃𝐿
𝑥1 0.5402 0.8300 0.4755 0.0212 0.4771 1 #𝑥2 0.9538 0.4890 0.5832 0.8799 0.6534 1 #𝑥3 0.2089 0.7607 0.2605 0.7981 0.9665 2 #𝑥4 0.1163 0.9151 0.0848 0.3241 0.3130 1 #𝑥5 0.6462 0.9009 0.2981 0.6690 0.0764 3 #𝑥6 0.1084 0.2142 0.9171 0.2962 0.7914 3 ∗𝑥7 0.9834 0.5470 0.4705 0.9299 0.3653 2 #𝑥8 0.2483 0.7847 0.2694 0.2819 0.5850 1 #𝑥9 0.6063 0.1944 0.7629 0.1688 0.1833 2 +𝑥10 0.8166 0.7468 0.7721 0.7451 0.0769 2 ∗

COSTPLBND
𝐴 = 𝑞∑

𝑗=1

∑
𝑥∈PLBND(𝛼,𝛽)

𝐴
(𝑋𝑗)

(Pro (𝑋𝑗 | 𝛿𝑃𝐿𝐴 (𝑥))

⋅ 𝜆𝐵𝑃 + (1 − Pro (𝑋𝑗 | 𝛿𝑃𝐿𝐴 (𝑥))) ⋅ 𝜆𝐵𝑁) ;
(22)

COSTPLNEG
𝐴 = 𝑞∑

𝑗=1

∑
𝑥∈PLNEG(𝛼,𝛽)𝐴 (𝑋𝑗)

(Pro (𝑋𝑗 | 𝛿𝑃𝐿𝐴 (𝑥))

⋅ 𝜆𝑁𝑃 + (1 − Pro (𝑋𝑗 | 𝛿𝑃𝐿𝐴 (𝑥))) ⋅ 𝜆𝑁𝑁) .
(23)

COST𝑃𝐿𝐴 indicates the total decision cost, COSTPLPOS
𝐴

indicates the decision cost of positive region, COSTPLBND
𝐴

indicates the decision cost of boundary region, and
COSTPLNEG

𝐴 is the decision cost of negative region.
Similar to other DTRS, the decision costs of our

PLNDTRS are not always monotonic if the used condition
attributes vary. For example, if the number of used condition
attributes has been reduced, then the derived decision costs
may increase or decrease. Therefore, our definition attribute
reduction will be presented, which aims to achieve the lower
decision cost through selecting a subset of the condition
attributes.

Definition 13. Given a pseudolabel decision system 𝐷𝑆𝑃𝐿,∀𝐴 ⊆ 𝐴𝑇, 𝐴 is referred to as a reduct in 𝐷𝑆𝑃𝐿 if and only
if

(1) COST𝑃𝐿𝐴 ≤ COST𝑃𝐿𝐴𝑇 and 𝐴 ̸= 0;
(2) ∀𝐵 ⊂ 𝐴, COST𝑃𝐿𝐵 > COST𝑃𝐿𝐴 .

Example 14. Table 2 is a small example of pseudolabel deci-
sion system which contains 10 samples. All of these samples
are described by five condition attributes such that 𝐴𝑇 ={𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5}. The pseudolabels of samples are obtained
by clustering technique.

Assuming that 𝛿 = 0.2 and the parameters in loss func-
tion are 𝜆𝑃𝑃 = 𝜆𝑁𝑁 = 0, 𝜆𝑃𝑁 = 1, 𝜆𝑁𝑃 = 0.95, 𝜆𝐵𝑃 = 0.16,𝜆𝐵𝑁 = 0.39, then we can calculate two thresholds such that𝛼 = 0.7922 and 𝛽 = 0.3305. The decision cost based on the
whole condition attribute set 𝐴𝑇, that is, COST𝑃𝐿𝐴𝑇, is 1.2983.

By computation, the decision cost based on {𝑎3, 𝑎5} is
0.8633, which is lower than COST𝑃𝐿𝐴𝑇. Furthermore, if we

remove the attribute 𝑎5, then the decision cost based on {𝑎3}
is 2.0017; if we remove the attribute 𝑎3, then the decision
cost based on {𝑎5} is 1.4983. Obviously, both the decision cost
based on {𝑎3} and the decision cost based on {𝑎5} are higher
than the decision cost based on {𝑎3, 𝑎5}; that is, neither 𝑎3
nor 𝑎5 can be removed for generating lower decision cost.
Therefore, the condition attributes set {𝑎3, 𝑎5} is a reduct in
Table 2.

4.2. Algorithm to Compute Reduct. Presently, in the field of
rough set, it is well known that obtaining all reducts is an
NP-hard problem [51, 52]; it follows that many heuristic
algorithms for finding reducts have been studied [45, 53].
Generally speaking, a heuristic algorithm contains two core
aspects: heuristic information and searching strategy.

In the heuristic algorithm, the fitness function can be
used to characterize the heuristic information. For example,
in Definition 13, the decision cost COST𝑃𝐿𝐴 should be used to
construct fitness function because the aim of Definition 13 is
to find a subset of condition attributes which derives lower
decision cost.

With regard to the searching strategies in the heuristic
algorithm, two approaches have been considered. One is
directional searching and the other is nondirectional search-
ing. The directional searching strategy can be further catego-
rized into deletion method, addition method, and addition-
deletion method [54]. Nondirectional searching strategy is
usually applied to evolutionary algorithms, swarm algo-
rithms, and other population-basedmetaheuristic algorithms
for optimization problems.

In the context of this paper, we will use the addition
method to compute the reduct; that is, the searching strategy
is directional searching. To achieve that, the fitness function
for measuring the significance of the condition attribute
should be presented. The detailed form is shown in the
following definition.

Definition 15. Given a pseudolabel decision system 𝐷𝑆𝑃𝐿,∀𝐴 ⊆ 𝐴𝑇, and ∀𝑎 ∈ 𝐴𝑇 − 𝐴, the fitness value of attribute𝑎 is
Sig (𝑎, 𝐴, 𝑑) = COST𝑃𝐿𝐴∪{𝑎} − COST𝑃𝐿𝐴 . (24)
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Inputs: A decision system𝐷𝑆.
Outputs: A reduct 𝐴.
Step 1: ∀𝑥𝑖 ∈ 𝑈, obtain 𝑑𝑃𝐿𝐴𝑇(𝑥𝑖) by 𝑘-means clustering.//𝑘 is same to the number of decision classes in 𝐷𝑆.
Step 2: Compute COST𝑃𝐿𝐴𝑇;
Step 3: 𝐴 = 0 and let COST𝑃𝐿𝐴 be a value which is greater than COST𝑃𝐿𝐴𝑇;
Step 4: While COST𝑃𝐿𝐴 > COST𝑃𝐿𝐴𝑇;

(1) ∀𝐴𝑇 − 𝐴, ∀𝑥𝑖 ∈ 𝑈, compute 𝑑𝑃𝐿𝐴∪{𝑎}(𝑥𝑖);
(2) ∀𝐴𝑇 − 𝐴, compute Sig(𝑎, 𝐴, 𝑑);
(3) Select the attribute 𝑎 such that 𝑎 = arg min{Sig(𝑎, 𝐴, 𝑑) : ∀𝑎 ∈ 𝐴𝑇 − 𝐴};
(4) 𝐴 = 𝐴 ∪ {𝑎};
(5) Compute COST𝑃𝐿𝐴 ;
EndWhile.

Step 5: Output 𝐴.
Algorithm 1: Compute reduct based on PLNDTRS.

Table 3: A description of data sets.

ID Data sets Samples Attributes Decision classes
1 Abalone 4177 7 29
2 Breast CancerWisconsin (Diagnostic) 569 30 2
3 Caffeine Consumption 1885 12 7
4 Cardiotocography 1216 21 10
5 Dermatology 366 36 6
6 E. coli 336 7 8
7 Glass Identification 214 9 6
8 LSVT Voice Rehabilitation 126 257 2
9 Page Blocks Classification 5473 10 5
10 Ring 7400 20 2
11 Statlog (Image Segmentation) 2310 18 7
12 Urban Land Cover 675 147 9
13 Waveform Database Generator 5000 21 3
14 Wine 178 13 3
15 Yeast 1484 8 10

Obviously, the above fitness function displays the signifi-
cance or importance of an attribute. If Sig(𝑎, 𝐴, 𝑑) ≥ 0, then
the attribute 𝑎 cannot be added into 𝐴 because the decision
cost will be increased; if Sig(𝑎, 𝐴, 𝑑) < 0, then the attribute 𝑎
can be added into𝐴 possibly because the decision cost will be
decreased.

In the procedure of adding attributes, if COST𝑃𝐿𝐴 ≤
COST𝑃𝐿𝐴𝑇, then we will stop such procedure and output the
final reduct 𝐴. The detailed process is shown in Algorithm 1
[16, 49].

In Algorithm 1, following the basic structure of 𝑘-means
clustering, in Step 1, the time complexity of computing
pseudolabels of samples is 𝑂(𝑘 ⋅ 𝑇 ⋅ |𝑈|), in which 𝑘 is the
number of clusters and𝑇 is the number of iterations.The time
complexity of Step 2 is𝑂(|𝑈|2 ⋅ |𝐴𝑇|) because it is required to
compare any two samples in 𝑈 over condition attributes 𝐴𝑇
for generating neighborhoods. Step 4 is the iteration process
of adding attributes into the reduct. The time complexity
of Step 4 is 𝑂(|𝑈|2 ⋅ |𝐴𝑇|2) since, in the worst case, such

looping should be executed |𝐴𝑇| times. To sum up, we can
conclude that the whole time complexity of Algorithm 1 is𝑂(𝑘 ⋅ 𝑇 ⋅ |𝑈| + |𝑈|2 ⋅ |𝐴𝑇|2).
5. Experimental Analyses

In this section, to evaluate the performance of PLNDTRS and
corresponding algorithm to compute reduct, 15 UCI data sets
have been selected to conduct the experiments. The details
of these data are shown in Table 3. All the experiments have
been carried out on a personal computer with Windows 10,
Intel Core i5 3230M CPU (2.60GHz), and 4.00 GB memory.
The programming platform is MATLAB R2018a.

In the experiments, 𝑘-means clustering is employed to
produce pseudolabels, and the value of 𝑘 is the number
of decision classes. For all the experiments in this section,
10 different values of 𝛿 have been used; they are 𝛿 =0.03, 0.06, . . . , 0.3. Moreover, not only the 10-fold cross-
validation is employed in our experiments, but also 10
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Table 4: Comparisons of different decision costs in terms of raw attributes (smaller values are underlined).

Total costs Costs of positive region Costs of boundary region Costs of negative region
ID NDTRS PLNDTRS NDTRS PLNDTRS NDTRS PLNDTRS NDTRS PLNDTRS
1 515.7637 505.4116 3.1993 4.0853 466.0496 448.8289 46.5148 52.4974
2 50.8504 26.4840 31.3946 23.0951 19.4558 3.3889 0.0000 0.0000
3 399.2153 388.7867 100.7310 93.6039 297.0621 293.5297 1.4220 1.6532
4 424.4182 397.1313 31.8888 33.7502 357.4530 336.0896 35.0765 27.2915
5 22.3292 6.4481 5.3326 4.2677 16.8490 2.1804 0.1475 0.0000
6 49.7287 36.9805 13.7807 11.7077 35.2870 24.8976 0.6611 0.3752
7 48.5359 45.3767 2.1099 1.7737 45.7020 43.1462 0.7239 0.4568
8 28.0053 27.6984 2.3890 2.3280 25.6164 25.3704 0.0000 0.0000
9 247.8693 221.4285 176.073 149.7464 70.7042 71.6207 0.9431 0.0613
10 640.0481 634.8294 364.5238 360.2211 275.5243 274.6083 0.0000 0.0000
11 272.5914 249.7893 43.8713 41.2862 214.8033 206.0070 13.9169 2.4961
12 131.3945 97.1666 20.5268 26.6987 107.7290 69.9520 3.1387 0.5159
13 967.5386 944.4428 209.2039 194.6551 758.3347 749.7877 0.0000 0.0000
14 8.7816 3.9627 4.8234 2.3965 3.9583 1.5662 0.0000 0.0000
15 381.1040 361.9059 11.7836 21.0489 319.6782 315.4133 49.6422 25.4437

different groups of loss functions are generated randomly for
each cross-validation. Therefore, for each radius 𝛿, each data
set will be tested 100 times.

5.1. Experiments on Raw Attributes. In what follows, the
decision costs obtained byNDTRS and PLNDTRS in terms of
raw attributes will be compared. The forms of these decision
costs have been shown in Equations (20)-(23). The detailed
results are shown in Table 4.

Through a careful investigation of Table 4, it is not
difficult to draw the following conclusion.

For all the data sets, the total decision costs generated by
PLNDTRS are lower than those generated by NDTRS. This
is mainly because (1) most of the decision costs of PLNDTRS
based positive region are lower than those of NDTRS based
positive region; (2) most of the decision costs of PLNDTRS
based boundary region are lower than those of NDTRS based
boundary region. From this point of view, by comparing
NDTRS, our pseudolabel strategy does work for reducing the
decision costs.

5.2. Experiments on Attribute Reduction. In this subsection,
to show the efficiency of the proposed attribute reduction
shown in Definition 13, the decision costs derived by the
obtained reducts will be compared.

Figure 4 shows us the detailed change trend lines of
decision costs. It should be noticed that the decision costs
shown in Figure 4 are total decision costs instead of the
decision costs of three different regions. In each subfigure of
Figure 4, the 𝑥-coordinate pertains to value of 𝛿, whereas the𝑦-coordinate concerns the values of costs.

The detailed legends used in Figure 4 are (1) Raw-
Attributes: NDTRS based on the original attributes; (2)
NDTRS-Reduct: NDTRS based on the attribute reduction
proposed in [16] (similar to our Definition 13, the aim of this
attribute reduction is also to find a minimal subset of the
condition attributes which can decrease the total decision

cost); (3) PLRaw-Attributes: PLNDTRS based on the original
attributes; (4) PLNDTRS-Reduct: PLNDTRS based on the
attribute reduction proposed in Definition 13.

With a deep investigation of Figure 4, it is not difficult to
observe the following.

(1) By comparing with Raw-Attributes, PLRaw-Attrib-
utes may offer the lower decision costs. This obser-
vation is consistent with what have been addressed
in Section 5.1; that is, our pseudolabel approach does
decrease the total decision costs.

(2) By comparing with NDTRS-Reduct, PLNDTRS-Re-
duct also provides us with the lower decision costs.
In other words, through attribute reductions, our
pseudolabel approach can find subsets of attributes
which offer smaller decision costs though the aims of
attribute reductions based onNDTRS and PLNDTRS
are the same.

(3) In most data sets, both NDTRS-Reduct and
PLNDTRS-Reduct do reduce the decision costs.
That is to say, both the attribute reductions proposed
by Li et al. in [16] and us are effective.

(4) With the increasing of value of 𝛿, in most data sets,
four different types of decision costs will increase.
This is mainly because if the value of 𝛿 is greater, then
the size of the neighborhood will be larger; it follows
that the positive region shows shrinking and the
negative region will be expanded. Correspondingly,
the decision costs with respect to different regions will
be changed.

Furthermore, the decision costs related to three different
regions are shown in Table 5.

With a careful investigation of Table 5, we notice that the
reducing of total decision costs shown in Figure 4 mainly
comes from the reducing of costs of positive region and costs
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Figure 4: Continued.
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Figure 4: A comparison among different decision costs.

Table 5: Decision costs related to three different regions (smaller values are underlined).

Costs of positive region Costs of boundary region Costs of negative region
ID NDTRS-Reduct PLNDTRS-Reduct NDTRS-Reduct PLNDTRS-Reduct NDTRS-Reduct PLNDTRS-Reduct
1 3.3083 2.5927 144.6449 137.0848 28.6878 28.2077
2 3.5871 2.7336 3.5886 0.9952 0.0000 0.0000
3 27.4517 22.2394 47.4321 45.5593 0.4478 0.5550
4 4.4652 5.6460 53.4615 57.5998 22.9725 11.2165
5 1.3671 1.4976 5.5215 3.5962 0.2970 0.1747
6 0.8422 0.5908 2.9842 2.6384 0.0727 0.0283
7 1.4726 1.0331 8.6575 6.3638 0.2810 0.2297
8 0.5302 0.5050 0.9215 0.8607 0.0000 0.0000
9 48.6126 40.8185 32.7738 30.1912 0.0378 0.1700
10 141.8567 104.5482 79.8204 132.0821 0.0000 0.0000
11 9.9494 9.8133 26.6506 33.9288 44.3499 33.8493
12 1.1821 3.7938 4.7748 11.7701 14.6167 1.5715
13 19.0932 17.6336 73.3651 77.0279 0.0276 0.0451
14 0.2434 0.0585 0.3966 0.1073 0.0029 0.0000
15 2.1211 3.3493 37.0947 50.0695 35.3422 14.4422

of boundary region. This result is consistent with what have
been addressed in Section 5.1.

Furthermore, to further demonstrate the effectiveness of
our attribute reduction based on PLNDTRS, we will compare
it with other popular attribute reduction methods in DTRS;
they are (1) POS-Reduct (positive region extension based
attribute reduction [8, 14, 49]) and NON-NEG-Reduct (non-
negative region extension based attribute reduction [49]).The
details are shown in Figure 5.

By Figure 5, it is not difficult to observe the following.

(1) Generally speaking, if the value of 𝛿 increases, then
the decision costs obtained by four different reducts
increase. In other words, the performances of dif-
ferent reducts are closely related to the scales of
radii.

(2) In most cases, the decision costs derived from
“PLNDTRS-Reduct” are lower than those derived

from “NDTRS-Reduct,” “POS-Reduct,” and “NON-
NEG-Reduct.” Take “Yeast” data set as an example;
if 𝛿 = 0.12, then the decision cost related to
“PLNDTRS-Reduct” is 105 while the decision cost
related to “NDTRS-Reduct” is 120; the decision cost
related to “POS-Reduct” is 121 and the decision cost
related to “NON-NEG-Reduct” is 138. From this
point of view, we can say that our pseudolabel strategy
is superior to several previous research results about
attribute reduction in DTRS.

Finally, we will also compare the lengths of different
reducts and the time consumptions for computing these
reducts. The details are shown in Tables 6 and 7.

Following Tables 6 and 7, it is not difficult to observe
that more time is required to compute PLNDTRS-reduct.
The main reason includes two aspects: (1) for each iteration
in computing reduct, the pseudolabels of samples should
be regenerated; this has been pointed out in (1) of Step 4
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Figure 5: Continued.
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Figure 5: A comparison among decision costs derived by different reducts.

Table 6:The average lengths of different reducts (shorter lengths are underlined).

ID NON-NEG-Reduct POS-Reduct NDTRS-Reduct PLNDTRS-Reduct
1 1.00 2.56 2.76 3.50
2 1.00 2.10 1.80 3.20
3 1.00 1.37 2.40 2.80
4 1.70 7.00 9.40 10.23
5 1.00 6.00 5.77 8.13
6 1.00 3.77 3.30 5.23
7 1.00 3.90 4.20 3.33
8 1.00 1.00 1.03 1.03
9 1.00 1.00 4.06 6.16
10 1.00 16.50 17.76 17.80
11 2.50 4.13 7.00 6.76
12 1.97 4.37 12.47 37.80
13 2.70 6.86 8.73 8.83
14 1.00 4.53 4.67 5.03
15 2.70 4.30 3.70 5.50

Table 7: The time consumptions (seconds) for computing different reducts (lower consumptions are underlined).

ID NON-NEG-Reduct POS-Reduct NDTRS-Reduct PLNDTRS-Reduct
1 27.7031 29.4720 97.7107 182.7403
2 1.2874 1.3160 1.8312 3.2800
3 2.6965 2.7879 8.5677 11.7441
4 10.4468 18.8002 61.4017 81.0210
5 0.1894 0.5577 0.5562 6.0147
6 0.0452 0.0657 0.1860 0.5958
7 0.0234 0.0366 0.1176 0.3378
8 1.1789 1.0911 1.2891 2.3478
9 48.4413 24.2008 241.5598 344.9764
10 243.8521 1146.7207 3521.3002 3619.4430
11 15.8729 11.9315 611.5846 915.7841
12 5.2911 6.0499 45.5096 271.2546
13 188.2825 217.8035 791.8680 830.0859
14 0.0215 0.0449 0.1320 0.4860
15 2.0325 1.4747 3.7970 7.3192
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Table 8: 𝑝-values of Wilcoxon signed rank test for comparing reducts (higher 𝑝-values are italic).
Total costs Costs of positive region Costs of boundary region Costs of negative region

ID NDTRS-Reduct & NDTRS-Reduct & NDTRS-Reduct & NDTRS-Reduct &
PLNDTRS-Reduct PLNDTRS-Reduct PLNDTRS-Reduct PLNDTRS-Reduct

1 0.0020 0.0977 0.0273 0.9219
2 0.0020 0.0020 0.0020 1.0000
3 0.0020 0.0098 0.6953 0.3750
4 0.0059 0.2754 0.5566 0.0098
5 0.0020 0.9219 0.0195 0.1563
6 0.0020 0.0098 0.0020 0.1309
7 0.0020 0.0645 0.0020 0.2754
8 0.0020 0.0039 0.0400 1.0000
9 0.0098 0.0020 0.0050 0.0095
10 0.0488 0.0039 0.0059 1.0000
11 0.0316 0.0695 0.0050 0.0039
12 0.0137 0.0371 0.0195 0.0020
13 0.0195 0.0020 0.0137 1.0000
14 0.0020 0.0078 0.0020 1.0000
15 0.0020 0.0488 0.1993 0.0020

in Algorithm 1; (2) based on Table 6, more attributes are
required to construct reducts; such fact indicates that more
iterations should be executed.

Moreover, it must be emphasized that though the time
consumptions of calculating NON-NEG-Reduct and POS-
Reduct are lower, such two types of reducts may not be good
enough for providing smaller values of decision costs. This
fact can be observed in Figure 5 clearly. From this point of
view, our pseudolabel strategy based attribute reduction is
superior to previous researches though our approach requires
more time to obtain reduct.

5.3. Statistical Comparisons of Reducts. In this section, wewill
make the statistical comparisons between PLNDTRS-Reduct
and NDTRS-Reduct.TheWilcoxon signed rank test [55] will
be selected for comparing such two reducts. The purpose of
this computation is trying to reject the null hypothesis that
the two reducts perform equally well.

For each data set, we have used 10 different radii to obtain
reducts; it follows that 10 decision costs will be generated by
each algorithm. Take the data “Caffeine Consumption” for
instance, the 10 total decision costs derived from NDTRS-
Reduct are “54.9455, 60.6065, 70.4899, 75.1574, 77.0271,
81.4503, 83.2687, 82.8129, 82.6185, 84.9391” while the 10 total
decision costs derived from PLNDTRS-Reduct are “47.6352,
57.7943, 63.3378, 69.9135, 73.6124, 76.0755, 78.9889, 81.4714,
81.2164, 83.4922;” the corresponding 𝑝-value of Wilcoxon
signed rank test is then 0.002. 𝑝-value is the probability of
observing the given result, or one more extreme, by chance
if the null hypothesis is true. The detailed results of 𝑝-values
are shown in Table 8.

Following the results of Table 8, if the significance level
is given by 0.05, we therefore reject the null hypothesis. In
Table 8, we notice that most of the 𝑝-values are lower than
0.05. In other words, from the viewpoint of costs, reducts

based on NDTRS and those based on our PLNDTRS do not
perform equally well though the aim of such two reducts is
the same.

Remark 16. Most of the 𝑝-values in “costs of negative region”
are equal to 1. This is mainly because, based on NDTRS-
Reduct and PLNDTRS-Reduct, the decision costs of negative
region are 0 in most cases.

6. Conclusions and Further Perspectives

By considering the label information of samples, a framework
of pseudolabel strategy has been introduced into themodel of
decision-theoretic rough set. Different from the traditional
constructions of decision-theoretic rough set, our approach
is achieved by not only the distance based neighborhood, but
also the pseudolabels of samples. The experimental results
have demonstrated that our pseudolabel approach can reduce
the decision costs which are closely related to decision-
theoretic rough set. Moreover, the attribute reduction based
on our pseudolabel strategy can also provide attributes
with better performances if decision costs are taken into
consideration.

The following topics are challenges for further research.
(1) Only the 𝑘-means clustering approach is used to gen-

erate pseudolabels of samples; the label propagation
or supervised approach will be further explored.

(2) Through using pseudolabel strategy, how to design
quick process to compute reduct for large scale data
[56–58] is another interesting topic to be addressed.
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