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In the received side, triaxial velocity sensors of MIMO array are used to solve the problem of coherent source direction-finding in
this paper. A new velocity field smoothing algorithm is presented to decorrelate coherent sources.,e identically oriented velocity
sensors of whole array are divided into three subarrays. ,en, the covariance matrices of the three subarrays are smoothed to
restore the rank of source covariance matrix (SCM). Lastly, the cross-correlation coefficients of the SCM after smoothing
processing are calculated to analyze the performance of decorrelation.,e proposed decorrelation algorithm (1) does not need the
information of locations of velocity vector sensors; (2) is suitable for arbitrary configuration array; and (3) has no loss of array
effective aperture. Simulation results prove the effectiveness of the proposed algorithm.

1. Introduction

Traditional parameter estimation techniques with array
signal are based on a scalar sensor array. In order to improve
parameter estimation accuracy, the acoustic vector sensor is
proposed [1, 2] (it can be also the electromagnetic vector
sensor). An acoustic vector sensor comprises two or three
orthogonally collocated velocity sensors and a pressure
sensor. Compared with the conventional scalar sensor, the
vector sensor has more output information and provides
more manners of signal processing.

An estimation of signal parameters via rotational in-
variance techniques- (ESPRIT-) based algorithm is in-
vestigated for arbitrarily spaced three-dimensional arrays of
vector hydrophones to estimate the two-dimensional di-
rection of arrival (DOA) [3]. But the array aperture is not
fully utilized. Aperture extension is achieved for a uniform
rectangular array of vector hydrophones spaced much far-
ther apart than a half-wavelength by using a two-step ES-
PRIT-based method [4]. ,e same idea of [4] can be applied
to the identical subarrays on a sparse uniform rectangular
array, but not limited to the acoustic vector sensor [5].
Multiple signal classification (MUSIC) is another popular
super-resolution algorithm. A self-initiating MUSIC-based

algorithm for the acoustic vector sensor is proposed, which
does not require the initial value of the MUSIC algorithm by
using beamspace information [6]. ,en, the Root-MUSIC-
based algorithmwithout the angle search is studied to reduce
the complexity [7]. ,e above results [3–7] assume that all
signals impinging from far-field. ,erefore, an ESPRIT-
based algorithm for the near-field is addressed by using a
single vector hydrophone [8]. A direction-finding and blind
interference rejection algorithm for acoustic vector sensor
array is presented, which can solve up to three fast frequency-
hop wideband signals [9]. Although these papers have made
outstanding contributions, they are all based on the acoustic
vector sensors with spatially collocated in a point-like geom-
etry. ,erefore, the spatially spread vector-sensor is proposed
[10, 11], which not only retains the advantages of the collocated
acoustic vector sensors, but also will significantly extend the
spatial aperture to improve the direction-finding accuracy by
orders of magnitude without additional sensors.

On the other hand, the Multiple-Input Multiple-Output
(MIMO) concept was first introduced for radar in 2004,
[12, 13]. MIMO radars transmit multiple waveforms and
receive signals at multiple antennas. Waveform diversity in
colocated MIMO radar enables significant superiority over
its phased-array counterpart, including much improved
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parameter identifiability and estimation accuracy [14].
MIMO radar with widely separated sensors is also a high
performance radar [15]. Virtual sensors which can extend
array aperture can be obtained by using spatially orthogonal
signal transmission. ,ese virtual sensors provide higher
performance in target detection, angle estimation accuracy,
and angular resolution [16]. In this paper, we study the DOA
estimation in colocated MIMO array radar or sonar.

,e ESPRITalgorithm is used to estimate the direction of
departure (DOD) andDOA by using the invariance property
of both the transmit and receive array in a bistatic MIMO
radar [17], but it needs an extra pairing processing. ,e
unitary ESPRIT algorithm with real-valued processing can
provide better estimation performance than that of ESPRIT
with reduced computational complexity and automatic
pairing [18]. In order to achieve the signal-to-noise ratio
(SNR) gain, transmit beamspace processing is proposed in
DOA estimation of MIMO [19].

Combined with the velocity vector sensor and waveform
diversity offered by MMO radar, the signal model of the
MIMO velocity vector array is given [20–22], and then the
MUSIC [20] and ESPRIT [21, 22] angle estimation method
for the signal model are developed. ,e results prove that
these additional degrees of freedom can enhance spatial
resolution, strengthen parameter identifiability, and im-
prove target detection performance.

Although they made outstanding contributions, they are
based on the assumption that signals are uncorrected. In
practice, coherent signals are often encountered inmultipath
or some other scenarios, since multipath signals arise from
different propagation paths of the same target. For coherent
sources direction-finding, the spatial smoothing (SS) algo-
rithm can be used to restore the rank of the covariance
matrix. ,e disadvantage of the SS algorithm is that it will
decrease the array aperture. ,erefore, the “velocity-field
smoothing” (VFS) algorithm restores the rank of the co-
variance matrix proposed in [23–25], whose algorithm will
not decrease the array aperture.

In this paper, we extend the VFS algorithm into the
MIMO array to solve the coherent sources estimation
problem and analyze the performance of decorrelation. ,e
detailed operations of decorrelation method are dividing the
identically oriented sensors within all velocity vectors into
three identical subarrays and then smoothing the covariance
matrices of the three subarrays to restore the rank of source
covariance matrix (SCM). ,e main idea of this paper is to
find the identical subarrays in the vector sensor MIMO
array. ,e remainder of the paper is organized as follows.
Signal model is addressed in Section 2. In Section 3, we
describe the proposed VFS algorithm in MIMO array. In
Section 4, performance of the proposed method is evaluated.
Section 5 gives the extensive simulations, and Section 6
concludes the paper.

Notation: Superscript (·)∗, (·)T, and (·)H denote complex
conjugation, transpose, and conjugate transpose, respectively.
⊗ denotes Kronecker product. IMN denotes MN × MN

identity matrix. diag[·] denotes the diagonalization of the
entity inside. rank[A] denotes the rank of matrix A.

2. Signal Model

We consider a monostatic MIMO sonar with M transmitted
scalar sensors and N triaxial received velocitysensors. As-
sume that the sensors of transmitted and received array are
located in arbitrarily three-dimensional positions. Each of
the N received sensors consists of three identical but or-
thogonally oriented velocity sensors, aligning along with the
x-axis, y-axis, and z-axis, respectively. ,e location of the
mth sensor in the transmitted array is defined as
ltm ≜ [xtm, ytm, ztm], and the location of the nth sensor in
received array is defined as lrn ≜ [xrn, yrn, zrn]. ,e trans-
mitted sensors transmit M orthogonal waveform signals. In
each received sensor, the echoes are matched by M trans-
mitted waveforms. Assume that K coherent signals are lo-
cated at the far field. After matched filtering processing, the
whole output in received side can be written as [22]

x(t) �

xx(t)

xy(t)

xz(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

AΦx

AΦy

AΦz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦s(t) + n(t) ∈ C3MN×1
, (1)

where

A � at θ1,φ1( 􏼁⊗ ar θ1,φ1( 􏼁, . . . , at θK,φK( 􏼁⊗ aK θK,φK( 􏼁􏼂 􏼃

∈ CMN×K
,

(2)

in which

at(θ, φ) � exp − jκ lt1p(θ, φ)( 􏼁( 􏼁, . . . , exp − jκ ltMp(θ, φ)( 􏼁( 􏼁􏼂 􏼃
T

∈ CM×1
,

ar(θ, φ) � exp − jκ lr1p(θ, φ)( 􏼁( 􏼁, . . . , exp − jκ lrNp(θ,φ)( 􏼁( 􏼁􏼂 􏼃
T

∈ CN×1
,

(3)

denote the transmit steering vector and the receive steering
vector, respectively. p(θ, φ) � [sin θ cosφ, sin θ sinφ, cos θ]
T is the propagation vector. θ and φ are the two-dimensional
DOA, namely, azimuth and elevation, respectively. κ � 2π/λ
is defined as wave number. s(t) � [s1(t), s2(t), . . . , sK(t)]T

represents the transmitted signals, where sk(t) � βkej2πfkt,
and βk and fk represent amplitude and Doppler frequency
of the k signal, respectively. ,e K sources are set as co-
herent.,e noise n(t) is assumed to be white noise with zero
mean and σ2I3MN is covariance. ,e matrices Φx,Φy, and
Φz are equal to

Φx � diag px( 􏼁 � diag sin θ1 cosφ1, . . . , sin θK cosφK􏼂 􏼃
T
,

Φy � diag py􏼐 􏼑 � diag sin θ1 sinφ1, . . . , sin θK sinφK􏼂 􏼃
T
,

Φz � diag pz( 􏼁 � diag cos θ1, . . . , cos θK􏼂 􏼃
T
.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(4)

About equation (1), we give more explanations so that
readers can understand it better. ,e data xx(t), xy(t), and
xz(t) are the output of matched filtering using the received
data in x, y, z axes, respectively. Our system is active sonar,
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but our channel model is very simplistic with line of sight, no
diffraction, and only additive spatio-temporally white
Gaussian noise. ,is paper is our preliminary results.

,e source covariance matrix will be rank-deficiency be-
cause of the coherent of sources. ,erefore, the traditional
super-resolution algorithms, such as MUSIC and ESPRIT, will
be failed. In the following, we proposed a newVFS algorithm to
restore the rank of source covariance matrix (SCM).

3. “Velocity-Field Smoothing” Algorithm for
MIMO Array

It can be seen from equation (1) that the received data
xx(t), xy(t), and xz(t) in x, y, z axes have identical form
except for the items Φx,Φy, andΦz. ,erefore, we can use
weighted average of the different items to complete
decorrelation for coherent sources. ,is method is called as
VFS algorithm because the velocity field is used in the
smoothing processing. In fact, the smoothing processing
can be seen as a directly transplantation of spatial
smoothing algorithm from spatial domain to velocity-field
domain. To make more clear to readers, the following
describes VFS smoothing processing with mathematical
formulas.

We firstly compute the covariance matrix of the received
data of x, y, z axes separately, and then perform smoothing
processing as follows:

Rsmoothing �
1
3

􏽘

3

i�1
E xi(t)xi(t)

H
􏽮 􏽯

� A
1
3

􏽘

3

i�1
ΦiRsΦ

H
i

⎛⎝ ⎞⎠

􏽼√√√√√√√􏽻􏽺√√√√√√√􏽽
≜Rs smoothing

AH
+ σ2nIMN,

(5)

where i � x, y, z. It is well known that the rank of steering
matrix A equals the number of sources K. ,e K sources are
coherent, so we can set sk(t) � gks0(t), where gk denotes
nonzero complex constant. ,en, the SCM is equal to
Rs � E gks0(t)[gks0(t)]H􏽮 􏽯 � σ2sgg

H, where σ2s denotes the
power of s0(t) and the vector of g equals g � [g1,

g2, . . . , gK]T. ,erefore, the rank of Rs equals 1. ,us, the
traditional super-resolution algorithms are failed. But after
the smoothing processing, the rank of Rs smoothing will re-
store to the number of sources K. In the following, the
derivation of the conclusion will be demonstrated. Firstly,
Rs_smoothing can be rewritten as

Rs_smoothing �
1
3

􏽘

3

i�1
ΦiRsΦ

H
i

�
1
3
σ2s 􏽘

3

i�1
Φigg

HΦH
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�
1
3
σ2sG 􏽘

3
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H
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⎧⎨

⎩

⎫⎬

⎭GH
,

(6)

where G � diag(g). Note that matrix G is a diagonal matrix;
therefore, rank(G) � K. Recall equation (4), we know that pi

and pj are linearly independent for arbitrary (θk,φ)k, k �􏼈

1, . . . , K} according to the results of [23–25]. ,erefore,
rank(􏽐

3
i�1pipH

i ) � 3, and then rank(G 􏽐
3
i�1pipH

i􏽮 􏽯GH) �min
(K,3). From the above analysis, one has rank(Rs_smoothing) �

min(K,3). Now, when the number of sources K≤3, the rank
of SCM will be restored. ,erefore, the number of coherent
signals can be resolved up to three by using the proposed
algorithm.

Remark 1. ,is algorithm can only resolve up to three
coherent sources. ,e resolvable of coherent sources will be
increased to six when forward and backward smoothing
technology is used.

Remark 2. It is worth noting that the array structure in-
formation is not used, so this proposed method is applicable
to arbitrary configuration array.

4. Performance Analysis

It can be seen clearly that the performance of decorrelation
depends on the value of R �

def
􏽐

3
i�1pipH

i , we call it as after-
smoothing source covariance matrix (AS-SCM). It is easy to
calculate the diagonal elements of R, which are equal to
Ri,i � sin2θicos2φi + sin2θisin2φi + cos2θi � 1, i � 1, . . . , K.
,e nondiagonal element values of AS-SCM are equal to

Ri,j � sin θi cosφi sin θj cosφj + sin θi sinφi sin θj sinφj

+ cos θi cos θj, i≠ j.

(7)

It can be seen from equation (7) that Ri,j, i≠ j, is a
function of two-dimensional DOA. It shows that the per-
formance of decorrelation of the proposed VFS method
depends on the parameters of two-dimensional DOA. ,e
smaller the AS-SCM Ri,j, i≠ j, the better the performance of
decorrelation will be. If Ri,j � 0, i≠ j, the coherent signals
will be decorrelated completely.

In order to make the reader more clearly, we give two
examples to observe the elements of matrix R. Firstly, as-
sume that there are two coherent sources, which are located
in (θ1,φ1) � (12°, 28°) and (θ2,φ2) � (42°, 57°), re-
spectively. ,en, we have

R �
1 0.8486

0.8486 1
􏼢 􏼣. (8)

,en, the rank of R equals rank(R) � 2. When an extra
source with (θ3,φ3) � (61°, 67°) is added, we have

R �

1 0.8486 0.6155

0.8486 1 0.8151

0.6155 0.8151 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (9)

,en, the rank of R equals rank(R) � 3.
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5. Computer Simulations

In this section, simulations are used to demonstrate the
e�ectiveness of the proposed algorithm. In the following
simulations, we set that the transmitted sensors are equal to
M � 6 and received velocity vector sensors are equal to
N � 6.

We �rstly verify the e�ectiveness of decorrelation by
using eigenvalues of eigendecomposition for AS-SCM.
Assume that there are two spatially closed coherent sources
with the same power, and sources’ angles are (θ1,φ1) �
(10°, 15°) and (θ2,φ2) � (20°, 25°), respectively. We set that
snapshots L � 200 and SNR� 20 dB. In order to verify that
the proposed algorithm is suitable for arbitrary array con-
�guration, the received velocity vector sensors are assumed
in the x-axis with [xr1, . . . , xr6] � [2, 3, 7, 10, 11, 12]
(λ/2), yrm � 0, zrm � 0, m � 1, . . . , 6, and the transmitted
scalar sensors located in the y-axis with
[xt1, . . . , xt6] � [0, 1, 3, 6, 9, 13](λ/2), ytm � 0, ztm � 0, m �
1, . . . , 6. It is clear that the array con�guration has no ro-
tational invariance. �erefore, the spatial smoothing algo-
rithm is failed for the above array. For convenient
comparison, Figure 1 gives the largest MN eigenvalues of
SCM and AS-SCM. We can clearly see from the �gure that
there is only one large eigenvalue without smoothing pro-
cessing.�ere are two large eigenvalues using VFS smoothing
processing, which has the same number to the number of
coherent sources. �e result demonstrates that the VFS
smoothing processing can recover the loss rank of SCM and
the proposed algorithm is suitable for arbitrary array con-
�guration. Overall, the results verify the e�ectiveness of the
proposed VFS smoothing algorithm.

In the second simulation, we prove that the performance
of our proposed smoothing method depends on the angle of
DOA. Without loss of generality, we set θ � 90°. �en, the
nondiagonal elements values of AS-SCM are simpli�ed to
Ri,j � cosφi cosφj + sinφi sinφj. Figure 2 shows the non-
diagonal elements of AS-SCM versus angle of DOA. It can be
seen from the �gure that the values of nondiagonal elements
are changed with the angle of DOA. �e di�erent values of
nondiagonal elements values of AS-SCM demonstrate the
di�erent performances of the proposed algorithm. A graceful
mathematical relationship between decorrelated performance
and angle of DOA will be focus of our future work.

In the last simulation, we use the eigenvalue distribution
and RMSE of DOA estimation to verify the e�ectiveness of
the algorithm further. Root mean square error
(RMSE) of azimuth estimation is de�ned as RMSE ���������������������������
(1/2Q)∑Qq�1∑

K
k�1[(φ̂k,q − φk,q)

2]
√

, where Q is the number of
Monte Carlo experiments, φ̂k,q and φk,q denote azimuth
estimation and real azimuth value of q th Monte Carlo
experiment with k th source, respectively. RMSE of elevation
estimation is de�ned the same as that of azimuth. Here we
have two groups’ signals: (θ1,φ1, θ2,φ2) � (10°, 15°, 20°, 25°)
and (θ1,φ1, θ2,φ2) � (80°, 90°, 60°, 0°). Two groups’ signals
mean that the same MATLAB program needs to run two
times, and then the two results are compared to prove the
performance of decorrelation. According to equation (7), the

nondiagonal elements of R of the �rst group signal equals
R12 � 0.9839 and the second group equals R12 � 0.0868. It
implies that the performance of decorrelation of the second
group is much better than that of the �rst group. �e same
result can be expected in the following �gures. Snapshots are
equal to L � 200. �e number of Monte Carlo experiment
equals 1000. Assume that the received velocity vector sensors
are located in the x-axis with half-wavelength uniform linear
array and the transmitted scalar sensors are located in the
y-axis also with half-wavelength uniform linear array. �e
ESPRIT algorithm is used to estimate sources’ azimuth and
elevation after velocity-�eld smoothing. Figure 3 shows the
eigenvalue distribution of AS-SCM of two group signals. It is
indicated that the two eigenvalues of the second group are
closer to each other than those of the second group, so the
performance of decorrelation of the second group is better.
�e above analysis results are successfully veri�ed. Figure 4
shows the RMSE of two-dimensional DOA estimation along
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with SNR.We can see from Figure 4 that the DOA estimation
performance of the second group is better than those of the
first group. It is indicated that the greater the performance of
decorrelation, the better estimation accuracy will be.

6. Conclusions

,is paper has studied the coherent source DOA estimation
for MIMO array with received velocity vector sensors. ,e
proposed VFS preprocessing can effectively restore the rank

of AS-SCM. ,e performance of the algorithm is analyzed
with computing the nondiagonal elements of AS-SCM. We
find that (1) it is a function of DOA and (2) the better smaller
the correlation, the better the estimation accuracy will be. In
addition, the algorithm is suitable for arbitrary array
configuration.
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