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In this paper, by suitably using the so-called push-back operation, a connection between the approximating and interpolatory
subdivision, a new family of nonstationary subdivision schemes is presented. Each scheme of this family is a quasi-interpolatory
scheme and reproduces a certain space of exponential polynomials. +is new family of schemes unifies and extends quite
a number of the existing interpolatory schemes reproducing exponential polynomials and noninterpolatory schemes like the cubic
exponential B-spline scheme. For these new schemes, we investigate their convergence, smoothness, and accuracy and show that
they can reach higher smoothness orders than the interpolatory schemes with the same reproduction property and better accuracy
than the exponential B-spline schemes. Several examples are given to illustrate the performance of these new schemes.

1. Introduction

Subdivision schemes are efficient tools to generate smooth
curves/surfaces from a given set of discrete control points. Over
the last decades, they are shown to be important tools in many
fields like CAD/CAM [1, 2], wavelets [3, 4], biomedical im-
aging [5], and isogeometric analysis [6]. According to whether
the refinement rules depend on the recursion level, subdivision
schemes can be divided into stationary and nonstationary
schemes. Stationary schemes have been extensively studied, for
example, in [7, 8]. It is known that stationary schemes generate
algebraic polynomials. +e nonstationary schemes, however,
can generate the richer function spaces, i.e., the exponential
polynomial spaces and special curves/surfaces such as hy-
perbolas/spheres, which cannot be done using stationary
schemes (see, e.g., [9–11]). +erefore, there have been con-
tinuous works on nonstationary subdivision schemes gener-
ating exponential polynomials.

In connection with the construction of such nonstationary
subdivision, Romani [12] converted three exponential B-spline
schemes into interpolatory schemes without changing the
generation property. Conti et al. [13] transformed the non-
stationary approximating schemes into interpolatory ones
with the same generation property. All of these works can be

seen as performed using the polynomial correction, which
actually operates by taking the convex combination of the
approximating subdivision masks to derive new subdivision
masks, including the interpolatory ones. For other references
on this method, refer [14–17] and the references therein.

Apart from polynomial correction, the push-back oper-
ation [18], a connection between the approximating and
interpolatory subdivision, can also be used to derive inter-
polatory schemes from the approximating ones. Using this
connection, Lin et al. [19] obtained interpolatory surface
subdivision from the approximating subdivision. Luo and Qi
[20] analyzed the interpolatory subdivision obtained by this
connection systematically in the univariate case. For other
references on this connection, see also [21–23] and the ref-
erences therein. Yet, unlike the polynomial correction, most
of the works related to the push-back operation, except the
work in [24], are restricted to the stationary case, and the
reproduction property of the obtained interpolatory schemes
depends largely on that of the original approximating
schemes [20]. In [24], the authors presented a nonstationary
combined subdivision generating/reproducing different ex-
ponential polynomials using the push-back operation in
a suitable way. However, when reproducing exponential
polynomials, this combined scheme only reduces to the
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existing interpolatory schemes. Since interpolatory schemes
are usually less smooth than the approximating ones, in this
paper, we aim to give a different try on the use of the push-
back operation to construct new nonstationary subdivision
schemes with better properties such as reproduction of ex-
ponential polynomials with higher smoothness orders. As
a by-product, this shows that, just like the polynomial cor-
rection, the push-back operation can also be used to construct
a nonstationary subdivision with satisfactory properties.

In this paper, similar to [24], the displacements in the
push-back operation are decomposed into small ones. Yet, to
obtain the desired new nonstationary schemes, we use these
small displacements in a different way. We point out that each
one of these new schemes is a nonstationary quasi-inter-
polatory scheme. Here, a nonstationary quasi-interpolatory
scheme refers to a nonstationary subdivision scheme repro-
ducing a certain space of exponential polynomials. In fact, the
nonstationary quasi-interpolatory schemes in this paper also
combined approximating/interpolatory subdivision. +us,
they unify and extend quite a number of the existing inter-
polatory and noninterpolatory schemes reproducing expo-
nential polynomials, including the nonstationary interpolatory
4-point scheme [25], the cubic exponential B-spline scheme.
For these new schemes, we show that their asymptotical
similar schemes are the schemes S2M with M ∈ Z+ in [26].
+en, based on this result, the convergence, smoothness, and
accuracy can be investigated. Each one of these new schemes
owns a parameter and can be seen as a parameter-dependent
subdivision (see [27]). With suitable choices of this parameter,
each new scheme provides a better smoothness property at the
expense of slightly larger support than the interpolatory one
with the same reproduction property. Besides, this parameter
also provides flexibility in curve design. Moreover, each one of
these new schemes owns a good approximation order due to
the reproduction property. +us, a nonstationary quasi-
interpolatory scheme in this paper is also a nonstationary
scheme with a good approximation order. In this way, these
new schemes can own higher smoothness orders than the
interpolatory ones with the same reproduction property and
better accuracy than the exponential B-spline schemes. Several
examples are given to illustrate the performance of these new
schemes.

+e rest of this paper is organized as follows: in Section 2,
we recall some basic knowledge about subdivision schemes. A
new family of nonstationary quasi-interpolatory schemes is
constructed in Section 3, while the properties of convergence,
smoothness, and accuracy are investigated in Section 4. In
Section 5, we present some examples and make a comparison
with the existing schemes to illustrate the performance of
these new schemes. Section 6 concludes this paper.

2. Background

In this section, let us recall some basic definitions and results
about the subdivision which form the basis of the rest of this
paper. Let l0(Z) denote the linear space of real sequences
with finite support. Given a sequence of initial control points
q0 � q0j , j ∈ Z  ∈ l0(Z), we consider the binary non-
stationary subdivision scheme

qk+1
 

i
� Sakqk

 
i
≔ 

j

a
k
i− 2jq

k
j , k ∈ N0 ≔ N∪ 0{ }, (1)

where Sak is the k-level subdivision operator mapping l0(Z)

to l0(Z), the sequence ak � ak
i , i ∈ Z  ∈ l0(Z) is the k-level

mask with finite support, and we denote this subdivision
scheme by Sak k≥0. +e k-level symbol corresponding to the
mask ak is ak(z) � i∈Zak

i zi with the subsymbols ak
0(z) �

i∈Zak
2iz

2i and ak
1(z) � i∈Zak

2i+1z
2i+1 satisfying

ak(z) � ak
0(z) + ak

1(z).
Following [28], now we give the definition of conver-

gence of the nonstationary subdivision.

Definition 1 (see [28]). +e subdivision Sak k≥0 is termed
uniformly convergent if, for an initial control sequence q0,
there exists a continuous function fq0 ∈ C(R) such that

lim
k⟶∞

max
i∈Z∩ K

fq0
i

2k
  − qk

 
i




� 0, (2)

where K is any compact set in R and fq0 is nontrivial for at
least one initial data sequence. +e subdivision Sak k≥0 is
termed Cl convergent if the limit function fq0 has contin-
uous derivatives up to order l with l ∈ Z+.

+e following definitions and results are needed to in-
vestigate the convergence and smoothness of nonstationary
subdivision schemes.

Definition 2 (see [29]). A nonstationary subdivision scheme
Sak k≥0 is said to be asymptotic similar to the stationary
subdivision scheme Sa if the masks ak k≥0 and a{ } have the
same support U (i.e., ak

i � ai � 0 for i ∉ U) and satisfy

lim
k⟶∞

a
k
i � ai, i ∈ U. (3)

Definition 3 (see [30]). Let Dn be the n-th order differential
operator. A binary nonstationary subdivision scheme
Sak k≥0 is said to satisfy approximate sum rules of order

r + 1, r ∈ N0, if

μk ≔ a
k
(1) − 2



,

δk ≔ max
0≤η≤r

2− kη
D

η
a

k
(− 1)



,
(4)

satisfying


k

μk <∞,


k

2krδk <∞.
(5)

Theorem 1 (see [30]). Assume that the nonstationary sub-
division scheme Sak k≥0 satisfies approximate sum rules of
order r + 1, r ∈ N0 and is asymptotic similar to a Cr-con-
vergent stationary scheme Sa. 1en, the nonstationary scheme
Sak k≥0 is also Cr convergent.

Apart from convergence and smoothness, the property
of exponential polynomial generation and reproduction
(see, for example, [31] for their details) is also important for
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subdivision schemes due to the close relationship with
approximation order and the use in modeling objects of
different shapes. +us, we now review the definition of
exponential polynomial spaces and related results as follows:

Definition 4 (see [31]). Let T ∈ Z+, and let γ � c0, c1,

. . . , cT} with cT ≠ 0 be a finite set of real or imaginary
numbers. +e space of exponential polynomials VT,γ is
defined as

VT,γ ≔ f : R⟶ C, f ∈ C
T
(R) : 

T

j�0
cjD

j
f � 0

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(6)

+e exponential polynomial space VT,γ can be charac-
terized by the following lemma:

Lemma 1 (see [31]). Let c(z) � 
T
j�0cjz

j and denote by
(θi, τi) i�0,...,N the set of zeros with multiplicity, satisfying

D
r
c θi(  � 0, r � 0, . . . , τi − 1, i � 0, . . . , N. (7)

+en,

T � 
N

i�0
τi,

VT,γ ≔ span x
r
e
θix, r � 0, . . . , τi − 1, i � 0, . . . , N .

(8)

+e following two theorems, which can be deduced from
Proposition 4.2 and +eorem 4.4 in [32], will be useful in
discussing the generation/reproduction property of non-
stationary subdivision schemes.

Theorem 2. A nonstationary binary subdivision scheme
associated with symbols ak(z) k≥0 generates VT,γ if

D
r
a

k
− z

k
i  � 0, r � 0, . . . , τi − 1,

for z
k
i ≔ e

− θi/2k+1
, i � 1, . . . , N.

(9)

Theorem 3. With zk
i � eθi/2k+1

, i � 1, . . . , N, a binary
nonstationary subdivision scheme associated with symbols
ak(z) k≥0 reproduces VT,γ if it generates VT,γ and there exists
a shift parameter p such that for each k≥0

D
r
a

k
z

k
i  � 2 z

k
i 

p− r
qr(p),

qr(p) �

r− 1

j�0
(p − j), r � 1, . . . , τi − 1,

1, r � 0.

⎧⎪⎪⎨

⎪⎪⎩

(10)

3. Nonstationary Quasi-Interpolatory Schemes
Reproducing Exponential Polynomials

+is section is devoted to the construction of the new family
of nonstationary subdivision schemes reproducing

exponential polynomials. Before that, we first give an ex-
ponential polynomial space, which specializes the space in
Lemma 1 and generalizes the space in ([24], Section 6).

Given n, l ∈ Z+, let the set of zeros with multiplicity in
Lemma 1 be given as

ΓΛn ≔  0, 2τ0( , ±jt, τj  : j � 1, . . . , l, τ0 ≤ 2, τ0, τ1 ≥ 1,

τ0 + 
l

j�1
τj � n + 1,

(11)

where t ∈ R+ ∪ ι[0, π) and ι2 � − 1. In other words, we as-
sume c(z) in Lemma 1 has N � 2l + 1 pairwise distinct
zeros, and its total number of zeros is T � 2

l
j�0τj � 2n + 2.

+en, the exponential polynomial space in Lemma 1, which
is actually a 2n + 2 dimensional space, can now be rewritten
as

EPΓΛn
≔ span 1, x, . . . , x

2τ0 − 1
  ⋃ spanx

r
e
±jtx

: 0≤ r≤ τj − 1,

· ±jt, τj  ∈ ΓΛn, j � 1, . . . , l.

(12)

Here, when n � 0, let ΓΛ0 ≔ (0, 2){ } and we get
EPΓΛ0 ≔ span 1, x{ }. When n � 1, we have τ0 + 

l
j�1τj � 2.

Since τ0, τ1 ≥ 1, we have l � 1, τ0 � τ1 � 1 and then
ΓΛ1 � (0, 2), ( ± t, 1){ }. +us, EPΓΛ1 � span 1, x, e±tx . Note
that compared with the space in ([24] Section 6), this new
one contains more exponentials like xre±tx, r≥ 2.

Now, we try to construct the desired nonstationary
subdivision schemes, which are, in fact, quasi-interpolatory
ones reproducing exponential polynomials in EPΓΛn

. In
order to describe the construction clearly, we first derive the
schemes reproducing EPΓΛ0 and EPΓΛ1. +en, by taking
a generalization, we obtain the general scheme reproducing
EPΓΛn

.

3.1. 1e Nonstationary Quasi-Interpolatory Schemes Repro-
ducing EPΓΛ0

and EPΓΛ1
. Now, we construct the desired

nonstationary schemes reproducing EPΓΛ0 and EPΓΛ1.

3.1.1. 1e Cubic Exponential B-Spline Scheme and the
Nonstationary Quasi-Interpolatory Scheme Reproducing
EPΓΛ0

. We start from the cubic exponential B-spline
scheme. As it is known, for k≥0, the cubic exponential B-
spline scheme generates the refined data sequence Pk+1

i 
i∈Z

from the coarser data sequence pk
i i∈Z through the re-

finement rules

Pk+1
2i �

1
4 1 + vk+1( 

P
k
i− 1 + P

k
i+1  +

1 + 2vk+1

2 1 + vk+1( 
p

k
i ,

Pk+1
2i+1 �

1
2

p
k
i + P

k
i+1 ,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(13)
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where

v
k+1 ≔

etk+1 + e− tk+1

2
,

tk+1 �
t

2k+1,

t ∈ R+ ∪ ι[0, π).

(14)

+e cubic exponential B-spline scheme (1) is known to
generate the space EPΓΛ1. Based on this scheme, by making
a suitable modification to its refinement rules [24], a non-
stationary combined subdivision scheme can be obtained as

Pk+1
2i � P

k+1
2i + αk

0Δpk
i ,

Pk+1
2i+1 � P

k+1
2i+1 − βk

0 Δpk
i + ΔPk

i+1 ,

⎧⎪⎨

⎪⎩
(15)

where αk
0 and βk

0 are constants depending on k, Δpk
i ≔

− (Pk
i− 1 − 2pk

i + Pk
i+1) and P

k+1
2i � (1/(4(1 + vk+1)))(Pk

i − 1 +

Pk
i+1) + ((1 + 2vk+1)/(2(1 + vk+1)))pk

i , P
k+1
2i+1 � (1/2)(pk

i +

Pk
i+1) are the two points provided by the cubic exponential

B-spline scheme (1).
+e nonstationary combined scheme (3) can be seen as

obtained by moving the points P
k+1
2i and P

k+1
2i+1 to new po-

sitions according to the displacements αk
0Δpk

i and
− βk

0(Δpk
i + ΔPk

i+1), respectively. From [24], scheme (3)
unifies several existing subdivision schemes, including the
nonstationary interpolatory 4-point scheme [25] and the
cubic exponential B-spline scheme (1). In particular, when
βk
0 � 0, the combined scheme (3) can be rewritten as

Pk+1
2i �

1
4 1 + vk+1( 

− αk
0  Pk

i− 1 + Pk
i+1 

+
1 + 2vk+1

2 1 + vk+1( 
+ 2αk

0 pk
i ,

Pk+1
2i+1 �

1
2

p
k
i + P

k
i+1 .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

By writing down the symbols of the scheme (4), from
+eorem 3, it can be seen that the scheme (4), if convergent,
reproduces EPΓΛ0. Besides, when αk

0 � 0, the scheme (4)
reduces to the cubic exponential B-spline scheme (1), and
when αk

0 � 1/(4(1 + vk+1)), it becomes the D-D 2-point
scheme. In this way, the scheme (4) is a nonstationary
scheme reproducing EPΓΛ0, which combines the D-D 2-
point scheme and the cubic exponential B-spline scheme (1).

3.1.2. 1e Nonstationary Quasi-Interpolatory Scheme Repro-
ducing EPΓΛ1

. Now, we try to obtain the quasi-interpolatory
subdivision reproducing EPΓΛ1, which reproduces more ex-
ponential polynomials than the scheme (4).

In fact, we modify both rules of the scheme (4) by adding
the term − βk

0(Δpk
i + ΔPk

i+1) to the second rule of (4) and
adding additionally the term αk

1(ΔPk
i− 1 + ΔPk

i+1) to its first
rule to obtain the following new scheme:

Pk+1
2i � P

k

2i + αk
0Δpk

i + αk
1 ΔPk

i− 1 + ΔPk
i+1 ,

Pk+1
2i+1 � P

k

2i+1 − βk
0 Δpk

i + ΔPk
i+1 .

⎧⎪⎨

⎪⎩
(17)

+e scheme (5) can be seen as obtained by moving the
points P

k+1
2i and P

k+1
2i+1, generated by the cubic exponential B-

spline scheme (1), according to the displacements αk
0Δpk

i +

αk
1(ΔPk

i− 1 + ΔPk
i+1) and − βk

0(Δpk
i + ΔPk

i+1), respectively. In
this way, the corresponding k-level symbol can be written as

a
k
(z) � a

k
0(z) + a

k
1(z), (18)

where

ak
0(z) � − αk

1 z4 + z− 4(  +
1

4 1 + vk+1( 
− αk

0 + 2αk
1 

· z2 + z− 2(  +
2vk+1 + 1
2 1 + vk+1( 

+ 2αk
0 − 2αk

1 ,

ak
1(z) � βk

0 z3 + z− 3(  +
1
2

− βk
0  z + z− 1( .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

For the scheme (5), from +eorem 3, by solving the
linear system,

D
i
a

k
(− 1) � 0,

D
i
a

k
(1) � 2δi,0,

a
k

− e
±tk+1  � 0,

a
k

e
±tk+1  � 2,

i � 0, 1.

(20)

We can find its solution containing a free parameter,
which we denote by ωk. Here, we set ωk ≔ αk

1. +en, with the
parameters in this solution, the scheme (5), if convergent,
reproduces EPΓΛ1. We denote this new scheme reproducing
EPΓΛ1 by Sak

ΓΛ1 ,ωk
k≥0, and the corresponding k-level symbol

can be written as

a
k
ΓΛ1 ,ωk (z) � − ωk

z
4

+ z
− 4

  −
1

8vk+1 1 + vk+1( 

· z
3

+ z
− 3

  + 4ωk
v

k+1
 

2
z
2

+ z
− 2

 

+
1 + 2vk+1( 

2

8vk+1 1 + vk+1( 
z + z

− 1
  + 1

+ 2ωk 1 − 4 v
k+1

 
2

 .

(21)

In addition, +eorem 2 implies that the scheme
Sak

ΓΛ1 ,ωk
k≥0 also generates the space
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EPΓΛ2 ≔ 1, x, x
2
, x

3
, e
±tx

 with ΓΛ2 � (0, 4), ( ± t, 1){ },

(22)

when ωk � (vk+1 + 2)/(32vk+1(1 + vk+1)2). Note that, when
ωk � 0, the scheme Sak

ΓΛ1 ,ωk
k≥0 reduces to the nonstationary

interpolatory 4-point scheme [25], and when
ωk � (vk+1 + 2)/(32vk+1(1 + vk+1)2), it actually becomes the
exponential pseudospline scheme generating EPΓΛ2 (22) and
reproducing EPΓΛ1 [33]. Here, we denote by ek

ΓΛ1 ,1(z) and
ek
ΓΛ1 ,2(z) the k-level symbols of the nonstationary inter-
polatory 4-point scheme [25] and the aforementioned ex-
ponential pseudospline scheme, which can be written as

ek
ΓΛ1,1(z) � −

1
8vk+1 1 + vk+1( 

z
3

+ z
− 3

 

+
1 + 2vk+1( 

2

8vk+1 1 + vk+1( 
z + z

− 1
  + 1,

ek
ΓΛ1,2(z) �

(1 + z)4

8
z2 + 2vk+1z + 1
2 1 + vk+1( 

· −
vk+1 + 2

2vk+1 vk+1 + 1( 
1 + z

2
  +

vk+1( 
2

+ 2vk+1 + 2
vk+1 1 + vk+1( 

z⎛⎝ ⎞⎠z− 4,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

respectively. Now, let θk � ((32vk+1(1 + vk+1)2)/(vk+1 +

2))ωk, and then the k-level symbol ak
ΓΛ1 ,ωk (z) can be re-

written as

a
k
ΓΛ1 ,ωk (z) � 1 − θk

 e
k
ΓΛ1 ,1(z) + θk

e
k
ΓΛ1 ,2(z). (24)

In this way, we obtain a new nonstationary scheme
reproducing EPΓΛ1, which combines the nonstationary
interpolatory 4-point scheme as shown in [25] and the
noninterpolatory one with the k-level symbol ek

ΓΛ1 ,2(z). Note
that the k-level symbol in (24) is actually a convex com-
bination of the symbols ek

ΓΛ1 ,1(z) and ek
ΓΛ1 ,2(z) for 0≤ θk ≤ 1.

Figure 1 shows the basic limit functions of this new
scheme reproducing EPΓΛ1 with v0 � cos(π/4) and
ωk � − 0.015, 0, 0.015, 0.03. Figure 2 shows the curves gen-
erated by this new scheme reproducing EPΓΛ1 with different
values of ωk and v0. In particular, when v0 � cos(π/4) (solid
line in the left column), 1 (solid line in the middle column),
and cosh(3/5) (solid line in the right column), Figure 2
shows the reproduction of the circle, parabola, and hyper-
bola, respectively. From Figures 1 and 2, we can also see the
effect of the parameter ωk on the shape of the limit functions
of this new scheme.

3.2. Nonstationary Quasi-Interpolatory Schemes Reproducing
EPΓΛn

. As it can be seen from Section 3.1, the two newly
derived schemes reproducing EPΓΛ0 and EPΓΛ1 are actually
obtained by suitably using the push-back operation. Now,
we follow this method and take a generalization to derive

nonstationary schemes reproducing general exponential
polynomials, which are in EPΓΛn

.
Specifically speaking, we use more terms like αk

1(ΔPk
i− 1 +

ΔPk
i+1) and βk

0(Δpk
i + ΔPk

i+1) to modify the first and second
rules of the scheme (4) to get

Pk+1
2i � P

k+1
2i + αk

0Δpk
i + Δk

2i,nPk,

Pk+1
2i+1 � P

k+1
2i+1 − Δk

2i+1,nPk,

⎧⎪⎨

⎪⎩
(25)

where

Δk
2i,nP

k
� 

N

j�1
αk

j ΔP
k
i− j + ΔPk

i+j ,

Δk
2i+1,nP

k
� 

n− 1

j�0
βk

j ΔP
k
i− j + ΔPk

i+1+j ,

n≥ 0,

(26)

with the k-level symbol

a
k
(z) � a

k
0(z) + a

k
1(z), (27)

where

ak
0(z) �

1 + 2vk+1

2 1 + vk+1( 
+ 2αk

0 − 2αk
1 +

1
4 1 + vk+1( 

· z2 + z− 2(  + 
n− 1

j�1
− αk

j− 1 + 2αk
j − αk

j+1 

· z2j + z− 2j(  + 2αk
n − αk

n− 1(  z2n + z− 2n( 

− αk
n z2n+2 + z− 2n− 2( ,

ak
1(z) �

1
2

− βk
0 + βk

1  z + z− 1( 

+ 
n− 2

j�1
βk

j− 1 − 2βk
j + βk

j+1  z
2j+1

+ z
− 2j− 1

 

+ βk
n− 2 − 2βk

n− 1  z2n− 1 + z− 2n+1(  + βk
n− 1 z2n+1 + z− 2n− 1( .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(28)

In other words, the scheme (10) is obtained by moving
the points P

k+1
2i and P

k+1
2i+1, generated by the cubic exponential

B-spline scheme (1), to new positions according to the
displacements αk

0Δpk
i + Δk

2i,n and − Δk
2i+1,n, respectively. In

particular, when n � 0, we have Δk
2i,0 � Δk

2i+1,0 � 0 and the
scheme (10) reduces to the scheme (4). Besides, when
αk
1 � · · · � αk

n � 0, the scheme (10) becomes the generalized
combined scheme ([24], formula (25)).

Now, we focus on the reproduction/generation property
of the scheme (10) and show that by suitably choosing the
parameters, the desired scheme reproducing EPΓΛn

can be
obtained. In fact, we have the following result.
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Theorem 4. Given the set ΓΛn with n≥ 1, with suitable
choices of the parameters αk

0, . . . , αk
n, β

k
0, . . . , βk

n− 1, the scheme
(10), if convergent, reproduces EPΓΛn

.

Proof. Since the case of n � 1 has been investigated in
Section 3.1.2, here we only need to investigate the case of
n≥ 2. From+eorem 3, the scheme (10) reproduces EPΓΛn

, if
for p � 0, 1, . . . , 2τ0 − 1 and q � 0, 1, . . . , τj − 1, j � 1, . . . , l,
the corresponding k-level symbol in (27) satisfies

D
p
a

k
(− 1) � 0,

D
q
a

k
− e
±jtk+1  � 0,

D
p
a

k
(1) � 2δp,0,

D
q
a

k
e
±jtk+1  � 2δq,0.

(29)

+e two subsymbols ak
0(z) and ak

1(z) satisying ak(z) �

ak
0(z) + ak

1(z) satisfy

a
k
0(z) � a

k
0(− z),

a
k
1(− z) � − a

k
1(z),

(30)

respectively. +us, for r ∈ N0, Drak
0(z) is an even function if

r is an even number and odd function if r is an odd number,
while Drak

1(z) is an even function if r is an odd number and
odd function if r is an even number. +erefore, for r ∈ N0,
the subsymbols ak

0(z) and ak
1(z) satisfy

D
r
a

k
0 − e
±]tk+1  � (− 1)

r
D

r
a

k
0 e
±]tk+1 ,

D
r
a

k
1 − e
±]tk+1  � (− 1)

r+1
D

r
a

k
1 e
±]tk+1 ,

(31)

where tk+1 is defined as in (14). In this way, from (29), for
p � 0, 1, . . . , 2τ0 − 1, we have

Dpak(− 1) � Dpak
0(− 1) + Dpak

1(− 1) � (− 1)pDpak
0(1)

+(− 1)p+1Dpak
1(1) � 0,

Dpak(1) � Dpak
0(1) + Dpak

1(1) � 2δp,0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(32)

+is leads to the result that Dpak
0(1) � Dpak

1(1) � δp,0.
+e other two equations in (29) can be dealt with in a similar
way. In this way, the linear system (29) is actually equivalent
to the following two ones:

Dpak
0(1) � δp,0,

Dqak
0 e±jtk+1(  � δq,0,

⎧⎪⎨

⎪⎩

Dpak
1(1) � δp,0,

Dqak
1 e±jtk+1(  � δq,0,

⎧⎪⎨

⎪⎩
with

p � 0, 1, . . . , 2τ0 − 1,

q � 0, 1, . . . , τj − 1, j � 1, . . . , l.

⎧⎨

⎩

(33)

Now, let us find the desired αk
0, . . . , αk

n, β
k
0, . . . , βk

n− 1 by
solving the linear systems in (33). For the first linear system
in (33), we make a substitution as follows:

h
k
0 � 2

1 + 2vk+1

4 1 + vk+1( 
+ αk

0 − αk
1 ,

h
k
1 �

1
4 1 + vk+1( 

− αk
0 + 2αk

1 − αk
2,

h
k
j � − αk

j− 1 + 2αk
j − αk

j+1(j � 2, . . . , n − 1), . . . ,

h
k
n � 2αk

n − αk
n− 1,

h
k
n+1 � − αk

n.

(34)

+en, the first linear system in (33) can be rewritten as

Akhk
� g. (35)

Here, Ak is the (2n + 2) × (n + 2) matrix Ak � ((Ak
0)
⊤,

(Ak
1)⊤, (A

k

1)⊤, . . . , (Ak
l )⊤, (A

k

l )⊤)⊤ with

Figure 2: Curves generated by the newly obtained scheme
reproducing EPΓΛ1 with ωk � 0.14 (top row) and − 0.01 (bottom
row); v0 � 0 (dashed line), 0.3 (dotted line), and cos(π/4) (solid line
in the left column); v0 � 1 (solid line in the middle column); and
v0 � cosh(3/5) (solid line in the right column).

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

3 40 2–3 –1 1–2–4

Initial control points
ωk = –0.015
ωk = 0

ωk = 0.015
ωk = 0.03

Figure 1: Basic limit functions of the newly obtained scheme
reproducing EPΓΛ1 with ωk � − 0.015, 0, 0.015, 0.03 and v0 � cos
(π/4).
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Ak
0 �

1 D0 z2 + z− 2( (1) . . . D0 z2(n+1) + z− 2(n+1)( (1)

0 D1 z2 + z− 2( (1) . . . D1 z2(n+1) + z− 2(n+1)( (1)

⋮ ⋮ ⋮ ⋮

0 D2τ0− 1 z2 + z− 2( (1) . . . D2τ0− 1 z2(n+1) + z− 2(n+1)( (1)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Ak
j �

1 D0 z2 + z− 2(  ejtk+1(  . . . D0 z2(n+1) + z− 2(n+1)(  ejtk+1( 

0 D1 z2 + z− 2(  ejtk+1(  . . . D1 z2(n+1) + z− 2(n+1)(  ejtk+1( 

⋮ ⋮ ⋮ ⋮

0 Dτj− 1 z2 + z− 2(  ejtk+1(  . . . Dτj− 1 z2(n+1) + z− 2(n+1)(  ejtk+1( 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, j � 1, . . . , l,

Ak
j �

1 D0 z2 + z− 2(  e− jtk+1(  . . . D0 z2(n+1) + z− 2(n+1)(  e− jtk+1( 

0 D1 z2 + z− 2(  e− jtk+1(  . . . D1 z2(n+1) + z− 2(n+1)(  e− jtk+1( 

⋮ ⋮ ⋮ ⋮

0 Dτj− 1 z2 + z− 2(  e− jtk+1(  . . . Dτj− 1 z2(n+1) + z− 2(n+1)(  e− jtk+1( 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, j � 1, . . . , l,

(36)

wherehk � (hk
0, . . . , hk

n+1)
⊤ and g is the (2n + 2) × 1 vector g �

(1, 0, . . . , 0
√√√√√√

(2τ0− 1)− times

, 1, 0, . . . , 0
√√√√√√

(τ1− 1)− times

, 1, 0, . . . , 0
√√√√√√

(τ1− 1)− times

, . . . , 1, 0, . . . , 0
√√√√√√

(τl − 1)− times

, 1,

0, . . . , 0
√√√√√√

(τl− 1)− times

). Note that with the substitution in (34), ak
0(z) satisfies

D
1
a

k
0(1) � 0,

D
3
a

k
0(1) � − 3D

2
a

k
0(1).

(37)

Besides, due to the symmetry of ak
0(z) (symmetric about

z0), if q ∈ Z+, we have

D
q
a

k
0 e

jtk+1  � 0⟺D
q
a

k
0 e

− jtk+1  � 0. (38)

+us, by a process of row operation (Gaussian elimi-
nation), it can be seen that the rank of Ak and (Ak ∣ g) is
τ0 + 

l
j�1τj � n + 1. Since the unknown hk is a (n + 2) × 1

vector, the linear system (35) can be solved containing a free
parameter.

Since hk has been found, let us now fix the desired
parameters αk

0, . . . , αk
n from hk. In fact, through the sub-

stitution in (34), we obtain a linear systemA0Ak
0 � h

k, where
A0 is the coefficient matrix, which is a (n + 2) × (n + 1)

matrix, Ak
0 � (αk

0, . . . , αk
n)⊤, h

k
� (hk

0 − ((1 + 2vk+1)/(2
(1 + vk+1))), hk

1 − 9, hk
2, . . . , hk

n+1)
⊤. Note that hk

0, hk
1, . . . , hk

n+1
satisfy hk

0 + 
n+1
j�12hk+1

j � 1. +en, by the row operation
(Gaussian elimination), this linear system is uniquely
solvable. In this way, the desired parameters αk

0, . . . , αk
n

are found containing a free parameter. Similarly, through
the second linear system in (33), the parameters βk

0, . . . , βk
n− 1

can also be uniquely determined. +en, with such chosen
parameters, the scheme (10), if convergent, reproduces
EPΓΛn

. □

Remark 1. We denote by ωk the free parameter obtained in
the proof of +eorem 4. For this free parameter, we set
ωk � (− 1)n+1αk

n. +en, if ωk is chosen to be 0, the first linear
system in (33) can be uniquely solved and the solution can be

found with αk
0 � 1/(4(1 + vk+1)), αk

1 � · · · � αk
n � 0. +is

solution forces the subsymbol ak
0(z) to be ak

0(z) � 1, which
implies that the obtained scheme in +eorem 4 is an
interpolatory scheme. Besides, with +eorem 2, it can be
shown that, with another suitable choice of ωk, this obtained
scheme in +eorem 4 also generates EPΓΛn+1

with EPΓΛn

⊂ EPΓΛn+1
.

Remark 2. For the case n � 0, the desired scheme repro-
ducing EPΓΛ0 is actually the scheme (4). From Section 3.1.1,
by setting ωk � − (αk

0 − (1/4(1 + vk+1))), it reduces to the D-
D 2-point scheme reproducing EPΓΛ0 when ωk � 0 and
becomes the cubic exponential B-spline scheme (1) gener-
ating EPΓΛ1 and reproducing EPΓΛ0 when
ωk � 1/(4(1 + vk+1)). If, in addition, θk � 4ωk(1 + vk+1), the
corresponding k-level symbol can be rewritten as
ak
ΓΛ0 ,ωk (z) � (1 − θk)eΓΛ0 ,1(z) + θkek

ΓΛ0 ,2(z), where eΓΛ0,1(z)

denotes the symbol of the D-D 2-point scheme and ek
ΓΛ0 ,2(z)

denotes the k-level symbol of the cubic exponential B-spline
scheme (1).

In this way, given the set ΓΛn with n≥ 0, we can derive
the desired nonstationary scheme reproducing EPΓΛn

, which,
in fact, is a quasi-interpolatory scheme combining the
interpolatory and noninterpolatory schemes with the same
reproduction property. We denote by Sak

ΓΛn,ωk
k≥0 this newly

obtained scheme and by ak
ΓΛn,ωk (z) the corresponding k-level

symbol. In particular, when n � 0, Sak

ΓΛ0 ,ωk
k≥0 refers to the

equivalent form of the scheme (4) obtained using the
substitution in Remark 2. From the proof of +eorem 4,
given a nonstationary scheme with the k-level symbol hk(z),
which is supported on [− 2n − 2, 2n + 2] and reproduces
EPΓΛn

, we can find the parameters αk
0, . . . , αk

n, β
k
0, . . . , βk

n− 1
such that ak(z) in (27) satifies (29) (ak(z) actually becomes
hk(z)), and thus the corresponding nonstationary scheme
reproduces EPΓΛn

. +is means that the nonstationary scheme
with the k-level symbol hk(z) falls into the family of the
nonstationary schemes in this paper, and these new schemes
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in this paper can actually unify the schemes which are
supported on [− 2n − 2, 2n + 2] and reproduce EPΓΛn

.
We point out that the aforementioned process to con-

struct these nonstationary quasi-interpolatory schemes can
be generalized to the case of any arity. Note that by the
generating function approach, Muntingh [34] derived the
expressions for the symbols of the symmetric pseudosplines
of any arity. Here, in a similar way, we can also obtain the
generalization of these new nonstationary schemes to the
case of any arity. Besides, by the same method, we can also
get the nonstationary generalization of the work in [34], i.e.,
the exponential pseudosplines of any arity.

4. Analysis of Smoothness and
Approximation Order

+is section is devoted to the analysis of the convergence,
smoothness, and approximation power of the new scheme
Sak

ΓΛn,ωk
k≥0. Before that, we need to derive the corresponding

asymptotical similar scheme first.
In order to derive the asymptotical similar scheme of the

scheme Sak

ΓΛn,ωk
k≥0, we try to get their symbols. From Re-

mark 2 and Section 3, it can be seen that the symbols of the
nonstationary quasi-interpolatory subdivision reproducing
EPΓΛ0 and EPΓΛ1 are actually convex combinations of the
symbols of exponential pseudospline schemes. Now, we
show that this is true for general n. In fact, recall that from
Remark 1, the scheme Sak

ΓΛn,ωk
k≥0 reduces to the inter-

polatory scheme reproducing EPΓΛn
when ωk � 0 and be-

comes a noninterpolatory one generating EPΓΛn+1
and

reproducing EPΓΛn
with ΓΛn ⊂ ΓΛn+1 when ωk is chosen to

be another suitable value. For these two schemes, let ek
ΓΛn,1 �

ek
1,− 2n− 1, 0, . . . , 0, ek

1,− 1, 1, ek
1,1, 0..., 0, ek

1,2n+1  and ek
ΓΛn,2 �

ek
1,− 2n− 2, ek

1,− 2n− 1, . . . , ek
1,2n+1, ek

1,2n+2  denote their k-level
masks, and by ek

ΓΛn,1(z) and ek
ΓΛn,2(z) we denote their cor-

responding k-level symbols. In particular, when n � 1, these
two k-level symbols are just the pair of symbols in (23).+en,
from ([33], Section 5), these two schemes are just the odd
symmetric exponential pseudospline schemes (see [33] for
the way to compute their symbols). In this way, the cor-
responding k-level symbol ak

ΓΛn,ωk (z) is actually a convex
combination of ek

ΓΛn,1(z) and ek
ΓΛn,2(z). In other words, we

have the following result.

Lemma 2. Given the set ΓΛn, the k-level symbol ak
ΓΛn,ωk (z) of

the new scheme Sak

ΓΛn,ωk
k≥0 can be written as

a
k
ΓΛn,ωk (z) � 1 − θk

 e
k
ΓΛn,1(z) + θk

e
k
ΓΛn,2(z), (39)

where θk is a free parameter depending on k.

Remark 3. Since the exponential pseudospline schemes in
[33] are derived using polynomial correction, +eorem 4
and Lemma 2 imply that quite a number of the

nonstationary subdivision schemes obtained using the
polynomial correction, including the existing interpolatory
schemes reproducing exponential polynomials, such as the
ones in [12, 25], can also be derived by suitably using the
push-back operation.

Lemma 2 also implies that these nonstationary quasi-
interpolatory subdivision schemes are also parameter-de-
pendent schemes (see also [27]). Now, we let
θk � ωk/|ek

2,2n+2| � ωk/|ek
2,− 2n− 2| in Lemma 2. As a result, we

choose ωk � |ek
2,2n+2| in the new scheme Sak

ΓΛn,ωk
k≥0 so that it

also generates EPΓΛn+1
. Now, we make a mild condition on

the free parameter ωk. We assume that the limit of ωk as k
tends to infinity exists and we denote its limit by ω, that is to
say we assume limk⟶∞ωk ≔ ω ∈ R exists. +en, together
with Lemma 2, we can show that the asymptotical similar
scheme of Sak

ΓΛn,ωk
k≥0 is the scheme S2M with M � n + 1 in

[26]. +is is shown in the following result.

Proposition 1. Assume limk⟶∞ωk ≔ ω ∈ R. İen, the
asymptotical similar scheme of the new nonstationary scheme
Sak

ΓΛn,ωk
k≥0 reproducing EPΓΛn

is the stationary scheme S2M

with M � n + 1.

Proof. Due to the fact that the asymptotical similar
counterparts of the exponential pseudosplines are the
pseudosplines [33], we have

lim
k⟶∞

e
k
ΓΛn,1(z) � a

n
n+1(z),

lim
k⟶∞

e
k
ΓΛn,2(z) � a

n
n+2(z),

(40)

where

a
l
m(z) � 2

(1 + z)2

4z
 

m



l

i�0

m + l

i

⎛⎝ ⎞⎠

· −
(1 − z)2

4z
 

i
(1 + z)2

4z
 

l− i

, m, l ∈ N0,

(41)

denotes the pseudosplines of type II [35]. In this way, for the
leading term of an

n+2(z), the absolute value of its coefficient is

limk⟶∞|ek
2,2n+2| �

2n + 2
n + 1 /16n+1. Since θk � ωk/|ek

2,2n+2|,

it can be seen that limk⟶∞θ
k � ω 16n+1/ 2n + 2

n + 1   and

we denote this limit by θ. +us, we have

an,ω(z) ≔ lim
k⟶∞

a
k
ΓΛn,ωk (z) � (1 − θ)a

n
n+1(z) + θa

n
n+2(z).

(42)

+erefore, an,ω(z) is just the symbol of the scheme S2M

with M � n + 1 in [26] (see [35]). +us, the scheme S2M with
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M � n + 1 in [26] is the asymptotical similar scheme of
Sak

ΓΛn,ωk
k≥0. □

Based on Proposition 1, now we investigate the Cr

convergence of the scheme Sak

ΓΛn,ωk
k≥0. In fact, we have the

following result.

Theorem 5. Given the set ΓΛn, for the new scheme
Sak

ΓΛn,ωk
k≥0, it is Cr convergent with r< 2n + 4, if the free

parameter ωk is such that the asymptotical similar coun-
terpart is Cr convergent.

Proof. From +eorem 4 and Remark 1, the new scheme
Sak

ΓΛn,ωk
k≥0 reproduces EPΓΛn

and generates EPΓΛn+1
with

ΓΛn ⊂ ΓΛn+1. +en, according to [36], Corollary 14, this new
nonstationary scheme satisfies approximate sum rules of
order r with r � 2τ0 + 2

 l
j�1τl � 2[(n + 1) + 1] � 2n + 4.

+en, from+eorem 1, this new nonstationary scheme is Cr

convergent, if the free parameter ωk is such that the
asymptotical similar subdivision is Cr convergent with
r< 2n + 4. □

Now, let us discuss the approximation order of the
scheme Sak

ΓΛn,ωk
k≥0. Let f be a function satisfying

‖Djf‖L∞(K)<∞ with j � 0, . . . , L, L � 2n + 2 and K being
a compact set inR. Assume that the initial data is of the form
fκ ≔ fκ

j � f(j2− κ), j ∈ Z for some κ ∈ Z+. +en, for the
scheme Sak

ΓΛn,ωk
k≥0, according to [36], +eorem 21 (see also

[37]), we have

f
∞

− f
����

����L∞(K)
≤ cf2

− κL
, (43)

where f∞ denotes the limit of the scheme Sak

ΓΛn,ωk
k≥0 ob-

tained from fκ and cf is a positive constant only dependent
on f. +is implies that this newly obtained scheme
Sak

ΓΛn,ωk
k≥0 has the same approximation order as its sta-

tionary counterpart (see [26] for the approximation order of
the corresponding stationary counterpart).

5. Examples and Comparison

+is section is devoted to the comparison with the expo-
nential pseudospline schemes and several examples and to
illustrate the performance of this new family of non-
stationary schemes.

Note that the exponential pseudospline schemes contain
the interpolatory exponentials reproducing schemes and the
exponential B-spline schemes as special subclasses. +us,
now we first compare the new nonstationary quasi-inter-
polatory schemes with the interpolatory ones reproducing
the same exponential polynomials. Given the set ΓΛn, recall
that the new scheme Sak

ΓΛn,ωk
k≥0 reproduces EPΓΛn

and is

supported on [− 2n − 2, 2n + 2]. From Remark 1, when
ωk � 0, this scheme becomes the interpolatory subdivision

with the same reproduction property, which is actually
supported on [− 2n − 1, 2n + 1]. Besides, +eorem 6 implies
that this newly obtained scheme has the same smoothness
order as its stationary counterpart. +us, we can choose ωk

away from 0 to increase its smoothness order at the expense
of slightly larger support. +is is shown by Table 1, which
gives the smoothness orders of this new nonstationary
scheme between the cases ωk � 0 and ωk ≠ 0 (maximal
smoothness order).

+at the scheme Sak

ΓΛn,ωk
k≥0 can reach a higher

smoothness order by choosing ωk away from 0 is also re-
flected by Table 2. Table 2 gives the comparison among the
cubic exponential B-spline scheme (1), the scheme Sak

ΓΛ1 ,0
k≥0

(i.e., the nonstationary interpolatory 4-point scheme in

[25]), and the scheme Sak

ΓΛ1 ,ωk
k≥0 on the support, the space

they reproduce, the approximation order, and the
smoothness order. From Table 2, it can be seen that with
only a slight increase of the support, the scheme Sak

ΓΛ1 ,ωk
k≥0

can reach the highest smoothness order among these three
schemes and higher approximation order than the cubic
exponential B-spline scheme (1). Besides, it also implies
that the new schemes in this paper have much higher
approximation order than the exponential B-spline
schemes due to the reproduction property of these two
families of schemes.

From Lemma 2 and +eorem 4, the new scheme
Sak

ΓΛn,ωk
k≥0 also contains a noninterpolatory scheme besides

the interpolatory one with the same reproduction property.
Compared with this noninterpolatory scheme, the scheme
Sak

ΓΛn,ωk
k≥0 has at least the same smoothness order. Besides,

due to the existence of the parameter ωk, the scheme
Sak

ΓΛn,ωk
k≥0 differs with different values of ωk but with the

same reproduction property. Also, the parameter ωk makes
the scheme Sak

ΓΛn,ωk
k≥0 have better flexibility than the ex-

ponential pseudosplines with the same reproduction
property in curve design, which is reflected by Figures 1 and
2 obtained by the scheme in the following example 2.

Now, we present some concrete examples to illustrate the
performance of this new family of nonstationary schemes.

Example 1. When n � 0, from Remark 2, the new non-
stationary scheme Sak

ΓΛ0 ,ωk
k≥0 reproducing EPΓΛ0 is actually

the scheme (4). From+eorem 1, it is Cr convergent if ωk is
such that the corresponding stationary scheme is Cr con-
vergent with r � 0, 1, 2.

Example 2. When n � 1, the new scheme Sak

ΓΛ1 ,ωk
k≥0 is just

the scheme with the k-level symbol in (21). +eorem 1
implies that this new scheme is Cr convergent if ωk is such
that the asymptotical similar scheme is Cr convergent with
r � 0, 1, 2, 3.

Mathematical Problems in Engineering 9



Example 3. When n � 2, let ΓΛ2 � (0, 2), ( ± t, 1),{

(±2t, 1)}. +en, we have

EPΓΛ2 � 1, x, e
±tx

, e
±2tx

 . (44)

From +eorem 4, by suitably choosing αk
0, α

k
1, α

k
2 and

βk
0, β

k
1, we can derive the new nonstationary quasi-inter-

polatory scheme Sak

ΓΛ2 ,ωk
k≥0 reproducing the space EPΓΛ2 in

(44), and the corresponding k-level symbol can be written as

a
k
ΓΛ2 ,ωk (z) � 1 − θk

 e
k
ΓΛ2 ,1(z) + θk

e
k
ΓΛ2 ,2(z). (45)

Here, ek
ΓΛ2 ,1(z) is the k-level symbol of the interpolatory

scheme reproducing the space in (44) ([12], Section 4.2):

e
k
ΓΛ2 ,2(z) �

(1 + z)4

8
z2 + 2vk+1z + 1
2 vk+1 + 1( 

z2 + 4 vk+1( 
2

− 2 z + 1

4 vk+1( 
2

· ]k
1 1 + z

4
  + ]k

2 z + z
3

  + 1 − 2]k
1 − 2]k

2 z
2

 z
− 6

,

(46)

with

]k
1 �

4 vk+1( 
4

+ 10 vk+1( 
3

+ 4 vk+1( 
2

+ vk+1 + 1
8 vk+1( 

2
vk+1 + 1( 

2 2vk+1 − 1(  2 vk+1( 
2

− 1 
,

]k
2 � −

8 vk+1( 
6

+ 24 vk+1( 
5

+ 14 vk+1( 
4

+ 4 vk+1( 
3

+ 3 vk+1( 
2

+ 2vk+1 + 1
4 vk+1( 

2 2vk+1 − 1(  2 vk+1( 
2

− 1  1 + vk+1( 
2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(47)

being the k-level symbol of the scheme generating
EPΓΛ3 ≔ 1, x, x2, x3, e±tx, e±2tx  with ΓΛ3 � (0, 4), (± t, 1),{

(±2t, 1)} and reproducing the space in (44) and
θk � ((512(vk+1 + 1)3(vk+1)4 (2vk+1 − 1)(2(vk+1)2 − 1))/
(4(vk+1)4 + 10(vk+1)3 + 4(vk+1)2 + vk+1 + 1))ωk.

From+eorem 5, this new scheme is Cr convergent if the
parameter ωk is such that the asymptotical similar coun-
terpart is Cr convergent with r � 0, 1, 2, 3, 4.

Example 4. When n � 3, let ΓΛ3 ≔ (0, 2), (± t, 1),{

(±2t, 1), (±3t, 1)}, and then we have

EPΓΛ3 � 1, x, e
±tx

, e
±2tx

, e
±3tx

 . (48)

From +eorem 4, with a suitable choice of the param-
eters αk

0, . . . , αk
3 and βk

0, β
k
1, β

k
2, we can derive the scheme

Sak

ΓΛ3 ,ωk
k≥0 reproducing the space in (48) with the k-level

symbol

a
k
ΓΛ3 ,ωk (z) � 1 − θk

 e
k
ΓΛ3 ,1(z) + θk

e
k
ΓΛ3 ,2(z). (49)

Here, ek
ΓΛ3 ,1(z) is the k-level symbol of the scheme (32)-

(33) in [24]:

Table 2: Comparison between the scheme Sak

ΓΛ1 ,ωk
k≥0 in cases ωk � 0 and ωk ≠ 0 and the cubic exponential B-spline scheme (1) on the

support, the space they reproduce, the approximation order, and the smoothness order.

Subdivision Support Space reproduced Approximation order Smoothness order

Sak

ΓΛ1 ,ωk
k≥0 [− 4, 4] EPΓΛ1 4 3

Scheme (1) [− 2, 2] EPΓΛ0 2 2

Sak
1,0

k≥0 [− 3, 3] EPΓΛ1 4 1

Table 1: Comparison on the smoothness orders of the scheme Sak

ΓΛn,ωk
k≥0 reproducing EPΓΛn

with different n between the cases ωk � 0 and
ωk ≠ 0 (maximal smoothness order).

n � 0 n � 1 n � 2 n � 3 n � 4 n � 5 n � 6
ωk � 0 0 1 2 3 4 4 5
ωk ≠ 0 2 3 4 5 6 6 7
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e
k
ΓΛ3 ,2(z) �

(1 + z)4

8
z2 + 2vk+1z + 1

2 + 2vk+1

·
z2 + 4 vk+1( 

2
− 2 z + 1

4 vk+1( 
2

·
z2 + 2vk+1 4 vk+1( 

2
− 3 z + 1

2 + 2vk+1 4 vk+1( 
2

− 3 
q

k
(z)z

− 8
,

(50)

where qk(z) � rk(1 + z6) + sk(z + z5) + tk(z2 + z4) + (1 −

2rk − 2sk − 2tk)z3 with rk, sk, and tk satisfying

e
k
ΓΛ3 ,2(1) � e

k
ΓΛ3 ,2 e

±tk+1  � e
k
ΓΛ3,2 e

±2tk+1 

� e
k
ΓΛ3 ,2 e

±3tk+1  � 2,

D
1
e

k
ΓΛ3 ,2(1) � 0,

(51)

and θk � ωk/|ck| with ck being the coefficient of the leading
term of ek

ΓΛ3 ,2(z). Note that the scheme with the k-level
symbol ek

ΓΛ3 ,2(z) also generates EPΓΛ4 � 1, x,{ x2, x3, e±tx,

e±2tx, e±3tx} with ΓΛ4 � (0, 4), (± t, 1), (±2t, 1),{ (±3t, 1)}.
From +eorem 5, it can be seen that this nonstationary

scheme is Cr convergent if ωk is such that the asymptotical
similar counterpart is Cr convergent with r � 0, 1, . . . , 5.

Figures 3 and 4 show some epitrochoid curves and
hypotrochoid curves reproduced by the scheme Sak

ΓΛ3 ,ωk
k≥0

reproducing the space in (48) with v0 � cos(π/4) and
ωk � 0.002.

Table 3 lists the schemes Sak

ΓΛn,ωk
k≥0 with n � 0, 1, 2, 3 in

the aforementioned examples on the support, smoothness
order (smooth. order), dimension of the exponential poly-
nomial space generated (dim. space. generated), dimension of
the exponential polynomial space reproduced (dim. space.
reproduced), and the approximation order (approxi. order).
From Table 3, we can see the change of these properties of the
scheme Sak

ΓΛn,ωk
k≥0 with the change of n.

Figure 3: Epitrochoid curves reproduced by the scheme Sak

ΓΛ3 ,ωk
k≥0 reproducing the space in (48) with ωk � 0.002 and v0 � cos(π/4).

Figure 4: Hypotrochoid curves reproduced by the scheme Sak

ΓΛ3 ,ωk
k≥0 reproducing the space in (48) with ωk � 0.002 and v0 � cos(π/4).

Table 3: +e schemes in the above 4 examples and the different properties.

Subdivision Support Smooth. order Dim. space. generated Dim. space. reproduced Approxi. order

Sak

ΓΛ0 ,ωk
k≥0 [− 2, 2] 2 4 2 2

Sak

ΓΛ1 ,ωk
k≥0 [− 4, 4] 3 6 4 4

Sak

ΓΛ2 ,ωk
k≥0 [− 6, 6] 4 8 6 6

Sak

ΓΛ3 ,ωk
k≥0 [− 8, 8] 5 10 8 8
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6. Conclusion

+is paper presents a new family of nonstationary sub-
division schemes by suitably using the so-called push-back
operation. Each one of these new schemes is a nonstationary
quasi-interpolatory subdivision and reproduces a certain
exponential polynomial space. +ese new schemes unify and
extend the existing interpolatory schemes with the same
reproduction property and the noninterpolatory ones like
the cubic exponential B-spline scheme. We show that they
have higher smoothness orders than the interpolatory ones
with the same reproduction property and better accuracy
than the exponential B-spline schemes. Note that this new
family of nonstationary schemes are actually constant
reproducing nonstationary schemes and their symbols are
odd symmetric. +erefore, future works may focus on the
investigation of the generalization of the schemes in this
paper, which can reproduce even more exponential poly-
nomials. Besides, the basic limit functions of these new
schemes satisfy nonstationary refinable equations, which are
the key ingredients to derive the nonstationary multi-
resolution analysis (see also [38]). +us, future works can
also focus on the construction of nonstationary (bio-
rthogonal) wavelets using these new schemes. Similar works
include the generalized Daubechies wavelets in [4] and the
biorthogonal wavelets in [3].
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