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The recently developed Link-Wise Artificial Compressibility Method (LW-ACM) with double population is presented, validated,
and then applied to magnetoconvective flow. The validation step evolves in two stages. First of all, we used the problem of mixed
convection over a vertical duct preceded by a sudden expansion in order to validate the multiple relaxation times (MRT) code.
Then, we explore the accuracy and the performance of the LW-ACM versus the MRT model and the classic Bhatnagar-Gross-
Krook (BGK) model by using a differentially heated cavity problem for Prandtl number Pr = 0.71. The numerical results for
values of Nusselt numbers and process time clearly showed the accuracy and the efficiency of LW-ACM. The adequate accuracy
of the proposed model encouraged us to apply it to a magnetoconvection problem. Dynamic and thermal fields are presented and
analyzed at Pr = 0.054 and Rayleigh number Ra = 5 × 104 for Hartmann number Ha up to 60. Results revealed that the effects
of magnetic fields on dynamic and thermal fields are important and that the heat transfer in the cavity is a decreasing function of
magnetic field strength.

1. Introduction

The Lattice Boltzmann Method, commonly called LBM, was
introduced as a new alternative for the numerical simulation
of physical phenomena that can address many problems
in physics [1]. Lattice Boltzmann Method sustains today
a rapid evolution in terms of physical models, computer
implementation, and engineering applications. This method
gains an increasing attention and becomes a convenient
alternative to classical Computational FluidDynamics (CFD)
methods. In fact, authors of LBM exceeded the validation
step of the method for a wide range of physical problems and
many of them are oriented tomake the methodmore efficient
than other CFD methods. However, more studies are still
needed to make the method useful in engineering practice.
The evolutionary process and the formulation of LBM can
be highlighted as the following: The Lattice Gas Cellular
Automat (LGCA), the continuous Boltzmann-BGK equation,
and then the Grad’s Hermite-quadrature expansion. Since

its development, LBM demonstrated a successful progress
not only in solving viscous flow problems but also in heat
transfer area [2].The first connection of the lattice Boltzmann
equation (LBE) to the Boltzmann equation has been estab-
lished by He and Luo [3]. These formulations can construct
models that recover incompressible Navier-Stokes Equations.
The Bhatnagar-Gross-Krook (BGK) approximation [4] is the
most popular lattice Boltzmann model. This approach is
derived from the Enskog equation. In this model the collision
operator requires the same relaxation time for each physical
quantity. In spite of its simplicity, BGK model suffers from
numerical instability at high Reynolds (or Rayleigh number)
number. To avoid this restriction, the direct way is to use
a large number of grid points; however this will cost large
computer resources and lower the computational efficiency.
The instability problems of LBM have been extensively
studied by many authors through theoretical and numerical
investigations. Thus, care was taken to justify the techniques
used to stabilize the method without affecting its accuracy.
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To remove numerical instability in LBM, some authors
[2] used the multiple relaxation times model (MRT). The
advantage of this model is that it has adjustable parameters
with an additional degree of freedom. These parameters can
be determined by optimizing the hydrodynamic properties of
the model and linear stability analysis of the LBE evolution
operator. Another way to remedy the stability problem in
LBM is to return into the entropic formulation of LBM.
Some authors [5] used entropic lattice Boltzmann schemes.
The derivation of ELB can be performed in many ways
and the most popular one is derived from the analog of
the discrete Boltzmann H function of standard statistical
mechanics.

The artificial compressibility method (ACM) introduced
by Chorin in 1967 [6] to solve the incompressible Navier-
Stokes Equations (NSE) is recently developed with an easy
formulation known as Link-Wise Artificial Compressibility
Method (LW-ACM) that benefits from some similarities
between its classic formulation and Lattice Boltzmann Meth-
ods (LBM). Asinari et al. [7] developed the LW-ACM by a
finite set of discrete directions (links) on a regular lattice
mesh similar to LBM and demonstrated the stability and
accuracy of the proposed model. It should be mentioned
that the link between LBM and ACM was observed earlier
by He et al. [8] and they performed a comparison between
the two methods. Their results showed that LBM and ACM
are closely related to each other. The similarities between
them appear in the continuous form of the macroscopic
governing equations, while they differ from each other in
their discrete forms. Also they found that difference between
LBM and ACM does not affect the momentum results, but
it has an impact on the pressure fields. Our recent paper
[9] reports numerical results for attached and separated
flows by using LW-ACM. The numerical results are rele-
vant for exploiting the applicability of the method to these
setups and the computational efficiency of such model is
substantiated.

In fact, LW-ACM can be used to solve convective flows.
Obrecht and Kuznik [10] used a hybrid thermal LW-ACM to
solve the problem of a differentially heated cubic cavity. Their
results showed that this scheme remains stable until Rayleigh
number𝑅𝑎 = 108. In fact, LW-ACMcan be usedwith double-
population model and simulate convective flows and save the
memory usage compared to MRT-LBM [11, 12]. Compared
to the MRT implementation, the main advantage of the LW-
ACM formulation is its simplicity and suitability for parallel
implementation. The stability of LBM simulations continues
to be the subject of current studies. Recent papers dealing
with LBM are oriented towards its efficiency against classical
CFD solvers. Thus, much attention has been accorded to
the performance and the efficiency of the implementation.
The present study deals with the accuracy and the efficiency
of the LW-ACM model and then applying it to a magne-
toconvective flow problem. The remainder of the present
paper is organized as follows. In Section 2, we describe
the problem under investigation. The LBM equations with
double-population LW-ACM formulation are presented in
Section 3. In Section 4, the prescribed LBMmodel is validated
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Figure 1: Cavity configuration and boundary conditions.

and compared to BGK and MRT results. Then the LW-
ACM code is used to compute the magnetoconvection flow
in a differentially heated cavity. In particular, the effects of
magnetic strength are discussed.

2. Problem Formulation and
Boundary Conditions

The problem under investigation is sketched in Figure 1 and
detailed as the following. A uniform and horizontal magnetic
field 𝐵 is applied to a square cavity filled with an electrically
conducting, viscous, and incompressible fluid with negligible
viscous dissipation and radiation effects. The cavity of height𝐻 is heated from below and cooled from above with constant
temperatures 𝑇ℎ and 𝑇𝑐, respectively (𝑇ℎ > 𝑇𝑐). The upper
and lower walls generate a vertical temperature gradient.
The problem is considered as two-dimensional. Using the
Boussinesq approximation, the fluid density varies as 𝜌 =𝜌0[1−𝛽(𝑇−𝑇0)]where 𝛽 is the thermal expansion coefficient
and 𝜌0 is the fluid density at the reference temperature 𝑇0 =(𝑇ℎ + 𝑇𝑐)/2.

The classic thermohydrodynamic equations governing
the flow in the cavity with the Boussinesq approximation take
the form

∇.𝑢 = 0 (1a)

𝜕𝑡𝑢 + 𝑢.∇𝑢 = − 1𝜌0∇𝑝 + ]∇2𝑢 − 𝛽𝑔 (𝑇 − 𝑇𝑐) 𝑒𝑦
+ 1𝜌0 [𝐽 × 𝐵]

(1b)

𝜕𝑡𝑇 + 𝑢.∇𝑇 = 𝛼∇2𝑇 (1c)

𝑢, 𝑝, and 𝑇 are the velocity, pressure, and temperature of the
fluid, respectively. ], 𝛼, and 𝛽 are the kinematic viscosity, the
thermal diffusivity, and the thermal expansion of the fluid. 𝑒𝑦
is the unit vector in the vertical direction. 𝑔 is the gravity and
𝐽 = 𝜎(−∇𝜑 + 𝑢 × 𝐵) is the current density obtained by using
Ohm’s Law, and 𝜑 is the electric potential. The effect of the
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electric field 𝐸 = −∇𝜑 is neglected as it vanishes everywhere
in the domain.

The boundary conditions are as follows. For velocities,
no-slip boundary conditions are applied on each side of
the cavity. For thermal boundary conditions, two types of
boundary conditions are used here.The top and bottom walls
are considered isothermal and the side walls adiabatic.

In order to express the governing equations in dimension-
less form, we introduce the following scaling:

𝑥 (𝑋, 𝑌) → 𝑥 (𝑥, 𝑦)𝐻 ,
𝑡 → 𝑡𝛼𝐻2 ,

𝑢 (𝑈, 𝑉) → 𝑢 (𝑢, V)𝐻𝛼 ,
𝑝 → 𝑝𝐻2𝜌0𝛼2

(2)

By introducing this scaling and previous assumption, we
obtain the dimensionless form of (1a)–(1c):

∇.𝑢 = 0 (3a)

𝜕𝑡𝑢 + 𝑢.∇𝑢 = −∇𝑝 + 𝑃𝑟∇2𝑢
+ (𝑅𝑎𝑃𝑟𝜃 − 𝐻𝑎2𝑃𝑟𝑉) 𝑒𝑦 (3b)

𝜕𝑡𝜃 + 𝑢.∇𝜃 = ∇2𝜃 (3c)

𝜃 = (𝑇 − 𝑇𝑐)/(𝑇ℎ − 𝑇𝑐) and 𝑃𝑟 is the Prandtl number 𝑃𝑟 = ]/𝛼. 𝑅𝑎 is the Rayleigh number 𝑅𝑎 = 𝛽𝑔(𝑇ℎ − 𝑇𝑐)𝐻3/]𝛼
and 𝐻𝑎 = 𝐵𝐻√𝜎/𝜇 is the ratio of Lorentz force to
the viscous force known as Hartmann number. 𝜎 is the
electrical conductivity and 𝜇 is the dynamic viscosity. Hence
the problem the problem is fundamentally governed by
the prescribed dimensionless parameters (𝑅𝑎, 𝑃𝑟,𝐻𝑎) and
the boundary conditions can be written in dimensionless
quantities as follows:

𝑢 (𝑋 = 0, 𝑌) = 𝑢 (𝑋 = 1, 𝑌) = 𝑢 (𝑋, 𝑌 = 0)
= 𝑢 (𝑋, 𝑌 = 1) = 0,

𝜃 (𝑋, 𝑌 = 0) = 1,
𝜃 (𝑋,𝑌 = 1) = 0,

𝜕𝜃𝜕𝑋
𝑋=0 =

𝜕𝜃𝜕𝑋
𝑋=1 = 0.

(4)

3. Double-Population LW-ACMMethod

Theartificial compressibility method substitutes the equation
of conservation of mass and momentum (1a)-(1b) into the
alternative form of the momentum equation (5a) and the
artificial compressibility equation (ACE) (5b) as follows:

𝜕𝑡𝜌 + ∇.𝑢 = 0 (5a)

𝜕𝑡𝑢 + 𝑅𝑒 × 𝑢.∇𝑢 = −∇𝑝 + ∇2𝑢 + 𝐹 (5b)

𝑅𝑒 is the Reynolds number based on some reference velocity
𝑢0 and reference length 𝐻. With the dimensionless time𝑡 = 𝑡 × (]/𝐻2), the velocity 𝑢 = 𝑢/‖𝑢0‖, the pressure𝑝 = 𝑝 × (𝐻/𝜌0]‖𝑢0‖), and the dimensionless external force
𝐹
 = 𝐹 × (]‖𝑢0‖/𝐻2). 𝐹 is equal to the sum of buoyant

and magnetic force. 𝑢0 is a reference velocity that can be
taken equal to the characteristic velocity in the buoyant flow
in our case. Note that by this choice Reynolds number is
equal to the square root of Grashof number such that 𝑅𝑒 =√𝐺𝑟 = √𝑅𝑎/𝑃𝑟. The artificial density 𝜌 can be determined
easily by using the equation of state 𝑝 = 𝑐2𝑠 𝜌. The artificial
speed of sound is 𝑐𝑠 = 1/√𝛿, where 𝛿 is a disposable
parameter, analogous to a relaxation parameter, and knownas
the artificial compressibility. The auxiliary system with (5a)-
(5b) convergesmuchmore rapidly to the same steady solution
as (1a)-(1b). The introduction of the artificial compressibility𝛿 into the equation of motion does not affect the results and
acts in the same manner as the relaxation parameter in LBM.

The explicit time-marching and working on a regular
Cartesian gridmake some analogies between ACMand LBM.
This is the starting point of the link-wise formulation of
the ACM. The LW-ACM is developed in the same manner
as LBM models starting from the ACM and using analog
integration strategy. The particle distributions defined for the
finite set of the discrete particle velocity vectors 𝑐𝑖 at a site 𝑟
at time 𝑡 are denoted 𝑓𝑖(𝑟, 𝑡), 𝑖 = 0, ..8. In two dimensions, the
direction of a single particle probability distribution function
is limited to nine directions as follows: (0, 0) for 𝑖 = 0, (±1, 0)
and(0, ±1) for 𝑖 = 1 − 4 and (±1, ±1) for 𝑖 = 5 − 8. In the
LW-ACM, the evolution process of the distribution function𝑓𝑖 can be written as

𝑓𝑖 (𝑟 + 𝑐𝑖, 𝑡 + 1) − 𝑓𝑒𝑞𝑖 (𝑟, 𝑡)
= 2 (1 − 𝜏𝑚) (𝑓𝑒𝑞,𝑜𝑖 (𝑟 + 𝑐𝑖, 𝑡) − 𝑓𝑒𝑞,𝑜𝑖 (𝑟, 𝑡))

+ 𝐹𝑖 (𝑟, 𝑡)
(6a)

𝑓𝑒𝑞,𝑜𝑖 (𝑟, 𝑡) = 12 (𝑓𝑒𝑞𝑖 (𝜌, 𝑢) − 𝑓𝑒𝑞𝑖 (𝜌, −𝑢)) (6b)

where 𝑐𝑖 is the discrete speed, 𝜏𝑚 is the relaxation time linked
to the kinematic viscosity in a lattice unit ]𝑙𝑏𝑚 and given by𝜏𝑚 = 0.5 + 3]𝑙𝑏𝑚, and 𝜌 and 𝑢 are the density and velocity
in the lattice unit, respectively. 𝐹𝑖 is the projection of the
body force onto the velocity space and will be detailed later.𝑓𝑒𝑞𝑖 is the local equilibrium distribution function that has an
appropriately prescribed functional dependence on the local
hydrodynamic properties as follows:

𝑓𝑒𝑞𝑖 (𝜌,𝑢) = 𝜔𝑖𝜌 [1 + 3𝑢.𝑐𝑖 + 4.5 (𝑢.𝑐𝑖)2 − 1.5𝑢2] (7)

The weighting factors 𝜔𝑖 are given by 𝜔0 = 4/9, 𝜔1−4 = 1/9
and 𝜔5−8 = 1/36. The pressure and the flow velocity in
lattice unit are obtained through moment summations in the
velocity space as follows:

𝑝 (𝑟, 𝑡) = 13∑𝑖 𝑓𝑖 (𝑟, 𝑡) ,

𝑢 = ∑𝑖 𝑐𝑖𝑓𝑖 (𝑟, 𝑡)3𝑝 (𝑟, 𝑡)
(8)
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The speed of sound remains constant throughout this study
and is equal to 1/√3 in a lattice unit. The asymptotic analysis
in [7] showed that the pressure𝑝𝑝ℎ and the velocity 𝑢𝑝ℎ in the
physical units can be easily computed by taking 𝑝𝑝ℎ = (𝑝 −𝑝0)/𝜖2 and 𝑢𝑝ℎ = 𝑢/𝜖, where 𝜖 = 1/𝑁 and 𝑁 is the number
of mesh points along the characteristic length of the problem.
Quantities in a lattice units 𝑝 and 𝑢 are readily computed in
the LW-ACM code.

To solve the advection-diffusion equation for the tem-
perature, we use the D2Q9 model. Note that using the same
stencil as for dynamic fields (D2Q9) is more convenient in
terms of implementation (see [11]). The thermal evolution
equation can be written as follows:

𝑔𝑖 (𝑟 + 𝑐𝑖, 𝑡 + 1) − 𝑔𝑒𝑞𝑖 (𝑟, 𝑡)
= 2 (1 − 𝜏𝑡) (𝑔𝑒𝑞,𝑜𝑖 (𝑟 + 𝑐𝑖, 𝑡) − 𝑔𝑒𝑞,𝑜𝑖 (𝑟, 𝑡)) (9a)

𝑔𝑒𝑞,𝑜𝑖 (𝑟, 𝑡) = 12 (𝑔𝑒𝑞𝑖 (𝜃, 𝑢) − 𝑔𝑒𝑞𝑖 (𝜃, −𝑢)) (9b)

𝜏𝑡 is the relaxation time in lattice a unit and is related to
the thermal diffusivity and 𝑔𝑒𝑞𝑖 is the equilibrium distribution
function defined as follows:

𝑔𝑒𝑞𝑖 (𝜃, 𝑢) = 𝜔𝑖𝜃 [1 + 3𝑢.𝑐𝑖 + 4.5 (𝑢.𝑐𝑖)2 − 1.5𝑢2] (10)

Terms of second order in 𝑢 are removed from (10) in order
to maintain the linearity of the energy equation with regard
to the velocity. The temperature in a lattice unit is computed
by conserving only the first moment, i.e., 𝜃(𝑟, 𝑡) = ∑𝑖 𝑔𝑖(𝑟, 𝑡).
The relation between the diffusion coefficient in lattice unit𝛼𝑙𝑏𝑚 and the relaxation time is taken as 𝜏𝑡 = 0.5 + 3𝛼𝑙𝑏𝑚.
With this formulation, the model solves the following energy
equation:

𝜕𝑡𝜃 + 𝑢.∇𝜃 = 𝛼𝑙𝑏𝑚∇2𝜃 (11)

The introduction of the force term in equation (6a) can be
done in various ways. It consists of changing the equilibrium
distribution functions by applying the contribution of the
force in each direction. The body force 𝐹𝑖 giving rise to the
external force 𝐹 is defined such that

𝐹𝑖 = 3𝜔𝑖𝑐𝑖.𝐹, 𝐹 = [𝜌0𝛽𝑔 (𝜃 − 𝜃0) − 𝐻𝑎2𝜇𝑁2𝑦 𝑢𝑦] 𝑒𝑦 (12)

where 𝑁𝑦 is the number of nodes in the 𝑦 direction. Note
that this assumption is based on the low magnetic Reynolds
number (or quasistatic) approximation. Otherwise the mag-
netic induction model should be taken into consideration to
have reliable results [13]. In this case magnetic field should be
computed separately using a third distribution function [14].

As for LBM, the treatment of boundary condition in LW-
ACM is not applied to the macroscopic quantities but directly
applied to the distribution function at the boundary limit.
Let us suppose 𝑟𝑓 is the fluid node at which we want to
compute the unknown distribution function (close to the
solid wall 𝑟𝑏 ). 𝑖 and 𝑖 are the direction of the discrete velocity
and its inverse direction, respectively. The no-slip boundary

condition is ensured by reversing the velocity of the particle
which wants to enter a solid area:

𝑓𝑖 (𝑟𝑓, 𝑡 + 1) = 𝑓𝑒𝑞𝑖 (𝑟𝑓, 𝑡) + 2 (1 − 𝜏𝑚) 𝑓𝑒𝑞,𝑜𝑖 (𝑟𝑓, 𝑡) (13)

Note that this assumption supposes that the wall is halfway
between 𝑟𝑓 and 𝑟𝑏. For thermal boundary conditions, isother-
mal boundaries are applied by using the normal equilibrium
condition. To determine unknown densities for straight
boundaries, the normal equilibrium condition gives

𝑔𝑖 (𝑟𝑓, 𝑡 + 1) = −𝑔𝑖 (𝑟𝑓, 𝑡) + 𝑔𝑒𝑞𝑖 (𝑟𝑓, 𝑡) + 𝑔𝑒𝑞
𝑖

(𝑟𝑓, 𝑡) (14)

Adiabatic boundary conditions are insured by setting the heat
transferred to zero:

𝑔𝑖 (𝑟𝑓, 𝑡 + 1) = 𝑔𝑖 (𝑟𝑓, 𝑡) + 𝜙𝑛 (15)

where the heat flux 𝜙𝑛 = 0 for insulated surfaces.
By this manner, LW-ACM satisfies the ACM previously

introduced by Chorin [6]. For computer implementation,
the kinematic viscosity ] and thermal diffusivity 𝛼 can be
easily computed using 𝑃𝑟 and 𝑅𝑎 and other parameters in
simulations:

] = (𝑃𝑟𝛽𝑔Δ𝑇𝐻3𝑅𝑎 )1/2 ,

𝛼 = ]𝑃𝑟= (𝛽𝑔Δ𝑇𝐻3𝑃𝑟𝑅𝑎 )1/2
(16)

As can be seen from (3a)–(3c), the dynamic and thermal
fields depend on the dimensionless parameters, namely, the
Prandtl, Rayleigh, and Hartmann numbers. In the classic
CFD solvers, this type of problem is fully defined by the
prescribed nondimensional parameters (𝑃𝑟, 𝑅𝑎,𝐻𝑎). How-
ever, for LW-ACM, as for LBM implementation, these three
parameters are not enough to compute 𝜏𝑚 and 𝜏𝑡 since the
thermal expansion 𝛽 is known as a physical property but
not known in lattice units. For this reason, it is better to
add another parameter, namely, the Mach number. Hence,
the Mach number is fixed within the incompressible limit(𝑀𝑎 ≪ 1). This choice is motivated by the fact that the Mach
number adjustment contributes to the instabilities over LBM
simulations on the grid scale [15, 16] and it avoids possible
velocity overshoots in the ACM calculations as suggested in
[6]. In this way, the characteristic velocity in the buoyant flow‖𝑢𝑏‖ = √𝛽𝑔�𝑇𝐻 is taken sufficiently small compared to the
speed of sound 𝑐𝑠 for all simulations.

The compact form of (6a) and (9a) simplifies the adap-
tation of an existing BGK-LBM code to LW-ACM.Motivated
by this fact, the algorithm of the double-population LW-ACM
looks as follows:

(i) Setup of dimensionless parameters: 𝑅𝑎, 𝑃𝑟, 𝐻𝑎, and𝑀𝑎.
(ii) Initialization of 𝜌, 𝜃, 𝑢, 𝑓𝑖(𝜌,𝑢), and 𝑔𝑖(𝜃,𝑢) using (7)

and (10).
(iii) Advection of 𝑓𝑖 and 𝑔𝑖.
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(iv) Compute the equilibrium functions 𝑓𝑒𝑞,𝑜𝑖 and 𝑔𝑒𝑞,𝑜𝑖 at
fluid nodes using (6b) and (9b).

(v) Apply the dynamic and thermal boundary conditions.
(vi) Compute 𝜃 = ∑𝑖 𝑔𝑖 and the external force 𝐹.
(vii) Adding the projection of the force term 𝐹𝑖 to the

distribution function 𝑓𝑖 using (12).
(viii) Compute the conserved quantities 𝜌 = ∑𝑖 𝑓𝑖, 𝑢 =∑𝑖 𝑐𝑖𝑓𝑖/∑𝑖 𝑓𝑖.
(ix) If 𝑢 and 𝜃 reach the convergence criterion, computa-

tion terminated.
(x) Otherwise, processes (iii)-(viii) are repeated.

Results are assumed to be converged when we reach the
following convergence criterion:

∑𝑖,𝑗 𝑢 (𝑖, 𝑗, 𝑡 + 1) − 𝑢 (𝑖, 𝑗, 𝑡)2∑𝑖,𝑗 𝑢 (𝑖, 𝑗, 𝑡)2 < 10−8 (17a)

max (𝜃 (𝑖, 𝑗, 𝑡 + 1) − 𝜃 (𝑖, 𝑗, 𝑡)) < 10−6 (17b)

The subscript sequence (𝑖, 𝑗) represents the space Cartesian
coordinates 𝑥 and 𝑦 in the standard basis (𝑒𝑥, 𝑒𝑦) with the
summation is over the entire system and ‖‖2 denotes the 𝐿2
norm. The volume average Nusselt number which gives an
idea about the overall heat transfer in the whole cavity is
computed as follows:

𝑁𝑢 = 1 + ⟨𝑢𝑦𝜃⟩𝐻
𝛼Δ𝜃

= 1 + 1𝑁𝑥𝛼𝑙𝑏𝑚Δ𝜃∑𝑖,𝑗 𝑢𝑦 (𝑖, 𝑗) 𝜃 (𝑖, 𝑗)
(18)

𝑢𝑦 is the 𝑦-component of the velocity and the summation is
over the entire system.

4. Validation

4.1. Validation of the MRT-LBM Code. As it has been devel-
oped in the introduction, LW-ACM is a new formulation
of ACM that operates on lattices similar to LBM. Some
important points have to be discussed and analyzed before
performing simulations using this model, such as its effi-
ciency in terms of speed and accuracy against BGK which
is the most widely used model and MRT which is the most
stable and accurate one [17].

The MRT-LBM code is validated by two-dimensional
simulation of Rayleigh-Bénard convection at different
Rayleigh numbers with a Prandtl number of 0.71 (air). The
critical Rayleigh number for the onset of the Rayleigh-
Bénard convection is 𝑅𝑎𝑐 = 1707.74 which agrees with
the theoretical prediction [18]. As the Rayleigh number
increased, the steady two-dimensional convection rolls
become unstable. The wavy instability and periodic motion
observed are in good agreement with the well-known
experimental observations and theoretical predictions.
Figure 2 shows a snapshot of the temperature distribution

for 𝑅𝑎 = 104 and 𝑃𝑟 = 0.71 using MRT-LBM model.
At the first level of the simulation, the generation of the
mushroom-like isotherms (plumes) is observed. It is caused
by the instability and the fluctuation of the instantaneous
thickness of temperature boundary layer. This phenomenon
can be observed in turbulent convection at high Rayleigh
number. The isotherms show a higher level of convective
activity and thin thermal boundary layers. It is important
to mention here that similar results of snapshot contour
plots are found experimentally by Sparrow et al. [19] using
electrically heated horizontal copper surfaces situated in a
water medium. They used an electrochemical technique to
facilitate physical observations. As observed from Figure 2,
one can affirm that the MRT-LBM code reproduces the
mushroom-like appearance of the isotherms as observed by
the reference.

Another validation of the MRT-LBM code was obtained
by the mixed convection heat transfer of fluid over a vertical
duct preceded with a double-step expansion. The fluid is
injected into the channel at a cooler temperature 𝑇𝑐 and with
a fully developed velocity profile. Channel expansion ratio𝐴 = 𝐿/ℎ is taken equal to 30 and the overall length of
the computational domain is 𝐿 + 35ℎ, where ℎ is the step
height. The walls downstream of the step are maintained at
a constant temperature 𝑇ℎ, while the other walls are treated
adiabatically. At the inlet, a fully developed parabolic profile
Vwas enforced.With𝑓2 known from the nonequilibrium part
of the population normal to the boundary, 𝑓5 and 𝑓6 can be
found as 𝑓5(𝑟𝑖𝑛) = 𝑓7(𝑟𝑖𝑛) + (1/2)(𝑓3(𝑟𝑖𝑛) − 𝑓1(𝑟𝑖𝑛)) + (1/6)𝜌V
and 𝑓6(𝑟𝑖𝑛) = 𝑓8(𝑟𝑖𝑛) + (1/2)(𝑓1(𝑟𝑖𝑛) − 𝑓3(𝑟𝑖𝑛)) + (1/6)𝜌V.
At all walls, bounce-back boundary conditions were applied.
The artificial open boundary condition is applied in the outlet
of the channel by copying the fields from the penultimate
column 𝑓𝑖(𝑟𝑜𝑢𝑡) = 𝑓𝑖(𝑟𝑜𝑢𝑡 − 1). Both the ‘bounce-back’
and the ‘antibounce-back’ rules [2] were used to implement
isothermal and adiabatic boundary conditions, respectively.

The results for mixed convection flow with air (𝑃𝑟 =0.71) have been compared with numerical results reported in
using finite-volume method. Computations were performed
on 702 × 62 grid size. Velocity profiles at the particular axial
position Y=5 for fixed Reynolds number 𝑅𝑒 = 114 and for
the Grashof number ranging from 𝐺𝑟 = 102 to 𝐺𝑟 = 104
have been compared with those obtained by Tsui and Shu
[20] in Figure 3. Here the Reynolds number is defined as𝑅𝑒 = V0𝐻/], where V0 is the centerline fluid velocity at the
inlet. The Grashof number is also based on the step height𝐺𝑟 = 𝛽𝑔(𝑇ℎ − 𝑇𝑐)𝐻3/]2. It is shown that the numerical
results of the MRT-LBM model compare well with the
numerical data.Hence, results ofMRT-LBMcode can be used
as a benchmark when testing the LW-ACM. More impor-
tantly, it is well known that the MRT-LBM scheme is more
accurate, stable, and efficient than the BGK-LBM scheme
[17].

Both streamlines and steady state isotherms are shown
in Figure 4. As depicted, the asymmetric flow is detected at
Grashof number𝐺𝑟 = 102. For𝐺𝑟 = 2×103, the flowbecomes
symmetric and the central region is nearly stagnant.However,
for Grashof number 𝐺𝑟 = 104, flow reversal takes place near
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Figure 2: Snapshot contour plot of temperature for 𝑅𝑎 = 104 and 𝑃𝑟 = 0.71 using MRT-LBMmodel.
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the centerline region. Similar results are reported by Tsui and
Shu [20] as well.

4.2. Comparison of the LW-AC Method with Other LB
Methods. Table 1 shows the computed Nusselt numbers and
CPU times for Pr=0.71 obtained by the BGK-LBM, MRT-
LBM, and the double LW-ACM method for a square cavity
with differentially heated side walls problem at Rayleigh
number from 103 to 105.Theflow configuration and boundary
conditions are as follows. The right and left boundaries are
maintained at constant temperatures 𝜃 = 1 and 𝜃 = 0,
respectively, while the other two walls are kept adiabatic.
The no-slip boundary condition is applied at walls. The

computing of averaged Nusselt number representing the heat
transfer rate at the isothermal walls is defined as follows:

⟨𝑁𝑢⟩ = 1𝐻Δ𝜃 ∫𝐻
0

(𝜕𝜃𝜕𝑥)𝑑𝑦

≃ 1𝑁𝑦Δ𝜃
𝑁𝑦∑
1

3𝜃 (0, 𝑗) − 4𝜃 (1, 𝑗) + 𝜃 (2, 𝑗)
2

(19)

where 𝐻 is the cavity height and 𝑁𝑦 is the number of lattice
nodes in the vertical direction. The results of Wang et al.
[2] using MRT-LBM model are used as reference. As it can
be seen from all chosen Rayleigh numbers, the LW-ACM
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Table 1: Computed Nu and CPU time with different models, 𝑃𝑟 = 0.71 and 𝑅𝑎 = 103 − 105.
Ra Grid size Wang et al. (2013) BGK-LBM Δ(%) CPU MRT-LBM Δ(%) CPU LW-ACM Δ(%) CPU

103
642

1.1178
1.1170 0.071 30.11 1.1174 0.035 40.11 1.1173 0.044 44.65

1282 1.1171 0.062 63.31 1.1175 0.026 78.01 1.1174 0.035 70.23
2562 1.1172 0.053 81.22 1.1178 0.0 110.22 1.1178 0.0 95.368

104
642

2.2448
2.2430 0.080 45.21 2.2445 0.013 54.26 2.2443 0.022 48.05

1282 2.2436 0.053 76.02 2.2443 0.022 91.01 2.2440 0.035 85.67
2562 2.2444 0.017 140.21 2.2446 0.008 180.41 2.2444 0.017 156.51

105
642

4.5216
4.5172 0.097 65.25 4.5185 0.068 80.21 4.5180 0.079 72.38

1282 4.5185 0.068 150.21 4.5195 0.046 198.25 4.5193 0.050 171.32
2562 4.5110 0.013 320.00 4.5202 0.030 400.25 4.5200 0.035 361.49
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Figure 4: Streamlines (left) and isotherms (right) for (Pr=0.71) and Grashof numbers (a) 𝐺𝑟 = 102, (b) 𝐺𝑟 = 2 × 103, and (c) 𝐺𝑟 = 104.

model gives results closer to the reference than the BGK-
LBMmodel. On the other hand, the MRT-LBMmodel gives
analogous results as those reported in the reference even we
use a coarse mesh. The relative deviation between LW-ACM
and the reported results obtained by the coarse 642 mesh is
about 0.044% for 𝑅𝑎 = 103, 0.022% for 𝑅𝑎 = 104, and 0.079%
for 𝑅𝑎 = 105. As expected, at low Rayleigh number, values
of the Nusselt number are close to the reference data while
the deviation ismore pronounced at higher Rayleigh number.
On the other hand, the maximum deviation of the finest grid
solution is about 0.035% at 𝑅𝑎 = 105. The double LW-ACM
model gives useful results within acceptable errors and it may
be used as an effective tool for thermal problems. The table
also provides the CPU time required to reach the steady state
when using BGK-LBM, MRT-LBM, and LW-ACM models.
Clearly, we can see that the CPU time for BGK-LBM model
is the shortest. This gives an explanation of why BGK-LBM
is the largely used and the most referred model. Except for

the first computation using the coarse mesh at 𝑅𝑎 = 103, the
CPU time required for the MRT model is always high. The
comparison between several models with respect to the CPU
time shows that the slowness of the MRTmodel compared to
the BGKmodel ℓ = [𝐶𝑃𝑈𝑀𝑅𝑇 − 𝐶𝑃𝑈𝐵𝐺𝐾]/𝐶𝑃𝑈𝐵𝐺𝐾 is about23.2%, 19.7%, and 32% using the intermediate 1282 grid size
and at 𝑅𝑎 = 103, 𝑅𝑎 = 104, and 𝑅𝑎 = 105, respectively.
It is true that MRT-LBM model improves the accuracy of
simulations, but it requires more time to reach steady state.
The double LW-ACM in turn requires about 11%, 12.7%, and14% using the same grid size and Rayleigh number.

The second step in the validation process of the LW-
ACM code is the comparison of the given results with those
reported in the literature using stability analysis. The average
Nusselt number for Rayleigh number ranging from 𝑅𝑎 = 103
to𝑅𝑎 = 105 has been comparedwith those obtained byClever
and Busse [21] in Figure 5. It is shown that our numerical
results compare well with both numerical and analytical data
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obtained from the correlation 𝑁𝑢 = 1.56(𝑅𝑎/𝑅𝑎𝑐)0.296. At
low Rayleigh number, the grid resolution is sufficient to
solve the flow and heat transfer. However, for high Rayleigh
number, the LW-ACMmodel slightly underestimates the heat
transfer rate.

5. Magnetic Field Effect

In this section, numerical simulations have been performed
for square cavity heated from below and cooled from above
in the presence of magnetic fields. This can evaluate the
double-population LW-ACM in solving more complex flows.
Recently, this problem sustains a considerable attention
because of a number of its wide variety of applications in
engineering and technology such as metallic alloys, magne-
toelectrochemistry (MEC), and astrophysical and environ-
mental systems. Thus, it has been shown both experimentally
and numerically that magnetic fields can be used to control
thermal convectionwhich is important in problems involving
metallurgy, microstructure devices, and protein crystals and
under reduced gravity conditions. In order to evaluate the
potential effects of magnetic fields in heat transfer area,
Benos et al. [22] solved analytically and numerically two-
dimensional MHD natural convection flow in an internally
heated horizontal shallow cavity. Their comparison of the
analytical and numerical results showed the validity and the
correctness of their analysis. It is of interest to note that the
recent progress in superconductivity and electric resistance of
metals at very low temperature allowed researchers to reach
larger magnetic fields up to 15 T by using super-conducting
magnets. Effects of strong magnetic field on two-dimensional

natural convection have been studied by Pirmohammadi and
Ghassemi [23].They found that when the Hartmann number
is sufficiently large, the convection is suppressed. In fact,
in spite of the existence of many papers dealing with the
interaction between convection and magnetic fields, there
is as yet no complete understanding of magnetoconvection
and further research works still needed to provide certain
important features. Motivated by this fact, we apply the LW-
ACM to the two-dimensionalmagnetoconvection problem as
described in Section 2.

Figure 6 shows the streamlines, the steady state isotherms
and the pressure contours at Rayleigh number 𝑅𝑎 = 5 ×104 without magnetic fields (𝐻𝑎 = 0) and with magnetic
fields for Hartmann number 60.We observe that the thermal
gradient gives rise to two convection rolls characterizing the
instability of Rayleigh-Bénard. The number that governs this
type of flow is the Rayleigh number. For all chosen Rayleigh
numbers, an adjustment in the flow pattern is observed
when magnetic fields are applied. The rotational flow with
a single elliptic vortex is observed for high Hartmann num-
ber. Isotherms become more uniformly spaced throughout
the cavity and the intensity of convection is considerably
decreased by the drag induced by the magnetic field, as
indicated by a weak distortion of the isothermal lines. The
magnetic field reduces the Nusselt number and the fluid
velocity.When theHartmann number is sufficiently large, the
mushroom-like isotherms (plumes) caused by the instability
of the thermal boundary layer become thinner which tends to
homogenize the temperature throughout the cavity. Without
magnetic fields, the streamlines form two symmetric vortices
with respect to the vertical centerline of the enclosure and
when a magnetic field is applied with a sufficiently high value
of Hartmann number, the two vortices move from the center
of the cavity to the top.The bifurcation of the flow takes place
for all cases.The two large vortices appear on the center of the
enclosure, but with increasing in Hartmann number, the two
vortices are reduced in size located near the top and bottom
of the right horizontal top wall. The core of vortex depends
on the magnitude of magnetic field. Also, the increase in the
value of the magnetic field moves the vortex into the top wall
where the temperature is cold. We note also a change in the
shape of vortices from the circular shape to elliptical one.
One of the application of such result is in melting processes
of an electrically conducting fluid metals when the fluid
motion presents turbulent convection flow.The applied mag-
netic field stabilizes or cancels unwanted oscillations in the
flow.

Figure 7 presents the evolution of the averaged Nusselt
number for different Hartmann numbers. The convergence
history indicates that the volume average Nusselt number
has a temporal damped oscillation at the beginning of the
simulation. This results from incipient instabilities since all
theNusselt numbers have converged to a constant values after
a number of iterations. TheNusselt number keeps decreasing
with respect of Hartmann number; we can highlight that
when 𝐻𝑎 = 60, the effect of magnetic fields on the Nusselt
number (and so on the heat transferred through the walls) is
significant.
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For the sake of completeness, computations of the
volume-averaged Nusselt number for different magnetic field
magnitude give 4.261, 4.185, 2.850, and 2.768 for 𝐻𝑎 = 0,𝐻𝑎 = 20, 𝐻𝑎 = 40, and 𝐻𝑎 = 60, respectively. In agreement
with what has been concluded from the thermal and flow
fields in Figure 6, increasing Hartmann number is associated
with a decrease in Nusselt number and the heat transfer in
the cavity. In fact, increasing magnetic strength leads to an
increase the Lorenz force which prevents buoyant force and
substantially suppresses the convection. More importantly,
the decrease in the heat transfer reaches 1.78% when 𝐻𝑎
increases by 20 compared to the case without magnetic field.
When 𝐻𝑎 increases from 20 to 40, the decrease in heat
transfer is about 31.89%.

Results of natural convective flow in the presence of
magnetic fields make it possible to judge the ability of the
double-population LW-ACMmodel to predict realistic flows.
Thus, the method seems to be able to predict quantities
of engineering interest like the volume-averaged Nusselt
number accurately. However, as MRT-LBM and LW-ACM
methods are comparable, the question is why should double-
population LW-ACM be preferred to BGK-LBM with local
grid refinement and MRT-LBM?

First, the LW-ACM method is a formulation of ACM
that operates on a lattice. Therefore, it does not involve an
enforcement of mass conservation at each time step. This
causes abrupt changes in particle distributions and breaks
the mass conservation especially at the boundary for BGK-
LBM. This generates errors near the boundary and destroys
uniform convergence to the solution of LBM schemes.

Second, the double-population LW-ACM has the advan-
tage of lower memory usage and computational effort
requirement. Thus, if we look carefully at (6a)-(6b) and
(9a)-(9b), only the distribution functions 𝑓𝑖 and 𝑔𝑖 have to
be stored whereas, for a MRT-LBM code, it is necessary
to add much many quantities at each position 𝑟 since the
transformation matrix has eigenvectors connected with the
velocity set.

Finally, the implementation of MRT-LBM code is some-
how sensitive to the choice of the relaxation parameters
which need to be adjusted by a linear stability analysis of the
LBE evolution, while only physical quantities governing the
problemare needed in order to implement a double LW-ACM
code.

6. Conclusions

In this work, a double-population Link-Wise Artificial Com-
pressibility Method (LW-ACM) has been developed to solve
convective flows in the presence of a magnetic field. Compu-
tation of mixed convective flow over a vertical duct preceded
by a sudden expansion was performed in order to validate
the MRT model. Then, results of natural convection flows
in a differentially heated cavity problem using LW-ACM
were compared and validated with those obtained using
BGK-LBM and MRT-LBM models and the accuracy of the
prescribed model was evaluated. The numerical results for
values of Nusselt numbers and process time prove that LW-
ACM is an efficient tool for fluid flow and heat transfer
computations. Therefore, from a practical point of view, this
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eliminates the need for using the MRT model which is more
expensive andmore demanding in terms ofmemory.Thenwe
applied the numerical model to study magnetoconvection in
electrically conducting fluid with 𝑃𝑟 = 0.054, for𝑅𝑎 = 5×104
and for Hartmann number up to 60. Results showed that the
presence of magnetic fields affects directly the buoyant force.
The transversal velocity changed considerably which has a
direct manifestation on the volume average Nusselt number.
This trend demonstrates that LW-ACM is competitive tool
and a good alternative to LBM models for engineering
applications.
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