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Attitude determination using double-differenced GNSS carrier phase measurements is studied. A realistic stochastic model is
employed to take the correlations among the double-differenced measurements into full consideration. Two important issues
concerning iteratively solving the nonlinear least-squares attitude determination problem are treated, namely, the initial guess and
the iteration scheme. An analytical and sub-optimal solution is employed to provide the initial guess. In this solution, the orthogonal
and determinant constraints among the elements of the direction cosine matrix (DCM) of the attitude are firstly ignored, and
hence a relaxed 3x3 matrix is estimated using the linear weighted least-squares method. Then a mathematically feasible DCM, i.e.,
orthogonal and with +1 determinant, is extracted from the relaxed matrix estimate, optimally in the sense of minimum Frobenius
norm. This analytical initial guess estimation method can be used for all feasible cases, including some generated ones, e.g., the case
with only 3 antennas and only 3 satellites, subject possibly to some necessary, yet minor modifications. In each iteration, an error
attitude, whose DCM is parameterized using the Gibbs vector, is introduced to relate the previously estimated and the true DCM.
By linearizing the measurement model at the zero Gibbs vector, the least-squares estimate of the Gibbs vector is obtained and then
used to correct the previously estimated DCM. By repeating this process, the truly least-squares estimate of the attitude can be
achieved progressively. These are in fact Gauss-Newton iterations. For the final estimate, the variance covariance matrix (VCM) of
the attitude estimation error can be retained to evaluate or predict the estimation accuracy. The extraction of the widely used roll-
pitch-yaw angles and the VCM of their additive estimation errors from the final solution is also presented. Numerical experiments
are conducted to check the performance of the developed theory. For the case with 3 2-meter long and orthogonally mounted
baselines, 5 visible satellites, and 5-millimeter standard deviations of the carrier phase measurements, the root mean squared errors
(RMSE) of the roll-pitch-yaw angles in the analytical solution are well below 0.5 degrees, and the estimates converge after only one
iteration, with all three RMSEs below 0.2 degrees.

1. Introduction

Determination/estimation of the attitude, i.e., the rotational
information between a vehicle’s body frame and a reference
frame, is of significant importance in navigation, guidance,
and control [1]. In general, the methods can be roughly
grouped into two categories, i.e., the dynamic or filtering
ones and the static or point ones [2], in both of which
global navigation satellite systems can be involved [3-5].

Since about 1990s, the GNSS attitude determination system or
the GNSS attitude sensor emerged as an attractive alternative
[6]. It uses carrier phase signals differenced across more
than 2 baselines. It is attractive because that the accuracy
is moderate and hence satisfactory in many situations, that
it can employ directly off-the-shelf antennas and receivers
and hence is low-cost and fast-to-build, and that it is drift-
free and hence suitable for long-term use. In recent years, it
is receiving more and more attention in space/air/sea/land
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applications [7-10]. It can be used in both the dynamic and
the static methods; however, in this contribution, the latter is
the focus.

As only the fractional parts of the carrier phases are
measured, accurate pseudo range type information can be
extracted only when the integer cycles are resolved with
sufficiently high success rate. In GNSS attitude determina-
tion, besides the attitude calculation itself, integer ambiguity
resolution is an important issue [11-14]. Though it is claimed
that the two sub-problems, i.e., the ambiguity resolution
and the attitude calculation, should be combined, there are
still many reports in the literature which are focused on
the latter only. This is worthy in twofold. First it is worthy
in attitude determination itself because the integers remain
known once they are resolved without cycle slips. Second,
it can help to resolve the yet ambiguous carrier phase mea-
surements. As is shown in the sequel, the developed method
can determine uniquely the attitude with un-ambiguous
carrier phase signals from only 3 visible satellites. In fact,
it can be shown that, for dedicated receiver, only 2 visible
and un-ambiguous satellites are needed. The determined
attitude, as extra information, can hopefully help to fix
the integer cycles of the yet ambiguous signals from other
satellites. In this contribution, only the attitude calculation
is studied assuming that the integer ambiguities have been
resolved.

The attitude determination problem using the un-
ambiguous carrier phase measurements is often solved
using the least-squares method, or the maximum likelihood
method under the Gaussian assumption [15]. The solution
is often obtained iteratively due to the inherent nonlinearity
of the problem; see, e.g., [16]. Analytical solutions were also
reported in the literature; however, they cannot be strictly
least-squares optimal in general. By ignoring the constraints
among the 9 elements of the attitude DCM, a relaxed attitude
matrix, not necessarily orthogonal, was estimated in [17].
The relaxation apparently introduces approximation or in
other words costs the optimality. In fact, a mathematically
feasible DCM can be extracted from an arbitrary 3x3 matrix
by fulfilling certain optimality criterion; see, e.g., [18]. The
problem can be transformed into Wahba’s problem [19] to
which analytical solutions exist; see, e.g., [20, 21]. How-
ever, the transformation is only approximate, because the
weight matrix therein fails to be the inverse of the variance-
covariance matrix (VCM) of the measurement errors [6,
22]. The problem is solved analytically using the total least-
squares method in [23]. The carrier phase measurements
and the sightlines are equally weighted; however, the latter
is much more accurate than the former. For orthogonally
mounted 3 equal-length baselines, and under the assumption
that 3 differenced carrier phase measurement errors are
of same accuracies and un-correlated, it was found that
the problem becomes Wahba’s problem [24]. However, the
un-correlation assumption cannot hold in general, because
different difference measurements are constructed using the
same reference station which clearly introduces correlations
[15]. Besides, as single differenced measurements are used,
the method can only be applicable for dedicated systems [25-
27]. Optimal analytical solution can exist only for certain
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configurations of the baselines [28]. Algorithms for GNSS
attitude determination are reviewed recently in [29]. Ana-
lytical methods, though sub-optimal, have merits not only
in themselves as providing fast solutions, but also in that
they can provide efficient initial guesses for the iterative
methods.

GNSSS attitude determination problem can be formulated
in baseline domain, also called a vectorization approach [30,
31], or in measurement domain [8]. In this contribution,
the analytical and the iterative methods in measurement
domain are both studied, with the former providing an
initial guess for the latter. In the analytical solution, similar
methodology is adopted as in [17], but the orthogonality and
+1 determinant properties of the estimated attitude matrix are
strictly satisfied by the following [18]. Note here that only the
attitude estimate is of interest as an intermediate quantity;
its error analysis as presented in [18] is not necessary. The
following three differences are noted. First, a more statisti-
cally more rigorous error model for the double differenced
measurements is followed as in [15]. Second, a mathemati-
cally true DCM, i.e., orthogonal and of +1 determinant, is
extracted from the above estimated relaxed matrix. Third,
some degenerated cases with only 2 baselines or/and only
2 sightlines are treated in detail. In the iterative solution,
an error attitude DCM is defined relating the previously
estimated DCM to the true DCM. This error attitude DCM,
essentially a multiplicative error, is formulated using the
Gibbs vector or the Rodrigues parameters. The reason behand
is in that the Gibbs vector avoids trigonometric function
evaluations compared to the rotation vector or Euler angles.
Then the simple Gauss-Newton iteration is carried out. As, in
attitude determination applications, the intuitive roll-pitch-
yaw angles, one of the 12 kinds of Euler angles, are often
of interest, their estimates along with the VCM of their
additive estimation errors are also extracted from the final
solution.

In the next section, the measurement model is intro-
duced, wherein the functional model relates the attitude
to the double differenced carrier phase measurements, and
a more realistic stochastic model is employed to prop-
erly take the correlations among different measurements
into account. Then the least-squares problem formulation
naturally followed. In Section 3, an analytical, sub-optimal
solution is derived. The general cases with more than 2
baselines and more than 2 line-of-sight differences (LOSD)
are first treated and then the degenerated cases with 2
baselines and/or 2 LOSDs follow. In Section 4, based on the
initial guess provided in the previous section, the problem
is transformed to the one with the Gibbs vector of the
error attitude as the arguments and solved using the simple
Gauss-Newton iteration. Once the final solution, i.e., the
truly least-squares estimate, is obtained, the roll-pitch-yaw
angle estimates, along with the VCM of their estimation
errors, are extracted. Numerical experiments are conducted
in Section 5 to check the estimation accuracy of the proposed
method and also the convergence property of the iteration
with the proposed initial guess. The paper is concluded in
Section 6.
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2. Measurement Model and Least-Squares
Problem Formulation

In this section, the measurement model of the GNSS atti-
tude determination, including the functional model and the
stochastic or error model, is introduced. For the functional
model, double differenced carrier phase measurements are
used indicating that the theory can be applied to non-
dedicated receivers. A more realistic stochastic model is
employed wherein the correlations among different measure-
ments are taken into full consideration. Then based on the
measurement model, the loss function of the least-squares
method is naturally constructed which is to be minimized in
the subsequent sections.

Assume that carrier phase signals from totally m+1
satellites, indexed as j=0, 1, ..., m, to totally n+1 antennas,
indexed as k=0, 1, ..., n, are measured at an epoch. Denote

the one from the jth satellite to the kth antenna as (/)]]( and
the corresponding measurement error as with var[ei] = o,i i

Note here e, includes all error terms remaining after the
double difference operation in (1). If it cannot be assumed
unbiased statistically implying the presence of the unknown
systematic errors, the variance should be replaced with the
mean squared error which equals the sum of the variance
and the squared bias [32]. In general, we can safely assume
that these measurements are independent of each other.
Without loss of generality, let the 0™ satellite and the 0
antenna be the reference ones, then we have the following
double differenced measurement model without considering
the integer ambiguities.

4 Jj 0 0 _ .T
Vij =P~ P~ P+ P —kasj+€k,j 1)
with
sk’jzei—eé—e2+e8 (2)

In (1), the indices vary as j=1, 2, ..., m and k=L, 2, ..., n.
Baseline vector by, expressed in the body frame, is defined
from the kth antenna to the 0 one. Assume the antennas
are rigidly mounted on the vehicle and hence b, is constant
over time and can be precisely surveyed off-line. LOSD vector
Sj» expressed in the reference frame, denotes the difference
between the lines-of-sight from the antenna to the jth satellite
and that to the 0™ satellite. The LOSD can be safely assumed
without errors, because the positioning and orbit errors (say
about several meters) are far less than the range to the
satellites (say about 20 million meters). Matrix R (3x3) is the
DCM of the attitude from the reference frame to the body
frame. This matrix should be mathematically orthogonal and
with +1 determinant. Assume the axes of the reference frame
point to north, east, and downward, respectively, and that
of the body frame to forward, rightward, and downward,
respectively. Under this convention, the Euler angles with the
3-2-1axial rotation sequence are exactly the widely used roll-
pitch-yaw angles. From (2), we have the following variances
or covariances [15]:

2 2 2 2
cov [8k’j, 81,1'] = 6,~j5k10k,j + Sijo‘o’j + 6k10k,0 + 0-0,0 (3)

where §;; denotes the Kronecker delta function. Define the
following variables:

Y= [yk’j]kzl,Z,---,n;j:1,2,»~,m
E=[e)]

B:[bl bz bn]

(4)

k=12, m3j=1,2,,m

©)

S=[s1 85 -+ sy

Then we have the following matrix-form measurement
model:

Y=B'RS +E (6)
Define the following vectors:
y = vec [Y]
& = vec [E] (7)
r = vec [R]

where vec(X) denotes the vectorization of the matrix X
formed by stacking the columns of X into a single column
vector. Then, according to the Kronecker product rule, we
have the following vector-form measurement model:

y=(ST®BT)r+s (8)

where ® denotes the Kronecker product. From (3), the VCM
of the vectorized measurement error, i.e., Q = cov[g], can be
easily constructed.

Based on the measurement model (8), the following least-
squares loss or cost function can be constructed:

u=ly-(s"oB)r,. ©)
with
Iy =x" Xx (10)

The least-squares estimate should be the one that minimizes
(9) of course subject to the orthogonal and determinant con-
straints among the elements of the DCM. Under the Gaussian
assumption about the distribution of the measurement errors,
(9) becomes the minus log likelihood function (without
considering some parameter-independent constants), and
hence the least-squares estimate becomes the maximum
likelihood one. The subsequent 2 sections are devoted to solve
this problem, approximately but analytically, and rigorously
but iteratively, respectively.

3. An Analytical Sub-Optimal Solution

In this section, the least-squares problem with the loss
function as (9) is solved approximately and analytically. The
resulting estimate, which cannot be rigorously least-squares
in general, will be used as initial guess for the iterative
method in the subsequent section. This solution is achieved
by ignoring the inherent constraints among the elements of
the DCM. The derivation begins with the general cases and
then two degenerated cases are treated.



3.1. General Cases. Without considering the inherent con-
straints imposed on r, (8) actually represents a simple linear
measurement model, or a Gauss-Markov model under the
Gaussian assumption. For the general cases with no less
than 9 measurements, the least-squares solution, whose loss
function is as (9), can be easily obtained as follows:
-1

(1)

P, =[(SeB)Q ' (s"®B")]

r=P,(S®B)Qly (12)

A 3%x3 matrix ﬁ, as an estimate of R, can be restored from T.
This estimate is not mathematically feasible, because it cannot
always be orthogonal. In the sequel, a mathematically feasible
DCM estimate, denoted as R, is constructed as the nearest one
to R in the sense of the Frobenius norm. The following loss
function is to be minimized:

9=|R-R| =tu[(R-R)(R-R)'] (13)

where the subscript F denotes the Frobenius norm. With the
orthogonality of R in mind, (13) can be rearranged as follows.

9=3-2u[RR' | +tr[RR'] (14)

Asonly the second term in the right-hand side depends on the

=T
parameter of interest, it is equivalent to maximizing tr[RR" ].
Fortunately analytical solution exists to this problem [33].
Perform the following singular value decomposition:

R=UDV’ (15)

Then the DCM estimate that minimizes (14) can be calculated
as follows:

10 0
R=U|0 1 0 v (16)
0 0 det[U]det[V]

The first-order error analysis of the estimate in (16) can
be performed. However, we would not do it, because this
estimate is primarily used as an initial guess for the iteration
in the sequel to get more accurate estimate, and the VCM of
the error in this estimate, actually also in every intermediate
estimate, is not involved at all in the iteration. Only the error
analysis of the final estimate, i.e., that in the last iteration, is
necessary.

In order to avoid being underdetermined, the method
in this subsection necessitates that mn be equal to or larger
than 9. Also note that both m and # should be equal to
or larger than 2 in order to uniquely define the reference
and the body frames, respectively. Accordingly, some feasible
number sets of the baselines/antennas and LOSDs/satellites
for the method in this subsection can be summarized as in
Table 1. However, the following two are noted concerning
Table 1. First, for all the sets in Table 1, the baselines should
further be linearly independent, and the same goes for the
LOSDs. Second, it is only for the analytical in this subsection.
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TaBLE 1: Feasible numbers of satellites and antennas for the analyti-
cal solution in Section 3.1.

Number of antennas (n+1) Number of satellites (m+1)

=3 =6
=4 >4
=5 23

Actually at least 3 non-collinear antennas, i.e., 2 non-parallel
baselines, and 3 non-collinear satellites, i.e., 2 non-parallel
LOSDs, are sufficient to uniquely determine the attitude.
Some degenerated cases, i.e., with less numbers of antennas
and/or satellites as in Table 1, are treated in the following two
subsections.

3.2. Degenerated Cases with 2 Baselines or 2 LOSDs. In this
subsection, the following two degenerated cases are treated,
i.e., 2 baselines with 3 or 4 LOSDs and 2 LOSDs with 3 or 4
baselines. The treatments of the two cases are the same, so
without loss of generality, we take the former as the example.
From the LOSDs, select arbitrarily 3 non-coplanar ones; say
$1> S5, and s;. Define the following variables:

S=[s; s, s3] 17)
T

Vi = k1 Yeo Yis) (18)
T

g = ex) exr exsl (19)

Then we have the following measurement equation:
Yk = STRbk + sk (20)

Note that, in (18), (19), and (20), k=1 and 2. For an arbitrary
non-singular 3x3 matrix X and an arbitrary 3x1 vectorx, the
following can be validated:

[(Xx) %] = det [X] X [xx] X" (21)

where [xx] denotes the cross-product matrix or anti-
symmetric/skew-symmetric matrix of x. Using (21), we have
the following:

(S"Rb, ) x (S'Rb,) = [(S"Rb, ) x| S'Rb,
= det[S'R|ST'R[b,x] R"ST'S"RD,
(22)
= det [S]ST'R [b,x] b, = det [S]S'R (b, x b,)
= det [S] ST'RZ,
So we have the following pseudo measurement model:
det[S]ST'RE; = (y, — &) x (v, — &)
=~V XYy + [vox] & - [yix] & (23)

=Y3 &

or

Y5 = det[S]ST'RE; + &, (24)
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where the approximation is introduced by omitting the cross
product of the two error vectors. Note that the simultaneous
equations (20) and (24), with vec[R] as the arguments, are of
full column rank, so they are well-determined and hence can
be solved. Also note that as the (pseudo) measurement error
vector in (24) is the linear combination of the two in (20),
the VCM of the overall measurement error vector is singular.
Singular VCM implies equality constraints. After the estimate
of vec[R] is obtained, a DCM estimate can be extracted from
it as in the previous subsection.

3.3. Degenerated Case with 2 Baselines and 2 LOSDs. The case
with only 2 baselines and only 2 LOSDs is of both theoretical
and practice importance. It is the minimum requirement for a
unique 3-dimensional attitude estimate. It also represents the
most challenging situation in which the GNSS attitude sensor
can work. For this case, there are only 4 raw measurements,
much less than the required 9 in the algorithm for the general
case. It is necessary and also possible as shown in the sequel,
to construct 5 more (pseudo) measurements in order to get
an analytical solution.

First, let us orthonormalize both the baselines and
the LOSDs through the Gram-Schmidt process, as follows
[34]:

— 1
b, = mbl = klbl
1
b ! 5 -5 (25)
= b —b b b
2 'bz—b§b1b1|< 2 271 1)
= ky by +kyb,
_ 1
S1 = 1781 T K18
|51| (26)
s, = . (sz - sT§1 '51) =K,18; + K8,
|52 - Sggl '§1| ?

where [x| denotes the length of x. Then we have the following
pseudo measurement equations:

cosO;, = EITREI = klrclbesl =k yy, — ke, 27)
= Y11~ e

cos0,, = B§R§1 = k211<1b1TRs1 + kzlebZRs1
= kyky Y+ KooKy yag — Kapiieny — kpprie; (28)
= Y21~ €

cosO,, = EITREZ = KZIkalTRs1 + rczzklbes2
= Kk Y1y + Kop Ky — 1 kpey ) —Kppkeg (29)

=)i2 " €12

5
—T
cos ), = b, Rs,
T T T
= ky %, b) Ry + Ky by Rsy + kyy6,b) Rs,
T
+ kyy15,b, Rs, (30)

= kyky y1,1 + kKo v koK v,
+ kK Yo, — kaikarery — kpkyiey
—kyikyer, —kykyner, =V, — €

Then the following 5 pseudo measurement equations can be
constructed:

T S
cos6y; = byRs; = (b, xb,)" RS

= \/1 — cos?0,; — cos’0,;

) 31
—2 =2 RORAEY Y
= \/1_)’1,j_)’2,j+ ——
L=%1;=72;
= 73,; - E3,j
for j=1and 2.
—T —T
cos0; = b, Rs; = b R (5, x5,)
= \/1 — cos?6;; — cos?0,,
2 (32)

=2
€1t ek

- =
R R
V= Vi~ Yk

= Yk3 ~ k3

for k = 1, 2, and 3. Now we have 9 linear independent
equations, and hence a least-squares estimate of vec[R] can
be obtained. After the estimate of vec[R] is obtained, a DCM
estimate can be extracted from it as in Section 3.1.

4. Gauss-Newton Iteration for Least-Squares
Optimal Solution Using Gibbs Vector

The analytical solution in the previous section is approximate
and cannot be optimal in the least-squares sense in general.
So it is necessary to modify or correct it to approach the
truly least-squares solution. Due to the inherent nonlinearity
of the problem, correction more than once, i.e., iteration,
may be necessary. In this section, the iteration scheme is
developed. First, an error attitude DCM, parameterized using
the 3x1 Gibbs vector, is employed to relate the previous DCM
estimate to the true DCM. The problem becomes a free one
without constraints inherent among the parameters. Then
a simple Gauss-Newton iteration is employed to solve the
problem.



An error attitude or a multiplicative error, with DCM
being denoted as OR, is introduced to relate the true and the
estimated DCM, as follows:

R = 6RR (33)

This error attitude, as any attitude, can be parameterized in
several forms, e.g., the DCM itself as in (33), the quaternions,
the rotation vectors, the Gibbs vectors/Rodrigues parameters,
the modified Rodrigues parameters, and the Euler angles (12
different forms with different axial rotation sequences) [35].
In this section, the Gibbs vector is employed because first,
compared to the DCM or quaternion parameterization; it
avoids constraints within its elements. Second, compared to
the rotation vector and the Euler angles, it avoids transcen-
dental (triangular) function evaluations. This advantage is
shared with the modified Rodrigues parameters; however,
the Gibbs vector is of simpler form and involves weaker
nonlinearities. Note that the only disadvantage of using the
Gibbs vector, i.e., being singular with a 180-degree rotation
angle, cannot be a problem here. It is because the error
attitude, rather than the attitude itself, should be with small
angles, much less than 180 degrees, provided that the initial
guess is already with relatively good accuracy. As shown
in the simulation study in next section, the errors of the
initial guess are less than 0.5 degrees, which is far away from
the Gibbs vector’s singularity point. With the Gibbs vector
parameterization, (33) is rearranged as follows:

R=(I, - [0x]) (I, + [0x]) 'R (34)

With this parameterization of the attitude’s DCM, the original
measurement model, i.e., (6), becomes a nonlinear function
with arguments being the Gibbs vector 0. The corresponding
least-squares problem is solved using the Gauss-Newton
iteration here, with initial guess of the Gibbs vector being the
zero vector. The Gauss-Newton iteration of the least-squares
problem is equivalent to first linearizing the measurement
model followed by a standard (linear) weighted least-squares
method. The linearization of the measurement model is
essentially the linearization of the attitude parameterization
(34), around the zero Gibbs vector, as follows:

R~ (I, -2[0x])R (35)

With this approximation, the measurement model (6)
becomes the following:

Y=B"(I,-2[6x])RS+E (36)
ie.,
AY = -2B" [0x]RS + E (37)
with AY = Y — B'RS. The vector form of (37) is follows:

Ay=7J0+¢ (38)
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with Ay = vec[AY], and

2B" [(ﬁsl) x]
287 [(Rs,) |
J = : (39)

2B” [(ﬁsm) x]
Then the least-squares solution follows naturally as follows:
= IR
0=0"Q"1) 1'Qlay (40)

Using this estimate, the previous DCM estimate can
be updated or corrected. This linearization-estimation-
correction process is repeated to progressively approach the
truly least-squares solution. Note that the correction should
be performed using the rigorous one, i.e., (34), rather than
the approximate one, i.e., (35). This is important, because the
Gibbs vector estimate cannot be seen as sufficiently small, say
several tenth of degrees. After the iteration terminates, the
VCM of the Gibbs vector’s estimation error can be retained
in the final iteration, as follows:

Pyy = (ITQ_II)_1 (41)

Note that this is only a first-order approximation, whose
bias, along with the bias of the least-squares estimate itself,
can be further corrected by considering the higher-order
terms, mainly the second-order one [36]. However, this
will not be treated further in this contribution, only the
first-order approximation is considered. Also note that, for
small errors of the final solution, and within the first-order
approximation, the error Gibbs vector in the VCM (41) can
also be any one of the following error terms, half the Euler
angles (any one of the 12 different forms), half the rotation
vector, the vector part of the quaternion, 2 times the modified
Rodrigues parameters. All these parameterizations of the
error attitude are of multiplicative type rather than the plain
additive type, i.e., simply the additive errors in the estimate of
the attitude itself. While the DCM estimate and the VCM of
the error attitude in (41) are often sufficient for use in frame
rotation, attitude correction, etc., in some situations, the
estimate and the VCM of its additive estimation errors, of the
intuitively and physical meaningful Euler angles, especially
the roll-pitch-yaw angles, are of interest. Fortunately, they can
be readily extracted from the solution in this subsection; see,
e.g., [1, 35].

5. Numerical Experiments

The main objective of the simulation is to check the quality
of the analytical solution and the convergence property of the
iterative method with the analytical solution as its initial guess
and also to check the attitude determination accuracies for
varying attitudes. Without loss of generality, only the general
case, which is also most common in practice, is considered.
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5.1. Experiments Setup. Assume that 3 baselines are deployed
whose coordinates in the body frame are [2 0 017, [0 2 0]%,

and [0 0 2]7, respectively. The true pitch-roll-yaw angles vary
across time as follows:

a(t) = 12°sin <gt>
B(b) = 10° sin<%t> (42)

o . Us
y(t) =45 sm<300t>

The time span of the simulation is set as 30 minutes, in which
the receiver-to-satellite sightlines are assumed constant, of
course without loss of generality. The GNSS output rate
is set as 1 Hz. Totally 5 receiver-to-satellite sightlines are
generated randomly as follows. Generate the azimuth angle
¢ from a uniform distribution in interval [0 277]. Generate
the elevation angle 0 from a uniform distribution [0.177 0.57],
considering the mask angle [37]. We have the following
receiver-to-satellite sightlines:

sin; cos ¢;
1, = | sinf;sing; (43)
cos 0,

with j=0, 1, 2, 3, 4. Then totally four LOSDs can be obtained
ass; = 1 i 1, with j=1, 2, 3, 4. Assume the standard deviation
of the random errors (in length) in raw carrier phases is 5
mm. The following root mean squared errors (RMSE) are
employed to illustrate the attitude determination accuracy,

without loss of generality, with the pitch as the example:

30x60

Y [do ) (44)

t=1

1

RMSE: =130% 60

where t denotes the tth epoch, and i denotes the ith iteration.

5.2. Results and Analyses. The RMSEs of the roll-pitch-yaw
angles are depicted in Figure 1. From the simulation results
as shown in Figure 1, the following four can be observed.
First, the analytical solution is with rather good quality, with
the RMSEs below 0.5 degrees for all three channels. This is
meaningful in twofold: (1) the analytical solution itself can
be used as the final solution in situations when computation
resource is limited; (2) good-quality analytical solution, used
as initial guess for iterative method, can assure and speed
the convergence. Second, the iteration converges rather fast.
Actually, for all three channels, only one iteration is sufficient
for the estimate to converge. Third, the errors in the iterative
solution can be reduced by about 50% compared to the
analytical solution in terms of RMSE, specifically from about
0.37-0.33-0.25 degrees to about 0.16-0.17-0.14 degrees for the
roll-pitch-yaw angles. Fourth, the final errors in terms of
RMSE for all three channels are well below 0.2 degrees. This
is consistent with that reported in the literature [7].

To check the real-time performance of the proposed
method, the attitude determination errors across time is
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04
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=
M
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01 1 1 1 1 )
0 1 2 3 4 5
iterations
roll
—— pitch
— yaw

FIGURE 1: Mean squared errors of the estimated roll-pitch-yaw
angles versus the numbers of iterations.

roll error (deg)
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FIGURE 2: Roll angle estimation errors versus epochs.

depicted in Figures 2, 3, and 4 for roll, pitch, and yaw,
respectively. From the results about the RMSEs in the above,
at every epoch, only one iteration is performed. It can
be seen clearly from these figures that the errors for all
three channels and at all epochs are well below 1 degree in
magnitude. Actually, in most of the time, they are within 0.5
degrees in magnitude. Hopefully, the accuracy shown in this
simulation, along with the theory developed above, can be
used as reference in the mission design phase in practical
applications.

6. Concluding Remarks

Attitude determination using GNSS carrier phase difference
or interference technology is receiving more and more appli-
cations in recent years. The processing of the un-ambiguous
signals is studied in this contribution, assuming that the
integer ambiguities have been resolved with sufficiently high
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FIGURE 4: Yaw angle estimation errors versus epochs.

success rate maybe at previous epochs. First of all, the
problem should be properly modeled. The functional model,
relating the attitude with the double differenced carrier phase
measurements, is well known. The stochastic model, which
should effectively tell the statistical property of the measure-
ment errors, is emphasized here. A realistic stochastic model
is employed in order to fully take the correlations among the
double differenced measurements into account. To get the
least-squares estimate of the attitude, one is in fact solving
a nonlinear optimization problem, maybe also a constrained
one if the attitude is formulated using redundant parameters,
e.g., the direction cosine matrix (DCM) used in this work.
In general, no analytical solution exists, but iterations are
necessary. Then two important issues arise naturally needing
to be treated properly, ie., the initial guess to start the
iteration and the iteration scheme. To get the initial guess
is essential to develop an analytical solution which may not
be optimal. However, it should be approximately optimal
or sub-optimal; otherwise the converging speed, even the
convergence itself, may not be assured. In this work, an
analytical, sub-optimal, two-step solution is employed to
provide the initial guess. In the first step, the orthogonal
and determinant constraints on the DCM are ignored, and
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hence the least-squares estimate of it can be readily obtained.
In the second step, a mathematically feasible DCM, i.e.,
orthogonal and of +1 determinant, is extracted from the
above relaxed estimate. The extraction is optimal in that the
Frobenius norm of the difference between the two matrices
is a minimum. For the iteration, the following two are noted,
namely, the parameterization of the attitude and the iterating
strategy. With the assumption that the initial guess or the
previous estimate is already of relatively good quality, an
error, or delta attitude is introduced to relate the available
estimate to the unknown true attitude. This error attitude is
parameterized as the Gibbs vector. The advantages are mainly
twofold. First, the problem becomes an unconstrained one.
Second, it avoids transcendental (trigonometric) function
evaluations. The simple Gauss-Newton iteration is employed
here. For this iteration, we simply first linearize the DCM
with respect to the Gibbs vector at the zero vector and
then perform the (linear) weighted least-squares estima-
tion.

A numerical experiment is conducted to check the per-
formance of the developed method. In this experiment, 3 2-
meter long baselines are mounted orthogonally on the vehi-
cle. Totally 5 satellites are assumed visible, and hence there are
4 antenna-to-satellite line-of-sight differences. The standard
deviation of the un-differenced carrier phase measurement
errors is assumed as 5 millimeter. This error is mainly due
to multi-path effect, while other errors are assumed to have
been effectively canceled by double differencing. The root
mean squared errors (RMSEs) are chosen as the accuracy
index. From the simulation results, it is found that the
RMSEs of the analytical solutions, i.e., the initial guess, for
all roll, pitch, and yaw angles are well below 0.5 degrees.
This shows the relatively good quality of the initial guess.
A rather fast convergence is also found; more specifically,
the method converges after only one iteration, bringing all
three RMSEs down below 0.2 degrees. The estimation errors
versus time are also depicted. It is found that the errors,
for all three channels and all epochs, are uniformly below
1 degree in magnitude; in fact, in most of the time they
are within +0.5 degrees. It is hoped that the developed
theory, along with simulation results, can help to analyze
the feasibility of the GNSS attitude determination in some
potential missions.

We want to make a final remark about the signifi-
cant integer ambiguity resolution issue. This issue is not
considered here for which the reason has been discussed
before. However, the dependencies between the attitude
calculation and the integer resolution can be two-way in
some sense. While the dependence of the former on the
latter is well known, the reverse one is briefly discussed
as follows. As is shown before, ambiguous carrier phase
signals from only 3 visible satellite can ensure the unique
determination of the attitude. For dedicated receivers, even
2 satellites can suffice. The determined attitude can pro-
vide useful information for the resolution of the integer
cycles of the yet ambiguous signals from other satellites.
Hopefully, this topic can be a potential subject of future
study.
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