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This paper proposes an improved Empirical Mode Decomposition (EMD) method by using variable window size median filters
during the Intrinsic Mode Functions (IMFs) generation. Compared to the traditional EMD, the improved EMD, namely, Median
EMD (MEMD), helps to reduce mode-mixing providing an improvement in terms of separating the fundamental frequencies per
IMF.TheMEMDmethod applies the EMD to the signal and then applies a variable window size median filter to the resulting IMFs.
A narrow window is used for high frequency components where a broader window is used for the lower frequency components.
The filtered IMFs are then summed again and another round of EMD is applied to yield the improved MEMD IMFs. A test setup
for accelerated aging of bearings in inductionmotors is used for the comparison of the traditional and the improved EMDmethods
with the goal of finding potential bearing defects in an induction motor. The potential defect at the early stage is compared with
the faulty state and is used to extract the characteristics of the bearing damage that develops gradually. Comparing the EMD and
MEMD, it is seen that MEMD is an improvement to EMD in terms of mode-mixing problem. The MEMD method demonstrated
to have better performance compared to the traditional EMD for the extraction of the fault features from the healthy operational
state of the motor.

1. Introduction

Empirical Mode Decomposition (EMD) is a signal analysis
methodwith awide range of applications such as bearing fault
detection, biomedical data analysis, power signal analysis,
and seismic signals [1–6]

Although EMD has a wide area of applications, there are
still issues related to the method that needs to be addressed
such as mode mixing, end-effect, and spline problems [4].

When the EMDcannot successfully decompose the signal
into unique frequency components, then different Intrinsic
Mode Functions (IMF) contain the same frequencies as over-
lapping components. This is known as the modemixing issue
[4]. Another problem related to the EMD is the so-called end-
effect[4], where large deviations occur in the interpolation
fitting process of EMD resulting in the propagation and
corruption of the data span [7].

There are various methods proposed to overcome these
problems such as “B-spline EMD” [8], “mask signal improved
EMD” [9], “adaptively fast ensemble empirical mode
decomposition”[10], “improved CEEMD (Complete Ensem-
ble EMD)” [11], and wavelet packet denoising improved EMD
[12].

In this paper, a new method is proposed, i.e., the EMD
improved with median filtering which provides a filter that
eliminates the effects of the impulse noise while decreasing
the mode-mixing. Median filter in general allows eliminating
the impulse noise in various different signal analysis appli-
cations [13]. In the MEMD method, a variable window sized
median filter is applied to the IMFs.

Firstly, EMD is applied to the signal to generate the IMFs.
A variable window sized median filter is applied to these
IMFs, where a narrow window size is used for high frequency
components and a broader window size is used for low
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frequency components.These filtered IMFs are then summed
to reconstruct the signal. EMD is once again applied to the
reconstructed signal and the improved IMFs are generated.
Comparison of the results of the MEMD and the regular
EMD shows that the new method, i.e., MEMD, improves the
decomposition in terms of mode mixing, allowing a better
decomposition of the each frequency component per IMF.

Section 2 describes the regular EMD method while the
improved EMD and themedian filter are explained in section
3. The details of how to arrange the variable window size
and how to reconstruct the signal after the filtering are also
explained in section 3. Also a flowchart diagram is given to
provide a clear understanding of thewhole process. In section
4, the electric motor aging setup and process are explained.
In section 5, the data from healthy and faulty motors are
compared with the improved and the regular EMD method
and the corresponding results are discussed.

Section 6 summarizes the results of the improved EMD
and the possible improvement points for further clarifying
the window size selection criteria and the further potential
use of this method in a classification algorithm.

2. Empirical Mode Decomposition

EMD is an adaptive signal analysis method that allows
decomposing the signal into different frequency components
[14]. These components are called Intrinsic Mode Functions
(IMFs). The two conditions that need to be satisfied for a
component to be considered an IMF are the following [15]:

(i) Total zero crossings and the total extrema in thewhole
data set should be equal or vary by at most one.

(ii) The mean value of envelope from maxima and min-
ima should be equal to zero at any interval of the
component.

EMD can decompose any signal into IMFs. EMD is a sifting
process with the goal of decomposing the signal into narrow
band signals.

The EMD/sifting process can be explained as follows:

(1) Identify all the local minima and maxima.
(2) Connect all the local maxima/minima by a cubic

spline to form the upper/lower envelope.
(3) Calculate the mean of these envelops𝑚1 and subtract

it from the signal ℎ1 = 𝑥(𝑡) − 𝑚1.
(4) Check if ℎ1 satisfies the two criteria for IMF. If not

repeat steps through 1 to 3 until h satisfies the IMF
criteria.

Assuming after i times of iteration, the conditions are satis-
fied:

ℎ1(𝑖−1) − 𝑚1𝑖 = ℎ1𝑖;
then 𝑐1 = ℎ1𝑖 becomes the first IMF.

(1)

The most widely used stoppage criteria for the number of
iterations are explained by Huang et al. [15, 16] which are

given by a Cauchy convergence test; normalized squared
difference between two consecutive sifting must be smaller
than a certain value.

The first IMF is expected to contain the high frequency
oscillations in the signal [5].

𝑥 (𝑡) − 𝑐1 = 𝑟1 (2)

The residue 𝑟1 contains all the remaining frequency informa-
tion of the data and is treated as the signal and another sifting
process is applied to produce the second IMF 𝑐2.

𝑟1 − 𝑐2 = 𝑟3
𝑟𝑛−1 − 𝑐𝑛 = 𝑟𝑛

(3)

This process stops when the residue 𝑟𝑛 is a monotonic
function or a function with only one extremum; thus no
additional IMF can be extracted as by definition [16].

Thus the function can be displayed as

𝑥 (𝑡) =
𝐼

∑
𝑖=1

(𝑐𝑖 (𝑡) + 𝑟𝐼 (𝑡)) (4)

where 𝑐𝑖(𝑡) is the ith IMF and 𝑟𝐼(𝑡 ) is the residual signal.

3. Median Empirical Mode Decomposition

In the MEMD method, the signal is decomposed into IMFs
and then a variable window sized median filter is applied to
each IMF component. Afterwards, these IMFs are summed
again to recompose the signal.The recomposed signal is again
decomposed by EMD and the improved IMFs are created.

3.1. Median Filter. The nonlinear median filter enables
removing noise and smoothening a signal. The function of
a median filter can be given as [17]

𝑦 (𝑡) = 𝑚𝑒𝑑𝑖𝑎𝑛 [𝑥 (𝑡 − 𝑙) , 𝑥 (𝑡 − 𝑙 + 1) ⋅ ⋅ ⋅ 𝑥 (𝑛)
⋅ ⋅ ⋅ 𝑥 (𝑡 + 𝑙 − 1) , 𝑥 (𝑡 + 𝑙)]

𝑥 (𝑡) ; 𝐼𝑛𝑝𝑢𝑡 𝑠𝑖𝑔𝑛𝑎𝑙
𝑦 (𝑡) ; 𝑂𝑢𝑡𝑝𝑢𝑡 𝑠𝑖𝑔𝑛𝑎𝑙

(5)

The filter goes through the signal point by point and replaces
each input with the median of its neighbors [17].This concept
of neighbors can be defined as a sliding ”window” which
indeed slides per each input over the entire signal. For a
single-dimension signal, the window can be taken as a certain
number of preceding and following entries of the point [18].

The median filter with a small window size eliminates
most of the noise but also results in the loss of some
information whereas a large window sized median filter does
the opposite: less information loss; however also less noise
filtering [19].

3.2. MEMD with Median Filter. Once EMD is applied to the
original signal, the signal is decomposed into IMFs (different
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frequency components). Since each IMF contains the differ-
ent frequency components of the original data, applying a
median filter with variable window size can provide better
results in terms of handling different frequency bands. For
high frequency IMFs a smaller window sized median filter
is applied whereas the window size is increased for the
lower frequency IMFs. These variable window median filters
allow eliminating noise in high frequency components while
keeping the information of lower frequency components
intact [20, 21].

The window size of the median filter increases with the
order of IMFs. The smaller the order of the IMF is, the
smaller the window size is chosen.The window size selection
is explained later in this section.

Once all the IMFs are generated and the relevant median
filtering is applied for each IMF, these median filtered IMFs
out of the regular EMD process are summed together to
generate the filtered version of the original data.

At this point, EMD process is again applied to the filtered
version of the original data and new IMFs are generated.

The process consists of the following steps.

Step 1. Apply EMD algorithm to the signal 𝑥(𝑡) and get
the IMF components 𝑐𝑙(𝑡) and the residue 𝑟(𝑡) where 𝑙 =
1, 2, . . . 𝐿, the number of IMFs. Normalize all the IMFs.

Step 2. Use the window size hf for the IMFs defined to be
high frequency and use the window size lf for the rest of the
IMFs to produce the median filtered IMFs 𝑐𝑚𝑒𝑑,𝑙(𝑡)
Step 3. Sum all the median filtered IMFs 𝑐𝑚𝑒𝑑,𝑙(𝑡) to create the
filtered version of the original signal, i.e., 𝑥𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑(𝑡).
Step 4. Apply the EMD algorithm on 𝑥𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑(𝑡) to generate
the improved IMFs𝑑𝑚(𝑡)where𝑚 = 1, 2, . . .𝑀 is the number
of improved IMFs

The window size of the median filter increases with the
order of IMFs. A smaller window size is chosen for the initial
IMFs, wherewindow size grows for the latter IMFs. To realize
this, two adaptive windows are defined, where the “high
frequency” IMFs are filtered with the smaller window and the
rest with the larger window size.

Once the initial EMD process is completed and the
IMFs are generated, the dominant frequency of each IMF is
checked, i.e., the frequency band that carries the most energy.
If 𝐿 is the number of IMFs, then the following fundamental
frequencies are available:

𝑓𝐼𝑀𝐹1, 𝑓𝐼𝑀𝐹2, . . . , 𝑓𝐼𝑀𝐹𝐿 (6)

An IMF is considered to be high frequency if the fundamental
frequency of that IMF is higher than the half of the highest
frequency IMF plus the lowest frequency IMF.

Fundamental High frequency – Low frequency criteria
point:

𝑓𝐼𝑀𝐹𝑖 ≤ 𝑓𝐼𝑀𝐹1
2 + 𝑓𝐼𝑀𝐹𝐿 : 𝐿𝑜𝑤 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝐼𝑀𝐹

𝑓𝐼𝑀𝐹𝑖 > 𝑓𝐼𝑀𝐹1
2 + 𝑓𝐼𝑀𝐹𝐿 : 𝐻𝑖𝑔ℎ 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝐼𝑀𝐹

(7)

Based on the above decision point, IMFs are classified as high
frequency and low frequency. All IMFs from i to L including i
would be processed as low frequency, whereas all IMFs from
1 to i would be processed as high frequency IMFs.

The below window sizes are applied for each IMF based
on them being high or low frequency.

High frequency window size for the 𝑖𝑡ℎ IMF can be given
as

ℎ𝑓 = 𝑟𝑜𝑢𝑛𝑑( 𝑖
𝐿 ∗ 𝐻 (𝐼𝑀𝐹𝑖)) (8)

Low frequency window size for the 𝑖𝑡ℎ IMF can be given as

𝑙𝑓 = 𝑟𝑜𝑢𝑛𝑑( 𝑖
𝐿 ∗ (𝐻 (𝐼𝑀𝐹𝑖))2)

𝐿: The number of IMFs

𝐻(𝐼𝑀𝐹𝑖) : Shannon entropy of the 𝐼𝑀𝐹𝑖

(9)

The Shannon entropy of the IMF is calculated based on [22]

𝐻(𝑝) = −
𝑘

∑
𝑖=1

𝑝 (𝑖) log (𝑝 (𝑖)) (10)

The above criteria on how to calculate the window size for
median filter allow creating a unique median filter with a
unique window size per each IMF. The method links each
window size with the whole data by means of using the
number of the IMFs; moreover it also links the window size
with each IMF itself via the entropy of that given IMF.

A fixed window size per IMF [21] provides a means to
improve the data by removing as much impulse noise as
possible, whereas this new method applied in MEMD addi-
tionally provides a direct connection between the entropy
of each IMF and the window size for the median filter.
As it will be explained further within this paper as part of
the experiment and the analysis, this new method does not
only help to eliminate noise and improve mode-mixing [21],
but also allows a clear distinction of physically meaningful
frequency components of the data.

The flowchart of the whole process is shown in Figure 1.

4. Accelerated Aging and Bearing Damage

4.1. Experimental Setup and Data Acquisition System. A test
setup is designed to simulate the electrical discharge from
the shaft to the bearing [23–25]. This test setup, Electrical
Discharge Machining (EDM), can be seen in Figure 2. The
motor was run at no load for 30 minutes for each cycle with
an external shaft current of 27Amperes at 30VoltsAC [24, 25]
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Figure 1: The flowchart of the algorithm.
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Figure 2: EDM test setup.

Acceleration of the aging process is realized by applying
thermal aging after each cycle of EDM aging.The aging of the
motor is realized in cycles, where each cycle includes an EDM
and thermal aging process. After each cycle of accelerated
aging, the motor was run on a performance test platform
[24, 25]. During the performance test, current, voltage, rotor
speed, torque, and vibration data were collected from the
motor with a sampling frequency of 12 kHz.

In total there were 8 cycles, where cycle 0 was the healthy
operational state of the motor and cycle 7 was the faulty case.

Figure 3 shows the performance test setup used after each
accelerated aging process where the data collection on the
motor is done. There are in total six accelerometers used
for different vibration measurements. The sensors S1 and S2
(in plane A-B) are identical and provide the most significant
data in terms of bearing damage [23–25]. Thus, Sensor S-1 is
chosen for the analysis. As the aging progresses, the vibration
amplitude increases [23].

In order to analyze the data, Power Spectral Density
(PSD) graphs are referred. The PSD of a signal shows the
distribution of power per each frequency component of that
signal [26].Figures 4 and 5 show the PSD of the healthy and
faulty states of the motor.

The PSD of the healthy state of the motor in Figure 4
shows frequency components around 2.5 kHz with very low
amplitude.

The PSD of the faulty state of the motor in Figure 5 shows
that those frequency components around 2.5 kHz are greatly
increased in amplitude.These frequency components around
the range of 2.5 kHz are known to be the characteristics of the
fault [23].

By comparing Figures 4 and 5, it is important to note
that the fault related frequencies (∼ 2.5 kHz) [23] are already
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Figure 3: Motor performance test and data acquisition setup.
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Figure 4: The PSD of the healthy motor.

available in the healthy motor (Figure 4) with a relatively
very low amplitude and as the degradation of the bearing
progresses, these components around 2.5 kHz become more
visible in the frequency spectrum.

5. MEMD Method for Early Fault Detection

The data gathered from the healthy state of the motor is
analyzed by both EMD and the MEMDmethod.

Figures 6 and 7 show that there is a big difference between
the 1st IMF of EMD and the MEMD. In MEMD, the high
frequency components on the neighborhood of 2.5 kHz
are filtered as a separate component. The MEMD method
shows the components with the ∼ 1kHz frequency range as
a second IMF. However the EMD method mixes those ∼2.5
kHz components with the ∼1 kHz frequency range compo-
nents and fails to distinguish these two different physical
facts.
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Figure 5: The PSD of the faulty motor.
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Figure 6: The 1st IMF of the EMD for the healthy motor.
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Figure 7: The 1st IMF of the MEMD for the healthy motor.
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Figure 8: The 2nd IMF of the EMD for the healthy motor.
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Figure 9: The 2nd IMF of the MEMD for the healthy motor.

The physical meaning of this is that the very low
amplitude fault frequencies are recognized as a separate
component, instead of summing them together with the 1
kHz components. This is made possible by the median filter,
where the filtering softens the high amplitude components
of the lower frequencies, thus providing the possibility for
EMD to be able to decompose this underlying physical
fact as a separate component. In other words, the filtering
allowed EMD method to catch these very low amplitude
high frequency components (∼ 2.5 kHz) in the presence
of the lower frequency components with the much higher
amplitude values. This fact is also fully in line with the
physical properties of the system [23].

Figure 8 shows the 2nd IMF for the regular EMDmethod.
By checking the 1st and 2nd IMFs of the original EMD

method, respectively, Figures 6 and 8, it is seen that there is
a considerable amount of mode mixing present on the 1 kHz
frequency range. Both 1st and 2nd IMF of the regular EMD
represent the same physical components while missing the
fault features as a separate component.

It is interesting to note that the 2nd IMF of MEMD
method, as seen in Figure 9, successfully represents the 1
kHz range physical component with relatively little mode
mixing. Briefly, the information represented in the 1st IMF
of the regular EMD method is successfully divided into two
in the MEMD method as shown in Figures 7 and 9, and
the 1st MEMD IMF represents the fault frequencies, which
means the physical impact of the degradation can already be
identified as a feature/componentwhich can bemonitored for
the degradation.

Briefly, the 1st and 2nd IMF of the regular EMD method
show a mix of components (the 1 kHz range and the 2.5 kHz
range), while the MEMDmethod clearly separates these two
different physical facts into two different IMFs.

The MEMD method’s contribution is that it successfully
distinguishes the physically meaningful fault frequency com-
ponents that are already available in the initial healthy state
measurements with very low amplitude, while the regular
EMD method fails in this and can only distinguish these
components when the fault is already present.

While the method was able to distinguish this physical
fact, it did not have a significant success in the lower
frequency ranges in terms of distinguishing more detailed
physically meaningful frequency components compared to
the traditional EMD method. This limitation would require
further study and analysis in order to provide an improve-
ment on the lower frequency range as well.

6. Conclusion

In this paper, a median filter based MEMD method is
described and compared with the EMD method. It is shown
that the MEMD method which has adaptive window sized
median filter provides an improvement for the mode-mixing
problem by noise filtering and by allowing the data to be
decomposed into physically meaningful components that
were not separable previously.

Data from the induction machine rolling bearing fault
is used to compare the MEMD and EMD methods. MEMD
method is successful in distinguishing the very low amplitude
frequencies related to the fault at the healthy state, whereas
the EMDmethod failed in doing so.

The first IMF of the traditional EMD method shows the
fault related frequencies mixed with the frequencies of the
operation of the motor and is not able to distinguish them.
On the contrary, the improved MEMD method shows these
fault related higher frequencies as the 1st IMF, while the
operational frequencies are pushed to the 2nd IMF.This shows
that the improved MEMD method is able to decompose
the data into physically meaningful frequency components.
Figure 10 shows the comparison of the 1st IMF for both
improved and the traditional EMD methods and Figure 11
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Figure 10: Comparison of the PSD for the 1st IMF of EMD and
MEMD for healthy data.
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Figure 11: Comparison of the PSD for the 2nd IMF of EMD and
MEMD for healthy data.

shows the comparison of the 2nd IMF for both improved
MEMD and the traditional EMDmethods.

In terms of improving the MEMD method further, it
would be beneficial to do further analysis and research on the
median filter size selection and its relation with the frequency
components of the IMFs on the lower frequencies to improve
the decomposition for low frequency components as well.

The success of the MEMD allows it to be used as a
feature extraction method where the physically meaningful
frequencies can be distinguished at the normal/healthy oper-
ating state and be monitored as part of a real-time condition
monitoring system for fault detection.
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