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This paper presents an effective partial differential equation- (PDE-) based preprocessing algorithm for automated image-based
crack detection. The proposed formulation combines various relevant and multiple processes such as contrast and selective edge
enhancement in addition to edge-preserving smoothing to enhance the image prior to detection. The approach is adaptive and
controlled by reliable image metrics to determine the stopping time of the PDE ensuring optimum results for various images.
Additionally, a simplified thresholding algorithm based on local global maximum gradient matching is used to extract the crack
features from the image. The proposed scheme does not require arbitrary or manually tuned parameters nor a large dataset for
training to obtain good results. Experiments indicate that the proposed approach performs better when compared to several other
algorithms in the literature.

1. Introduction

There are several crack detection methods for concrete struc-
tures and surfaces.These are usually nondestructivemethods,
which include radiographic, X-ray, laser, ultrasonic, infrared,
and thermal imaging [1]. Techniques involving image acqui-
sition and software-based image processing are increasingly
becoming an attractive option. This is due to low-cost
and ease of operation and automation, reducing inspection
time and manpower demands [1, 2]. The image acquisition
systemmay employ ground or aerial unmanned autonomous
vehicles or aircraft (UAV/UAA), popularly known as drones,
which are sent into the target area. The image process-
ing component combines a number of standard, modi-
fied, or newer algorithms to achieve the crack detection
process.

Earlier works utilized thresholding, edge detection, mor-
phological operations, genetic algorithms, Gabor filters,
support vector machines (SVM), and other artificial (and
recently convolutional) neural networks (ANN/CNN) [1, 2].
The simpler algorithms are not as effective and may register a
considerable number of spurious edges or features as cracks,
while the more complex methods require extensive training
with a large dataset of crack images.

The inherent challenges of image-based detection include
irregular geometry of cracks, noise effects, uneven illumi-
nation/shadows, texture roughness of concrete surface, and
concrete spall addressed by some these algorithms [1]. The
shadows generated by rough texture and the similar bright-
ness of foreground and background features in such images
affect segmentation results; thus illumination normalization
may be required in some cases [1].

PDE-based techniques have proven their effectiveness in
solving image processing problems. They provide an attrac-
tive alternative to closed form solutions. Multiple processes
occurring simultaneously are combined in a weighted form,
enabling the control of the individual contributions (of
each of these processes) to the overall flow [3]. PDE-based
algorithmshave beenproposed for smoothing, segmentation,
thresholding, and morphological operations with interesting
results. Thus we extend PDE-based formulations to crack
image enhancement and detection using an adaptive opti-
mization scheme to guide its evolution. We achieve this by
exploiting gradient-based measures to obtain an automated
and guided PDE for preprocessing the crack images prior to
detection. We assume that the cracks represent components
with the highest entropy/detail/edge information. Thus by
maximizing the entropy or clarity, we minimize the energy
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in the process and it is expected that the system converges to
a steady state when the gradient is at a maximum.

The rest of the paper is as follows. Section 2 presents the
methods used in addition to key contributions and features
of the proposed algorithm. Section 3 presents the proposed
algorithm and preliminary analysis of results. Section 4
provides extensive experimental results and comparative
analysis. The final section presents the discussions and
conclusion.

2. Materials and Methods

The various aspects of image processing employed in the
proposed crack detection algorithm include illumination
correction, selective edge enhancement and edge preserving
smoothing, morphological operators, and thresholding func-
tions.

Illumination correction algorithms employ the illumina-
tion-reflectance model to normalize illumination in addi-
tion to dynamic range compression and contrast enhance-
ment [4]. The classical examples include Homomorphic and
Retinex filters, though other algorithms have been proposed
in the literature.

Edge detection and enhancement filters are classified
as high pass/high frequency/gradient-based filters, which
preserve edges or regions with high frequency content while
removing low frequency content [4]. The edge detection
filters such as Sobel, Prewitt, and Canny are high-pass filters,
which preserve only edge information in images [4]. The
edge enhancement/sharpening filters such as Laplacian or
unsharp masking algorithms augment the edge information
or high frequency content and are termed high-frequency
emphasis/high-boost filters [4]. They yield sharper images
after filtering, which can be observed visually and verified
using image gradient-based measures.

Nonlinear, edge-preserving smoothing filters are useful in
image filtering since they can suppress noise and unwanted
high frequency content/component without smoothing out
desired edge details. They are usually based on rank order
statistics, nonlocal means, or tensor-based anisotropic diffu-
sion (AD) PDE [5] or total variation regularization- (TVR-)
[6] based algorithms. The classic examples include the
median filter and its numerous variations, bilateral, trilateral,
and guided filters, AD and TVR based approaches, and
variants.

Morphological and thresholding operators employ
Boolean logic in their operation and include dilation,
opening, erosion, and closing processes, which are invaluable
tools in image segmentation and object identification by
shape and size analysis [4]. The thresholding functions
are used for removing extraneous image information,
leaving only the essential intensities required for the object
recognition from the image.Thus, the resulting output image
has much fewer gray level intensities than the input image.
Classical algorithm examples include Otsu’s method [7],
entropy-based schemes, etc.

2.1. Key Contributions and Features. The proposed scheme
utilizes terms for selective smoothing, edge, and contrast

enhancement in its formulation. The key and novel contri-
butions of the work include the following:

(i) Simultaneous smoothing, contrast, and selective edge
enhancement.

(ii) Adaptive optimization using reliable image metrics
such as edge/gradient information.

(iii) Automated stopping time of PDE due to guided
evolution using the aforementioned processes.

(iv) Simplified thresholding scheme for extraction of
crack pixels based on local-global maximum gradient
matching.

3. Proposed Algorithms and Modifications

Cracks observed in acquired images can be characterized
as being composed of high frequency components; thus
they can be detected by employing edge enhancement fil-
ters. However, rough textures are also composed of high
frequency components and will also be detected as edge
detail. Thus, the proposed algorithm augments and/or pre-
serves the crack details, while smoothing background texture,
enabling improved edge detection, morphological filtering,
and thresholding results. The algorithm is built on a closed
form approach to realize an iterative PDE-based framework.
The algorithms can be used for instances where the input
crack image is degraded by uneven illumination and/or is a
colour image. The basic steps for the proposed approaches
(PA) are shown in Figure 1.

3.1. Preliminary Analysis. Previous algorithms work well for
images with highly distinct crack features, where the crack
pixel intensities have the lowest pixel values. Additionally,
images with mainly horizontal or vertically oriented crack
patterns are generally easier to process. Thus, straight-
forward approaches such as smoothing, edge detection, and
thresholding yield almost completely segmented images,
indicating prominent crack features. However, more complex
cracks are highly irregular and are not completely hori-
zontal, vertical, straight, or curved and will have smaller
extensions emanating from the main crack region. Addi-
tionally, the non-ideal conditions such as uneven illumina-
tion/shadows/shading, noise, texture roughness of concrete
surface, irregular shapes/sizes and spots, and blemishes
complicate the image-based crack detection process. Usually,
machine learning and neural network-based techniques are
used to address such issues. However, such schemes require
a large amount of image data to adequately train the system
for crack detection and analysis. We address each of these
problems using a variety of techniques. Additionally, some
images display cracks, whose brightness or intensity closely
resembles the background intensity, making it even more
difficult to extract such features. This can be mitigated using
tonal mapping operators such as Homomorphic filter (HF)
and Retinex. We use a previously devised fuzzy Homo-
morphic enhancement (FHE) algorithm [13] to normalize
the image intensities where necessary. For the problem of
similarity of crack foreground and background intensities,
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Figure 1: Basic flowchart of proposed image-based crack detection algorithms: (a) PA-1 [8] and (b) PA-2.

we first analyze a row profile of the input image, which is
the usual practice in the field [12]. Figure 2 shows the plot
of intensities against the number of pixels for a single row of
the crack image for two different images from the literature
[9, 14, 15].

In Figure 2, we observe that the lowest intensity value is
likely to be a crack region pixel candidate. For images where
both foreground and background intensities are relatively
close, the variance or deviation is low. Thus we expect low
contrast, entropy, or gradient values. This is easily observable
in the images where the crack in Figure 2(a) is easily
discernible compared to the one in Figure 2(b). Thus using
illumination correction makes the case worse for images
similar to (b) as shown in Figure 3.The lowest intensities have
been considerably increased, while the highest intensities
have obtained amodest increase in (b) compared to (a) where
the gap is more or less maintained in spite of overall increase
of all intensities and the crack is still clearly distinguishable in
(a) compared to (b).

For the ideal crack images, the gap between the lowest
pixel intensity and the others is much higher. We measure
the entire original and contrast enhanced crack images and
compute their relative values of standard deviation (RSD),
entropy (RE), and average gradient (RAG) measures to
compare and prove our assumptions. The dataset [14, 15] used
consists of 155 images and evaluation results are shown in
Figure 4.

The plots show which images benefit most from contrast
enhancement based on the RS and RAG values, which yield

nearly identical results. The former are the most reliable
unlike the RE, which shows that entropy is unchanged or
degraded for a majority of the crack images.

3.2. Proposed PDE-Based Fuzzy INT-Boosted Anisotropic Dif-
fusion (PDE-FINT-AD) Algorithm. Based on the images and
results in Figures 1–3, we require an algorithm that darkens
already dark pixels while brightening currently bright pixels.
Such an algorithm that easily performs this task is the fuzzy
intensification operator (F-INT) [16]. Repeated passes of the
F-INT lead to an almost thresholded or segmented image.
However, we wish to perform this operation gradually and
in a controlled fashion. Thus, we reformulate the algorithm
in the form of a partial differential equation based on the
framework by Shapiro et al. [3] as

𝜕𝐼 (𝑥, 𝑦, 𝑡)
𝜕𝑡 = 𝑓 (𝑥, 𝑦, 𝑡) − 𝐼 (𝑥, 𝑦, 𝑡) (1)

In (1), 𝐼(𝑥, 𝑦, 𝑡) is the continuous image while 𝑓(𝑥, 𝑦, 𝑡) =𝑓{𝐼(𝑥, 𝑦, 𝑡)} = 𝐹𝐼𝑁𝑇{𝐼(𝑥, 𝑦, 𝑡)} and using finite difference
method (FDM), we obtain the following expression in

𝐼𝑡+1 (𝑥, 𝑦) = 𝐼𝑡 (𝑥, 𝑦) + [𝑓 {𝐼 (𝑥, 𝑦, 𝑡)} − 𝐼 (𝑥, 𝑦, 𝑡)]�𝑡 (2)

The results are shown in Figure 5 indicating improvements.
However, we would also like to smoothen out the noise

and rough background texture in the process. Thus we add
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Figure 2: Crack images [9] with (a) distinct and (b) similar intensities between background and foreground and corresponding row pixel
profile plots.

the anisotropic diffusion (AD) flow, resulting in the modified
expression [3]:

𝜕𝐼 (𝑥, 𝑦, 𝑡)
𝜕𝑡
= 𝜆𝑐𝐴𝐷 (󵄩󵄩󵄩󵄩∇𝐼 (𝑥, 𝑦, 𝑡)󵄩󵄩󵄩󵄩)div( ∇𝐼 (𝑥, 𝑦, 𝑡)󵄩󵄩󵄩󵄩∇𝐼 (𝑥, 𝑦, 𝑡)󵄩󵄩󵄩󵄩)
+ 𝑓 (𝑥, 𝑦, 𝑡) − 𝐼 (𝑥, 𝑦, 𝑡)

(3)

where 𝜆 is a weighting/balance factor that controls the degree
of smoothing, ∇𝐼(𝑥, 𝑦, 𝑡) is the gradient of the image, ‖ ‖ is
the norm, while ‘div’ is the divergence operator, and t is the
time scale. The term 𝑐𝐴𝐷(‖∇𝐼(𝑥, 𝑦, 𝑡)‖) is the AD diffusion
coefficient (or edge stopping function in this case), given as

𝑐𝐴𝐷 (󵄩󵄩󵄩󵄩∇𝐼 (𝑥, 𝑦, 𝑡)󵄩󵄩󵄩󵄩) = 1
1 + [󵄩󵄩󵄩󵄩∇𝐼 (𝑥, 𝑦, 𝑡)󵄩󵄩󵄩󵄩 /𝜅]2 (4)

The term 𝜅 controls the degree of smoothing in the function
such that a larger value leads to a greater degree of smoothing
while a lower value leads to less smoothing along edges.

3.3. Gradient Optimized Forward and Backward Diffu-
sion with Laplacian (PDE-FINT-FAB-LAP). Though the AD

addition is an improvement, it will also smoothen or smudge
the small gradient magnitudes around the crack edges,
leading to discontinuities when edge detection is performed.
This loss of edges/details causes breakages as formerly linked
edge features are disconnected. Thus, there is the need to
strengthen edges prior to smoothing. However, linear edge
enhancement operators such as the Laplacian or unsharp
masking result in noise amplification, complicating the edge
detection process by introducing spurious or false edges
and spots. Thus we would like to selectively sharpen the
edges while smoothing the background to prevent noise
enhancement. We also wish to avoid the explosive instability
of the reverse heat diffusion process [17]. Thus we utilize
a previously proposed modification known as the forward
and backward (FAB) diffusion coefficient [17], which is given
as

𝑐𝐹𝐴𝐵 (󵄩󵄩󵄩󵄩∇𝐼 (𝑥, 𝑦, 𝑡)󵄩󵄩󵄩󵄩)
= 1
1 + [󵄩󵄩󵄩󵄩∇𝐼 (𝑥, 𝑦, 𝑡)󵄩󵄩󵄩󵄩 /𝜅𝑓]𝑛
− 𝛼
1 + [(󵄩󵄩󵄩󵄩∇𝐼 (𝑥, 𝑦, 𝑡)󵄩󵄩󵄩󵄩 − 𝜅𝑏) /𝑤]2𝑚

(5)
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Figure 3: Illumination normalized crack images with (a) distinct and (b) similar intensities between background and foreground with
corresponding row pixel profile plots.
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Figure 5: Contrast enhanced crack images with (a) distinct and (b) similar intensities between background and foreground with
corresponding row pixel profile plots.

In (5), 𝜅𝑓 is the forward force parameter (FFP), while 𝜅𝑏
and 𝑤 form the backward force parameter (BFP) and 𝛼 is
the ratio between forward (FDF) and backward diffusion
force (BDF) [17]. If BDF > FDF, stabilizing forward force
is not robust to mitigate oscillations [17]. The FAB process
is unsuitable for texture preservation, making it suitable for
crack image enhancement. The cracks in the images can
be considered as regions of high gradients to be preserved
or enhanced. Conversely, the background texture can be
generally considered as regions of low gradients or small scale
features. This scheme works well but does not enhance edges
as fast as we desire. Thus we need to continue the smoothing
while sharpening at a reasonable rate without disrupting the
former.Thuswemodify the equation by adding the Laplacian,
resulting in the modified expression:

𝜕𝐼 (𝑥, 𝑦, 𝑡)
𝜕𝑡
= 𝜆𝑐𝐹𝐴𝐵 (󵄩󵄩󵄩󵄩∇𝐼 (𝑥, 𝑦, 𝑡)󵄩󵄩󵄩󵄩) div( ∇𝐼 (𝑥, 𝑦, 𝑡)󵄩󵄩󵄩󵄩∇𝐼 (𝑥, 𝑦, 𝑡)󵄩󵄩󵄩󵄩)
+ [𝑓 (𝑥, 𝑦, 𝑡) − 𝐼 (𝑥, 𝑦, 𝑡)] − 𝛾∇2𝐼 (𝑥, 𝑦, 𝑡)

(6)

This yields the generalized PDE-based formulation of
smoothing/sharpening and enhancement of a continuous
initial image field 𝐼(𝑥, 𝑦, 𝑡) in the form

𝜕𝐼 (𝑥, 𝑦, 𝑡)
𝜕𝑡 = 𝜆𝐺𝐹𝐴𝐵 (𝐼 (𝑥, 𝑦, 𝑡)) + 𝐺𝑒 (𝐼 (𝑥, 𝑦, 𝑡))

+ 𝛾𝐺𝑠 (𝐼 (𝑥, 𝑦, 𝑡))
(7)

In (7),𝐺𝐹𝐴𝐵(𝐼(𝑥, 𝑦, 𝑡)),𝐺𝑠(𝐼(𝑥, 𝑦, 𝑡)), and𝐺𝑒(𝐼(𝑥, 𝑦, 𝑡)) are the
simultaneous selective sharpening/smoothing and sharpen-
ing and enhancement functions, respectively:

𝐺𝐹𝐴𝐵 (𝐼 (𝑥, 𝑦, 𝑡))
= 𝑐𝐹𝐴𝐵 (󵄩󵄩󵄩󵄩∇𝐼 (𝑥, 𝑦, 𝑡)󵄩󵄩󵄩󵄩) div( ∇𝐼 (𝑥, 𝑦, 𝑡)󵄩󵄩󵄩󵄩∇𝐼 (𝑥, 𝑦, 𝑡)󵄩󵄩󵄩󵄩)

(8)

The enhancement term,𝐺𝑒(𝐼(𝑥, 𝑦, 𝑡)), is expressed in the PDE
form as shown:

𝐺𝑒 (𝐼 (𝑥, 𝑦, 𝑡)) = 𝑓 (𝐼 (𝑥, 𝑦)) − 𝐼 (𝑥, 𝑦, 𝑡) (9)

The sharpening function, 𝐺𝑠(𝐼(𝑥, 𝑦, 𝑡)) is given as

𝐺𝑠 (𝐼 (𝑥, 𝑦, 𝑡)) = −∇2𝐼 (𝑥, 𝑦, 𝑡) (10)
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Figure 6: Comparison of AD and PDE-based FINT-FAB-LAP for smoothing and sharpening of crack image features.

The relationship between the enhancement (𝐺𝑒(𝐼(𝑥, 𝑦, 𝑡)))
and edge sharpening (𝐺𝑠(𝐼(𝑥, 𝑦, 𝑡))) terms is that the former
focuses primarily on contrast features while the latter on edge
features, improving the edge sharpening result without dom-
inating the selective simultaneous smoothing/sharpening
operator, 𝐺𝐹𝐴𝐵(𝐼(𝑥, 𝑦, 𝑡)).

The coefficient, 𝛾, is used to reduce or control the
dominance of the sharpening term (Laplacian) in the process
and, using finite difference method (FDM), we obtain the
following;

𝐼𝑡+1 (𝑥, 𝑦) = 𝐼𝑡 (𝑥, 𝑦)
+ [𝜆𝑐𝐹𝐴𝐵 (󵄩󵄩󵄩󵄩∇𝐼 (𝑥, 𝑦, 𝑡)󵄩󵄩󵄩󵄩) div( ∇𝐼 (𝑥, 𝑦, 𝑡)󵄩󵄩󵄩󵄩∇𝐼 (𝑥, 𝑦, 𝑡)󵄩󵄩󵄩󵄩)
+ [𝑓 (𝑥, 𝑦, 𝑡) − 𝐼 (𝑥, 𝑦, 𝑡)] − 𝛾∇2𝐼 (𝑥, 𝑦, 𝑡)]�𝑡

(11)

This expression enables the selective smoothing, sharpening,
and contrast enhancement on the crack image. However, our
problem is not solved completely since we wish to automate
the process for best results. Thus, we require a reliable
parameter to help track the changes in contrast and edge
modification and select the average gradient (AG) [18], which
is computed as

𝐴𝐺 = 1𝑀𝑁
⋅ 𝑀∑
𝑥=1

𝑁∑
𝑦=1

√ [𝐼 (𝑥 + 1, 𝑦) − 𝐼 (𝑥, 𝑦)]2 + [𝐼 (𝑥, 𝑦 + 1) − 𝐼 (𝑥, 𝑦)]2
2

(12)

In (12), I is the processed image whileM and N are the image
dimensions for rows and columns, respectively.

The improvements with the FAB-LAP relative to AD can
be seen in Figure 6, where simultaneous sharpening and
smoothing are occurring to yield a selectively sharpened
image. In the crack image processed with AD, relevant edges
are also smoothed out along with the rough texture of the
concrete surface. This is not the case with the FAB-LAP
algorithm, where the rough background texture is smoothed
out leaving the relevant and desired crack features. The
illumination normalization also ensures that dark shadows
will not be detected as crack features.

Since the AG tracks contrast enhancement much more
accurately than most other contrast measures, it allows the
adaptive and automatic determination of optimal stopping
time for the algorithm without specifying a set of number
of iterations. Thus we determine the optimum PDE stopping
time by maximizing the average gradient (AG) metric as

𝑊ℎ𝑖𝑙𝑒 𝜕𝐴𝐺 (𝐼)𝜕𝑡 ≥ 0,
compute 𝑡ℎ𝑒 𝑒V𝑜𝑙V𝑖𝑛𝑔 𝑖𝑚𝑎𝑔𝑒, 𝐼𝑡+1 (𝑥, 𝑦)

(13)

This enables the algorithm to process any image adaptively.
However, thismeans that runtimewill vary for vastly different
images.

Results of the automated optimization approach are
shown in Figure 7, by the maximization of average gradient
in the enhanced image.TheAGmeasures clarity and increase
in contrast (variance) between background and foreground
elements. Thus, continuous enhancement of the image leads
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Figure 7: PDE-based FINT-FAB-LAP enhanced crack image gradient versus number of iterations for PA.

to increasing AG as seen in Figure 7(a) until it reaches maxi-
mumvalue (i.e., when background is completely smoothened
while foreground and crack features are completely sharp-
ened). However, we also wish to avoid noisy artefacts due
to edge overenhancement, thus the need for the sharpness
control factor, 𝛾. We also wish tomeasure this rate of increase
(derivative) of AG with respect to time, which should be
zero at maximum AG (𝜕𝐴𝐺(𝐼)/𝜕𝑡 = 0). Thus the rate of
change in AG with respect to number of iterations is shown
in Figure 7(b). The values for the parameters are given as𝜆 = 0.5, 𝑛 = 2, 𝑚 = 1, 𝜅𝑓 = 10, 𝜅𝑏 = 20, 𝑤 = 20, and 𝛼 =𝜅𝑓/2(𝜅𝑏 + 𝑤) [17] and 𝛾 = 0.45 for generating the plots in
Figure 7.

Experiments involving the increase in values such as 𝛾 led
to fast convergence but with oversharpening, while very low
values of 𝛾 led to slower convergence, increasing the number
of iterations.

Reduction in the values of 𝜅𝑓, 𝜅𝑏, 𝑤, and 𝛼 led to milder
effect of the sharpening/smoothing while increase led to
oversmoothing and mild sharpening. Moreover, as noted
earlier, the BDF and FDF must be carefully balanced to
achieve results and this varies from image to image. Thus, we
chose to maintain the aforementioned values and adjust only
the 𝛾 factor to reduce uncertainties and run-times for various
images.

Unfortunately, the runtime increases with the Laplacian,
which we may omit for speed and quick convergence. Thus,
three aspects that the formulation addresses are the following:

(i) The intensity contrast problem
(ii) The noise and texture problem
(iii) The crack edge enhancement problem

3.4. Local Maximum Gradient- (LMG-) Based �resholding.
We utilize the edge image and by-pass conventional thresh-
olding stage by exploiting the information obtained from the

edge pixel profile of the crack images. We outline the simple
thresholding method as follows.

(i) Step 1: compute global maximum of the edge image.
(ii) Step 2: loop the image, using a local defined window,

w of a known size.
(iii) Step 3: if a pixel in the local region matches the global

maximum gradient, set the pixel to 1 (or 255 for
display purposes).

(iv) Step 4: else set all the nonmatching pixel values in the
local region to 0.

The scheme is similar to the black pixel extraction method
by Tanaka and Uematsu [19] but without numerous manually
set parameters or steps. The results of this simple approach
are shown in Figure 8 for a sample of crack images where
pixel intensities are distinct. However, it fails for some of
the more difficult and intricate crack patterns as mentioned
earlier.Thus, we compute the edge image prior to performing
this step to improve results. Since the illumination correc-
tion algorithm does not generally improve results for such
problem images, it is omitted here. However, we can also
automate this process by analyzing the contrast, variance, or
gradient of the crack images and process accordingly based
on a threshold-based decision. Alternatively, we use edge
detection filters such as Sobel and Prewitt.

4. Experiments and Results

We present a comparative analysis of the proposed algorithm
with other algorithms from the literature to test the efficacy
of the approach. The algorithms were executed on PC system
running MATLAB for several crack images from the chosen
database [14, 15].

4.1. Batch Processing Using Image Dataset. We test the algo-
rithms using the image dataset [14, 15] consisting of 155
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(a)

Obtained image using area threshold of 40 pixels Obtained image using area threshold of 50 pixels Obtained image using area threshold of 60 pixels 
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(b)

Obtained image using area threshold of 40 pixels Obtained image using area threshold of 50 pixels Obtained image using area threshold of 60 pixels 

Obtained image using area threshold of 10 pixels Obtained image using area threshold of 20 pixels Obtained image using area threshold of 30 pixels 

(c)

Figure 8: Detected crack regions using varying thresholds using the simple thresholding scheme for (a) clear (b) moderate and (c) difficult
crack images.

images shown in Figure 9(a) while the processed images
for PA-1 and PA-2 are shown in Figures 9(b) and 9(c),
respectively. Based on visual evaluation, we can see that PA-2,
though relatively simpler, actually detects most of the cracks
in the images from the dataset compared to PA-1. However,
both contain unwanted information in some cases and this
can be improved by additional morphological postprocessing
operations. However, the key aspect of the proposed scheme
is the enhancement of crack regions. Another issue is the
one of image resolution, where large crack images have to be
reduced in size to enable faster processing, leading to the need

to recalibrate the size of filtering neighbourhood for local
operations. The resizing appears to affect the results in terms
of very fine crack features.

4.2. Comparison and Discussion. We compare image results
from [9–12] with the proposed algorithms. The first and
second columns of images in Figures 10 and 11 are from both
[10, 11] (darkest image) while the third and fourth columns
represent those of PA-1 and PA-2. The proposed approaches
achieve crack detection inmost cases even without additional
processing unlike the other more involved methods from
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(a)

(b)

(c)

Figure 9: (a) Original crack images from database processed using (b) PA-1 and (c) PA-2.
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(a) (b) (c) (d)

Figure 10: (a) Original category 1 images (b) results from methods by [10, 11]: (c) PA-1 and (d) PA-2.

[10, 11]. Additional processing improves the highlighting
of the prominent crack region while eliminating spurious
information.

In Figure 12, PA-2 is compared to the methods byOliveria
[12], while Figure 13 shows comparisons with algorithms
by method by Talab et al. [9, 20] and Dorafshan [9]. In
Figure 12, we show the results fromOliveira prior to the crack
refinement algorithm for a fairer comparison. The images
show that PA-2 yields cracks with the most similar width
to that of the cracks in the original image. We also show
the results after some additional postprocessing and compare
results with the Oliveira’s crack refinement algorithm [12]
and method by Talab et al. [20] and Dorafshan et al [9],
whose algorithm is based on an improvement of algorithm
by Talab et al. The improved PA-2 result is shown in
Figure 13(e).

In Figure 14, results are shown for methods by Talab
and Dorashan et al. and PA-2 and visual analysis indicates

that PA-2 yields the best crack detection result, though
there is added noise. However, this is impressive considering
that the method by Dorafshan et al. involves additional
morphological postprocessing steps to obtain the final result.
Additionally, PA-2 does not employ Otsu thresholding unlike
the other algorithms.

The local maximum gradient is a relatively simple tech-
nique, showcasing the effectiveness and influence of the
enhancement stage on the final results. Furthermore, the
test images used in these other algorithms are relatively
ideal compared to those from the utilized dataset, which
have more intricate crack patterns and rougher textures.
The backgrounds of the images tested with these algorithms
also do not possess uneven illumination or shadows and are
mostly ideal crack images with cracks clearly distinct from
the background.

In Figure 14, we extensively compare the method by
Dorafshan et al., which is claimed to be superior to the



12 Mathematical Problems in Engineering

(a) (b) (c) (d)

Figure 11: (a) Original category 2 images (b) results from method by [10]: (c) PA-1 and (d) PA-2.

method by Talab et al. The results are compared with PA-
2 with and without additional morphological operations.
Results indicate that PA-2 always yields a much more com-
plete crack profile from the original image than the method
by Dorafshan et al. This is due to the simultaneous edge
sharpening and smoothing by the FAB diffusion. Note that
the method by Dorafshan et al. results in breakages along
the line of the crack pattern, whereas PA-2 links and joins
edges due to edge enhancement and smoothening of the

background to reduce interference in the tracing of the crack
path during thresholding.

For the images with very rough textures, there is more
noise after processing but still not usually enough to obscure
the crack pattern. These noise points can be removed by
additional morphological processes. However, the emphasis
on the level of success obtained due to the proposed pre-
processing scheme is clearly observed in most of the image
results.
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(a)

(b)

(c)

(d)

(e)

Figure 12: (a) Original crack images from [12] processed using (b) AD [12], (c) wavelets [12], (d) morphological operators [12], and (e) PA-2.

In future work, we hope to improve the results of the
proposed algorithm for processing difficult crack images
with multiple disjointed localized cracks. Also, we will
explore nonlinear edge detectors and compare results. At the
moment, the proposed algorithm has a reasonable execution
time in spite of the iterative process, though image size
and resolution are also a vital factor. However, utilization

of nonlinear, highly computationally involved edge and
morphological operators will considerably increase the run-
time regardless of image size or resolution. We experimented
with resizing images prior to crack detection and, though
results are good, this affects accuracy in the case of ground
truth images unless calibration is performed with a partic-
ular image size and resolution. Furthermore, given that the
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(a) (b)

(c) (d)

(e)

Figure 13: (a) Original crack image from [9] processed using algorithms by (b) Talab, (c) Dorafshan et al. [9], (d) PA-2, and (e) improved
PA-2.

various datasets are of varying image dimensions and resolu-
tions and the unavailability of the software implementation
of several of these algorithms, it is difficult to perform a
universal comparison. However, image preprocessing, which
is the main thrust of the algorithm in this paper is important
in the final result of crack detection algorithms. Thus, the
processing of these images to remove spurious features, while
enhancing the desired features has been achieved.

5. Conclusions

In this work, an adaptive PDE-based preprocessing algorithm
for crack images was proposed, implemented, and combined
with a simple, local maximum-based thresholding scheme.
Experimental results indicated that automated operation,

selective sharpening, and smoothing were achieved using the
proposed approach, leading to better crack detection. The
adaptive nature of the scheme ensures practical operation
when processing a large batch of images as observed in
experiments using a dataset. This would enable the system
to be easily adopted in the inspection of concrete structures
for continuous and fast operation. Future work will involve
improving the enhancement and segmentation results, explo-
ration of better PDE-based formulations, and additional
morphological operations to achieve these objectives.

Data Availability

The data used for experiments were obtained from the
following sources [14, 15].
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(a) (b) (c)

Figure 14: (a) Original crack images from [9] processed using algorithms by (b) Dorafshan et al. [9] and (c) PA-2.
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