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In the optimization design process, particle swarm optimization (PSO) is limited by its slow convergence, low precision, and
tendency to easily fall into the local extremum. These limitations make degradation inevitable in the evolution process and cause
failure of finding the global optimum results. In this paper, based on chaos idea, the PSO algorithm is improved by adaptively
adjusting parameters 𝑟1 and 𝑟2. The improved PSO is verified by four standard mathematical test functions. The results prove that
the improved algorithm exhibits excellent convergence speed, global search ability, and stability in the optimization process, which
jumps out of the local optimum and achieves global optimality due to the randomness, regularity, and ergodicity of chaotic thought.
At last, the improved PSO algorithm is applied to vehicle crash research and is used to carry out the multiobjective optimization
based on an approximate model. Compared with the results before the improvement, the improved PSO algorithm is remarkable
in the collision index, which includes vehicle acceleration, critical position intrusion, and vehicle mass. In summary, the improved
PSO algorithm has excellent optimization effects on vehicle collision.

1. Introduction

With the increase of car ownership, traffic accidents have
occurred from time to time, and the passive safety per-
formance of cars in collisions has attracted more and
more attention. Improve the crashworthiness of vehicles
and reduce the occupant injury risk in the traffic accident
and property loss becomes an important goal of automo-
tive design. Therefore, many researchers and manufacturers
have conducted research on improving the collision safety
of vehicles. At present, the crashworthiness of the vehicle
is mainly improved in the following three ways. Improve
manufacturing processes, optimize structural design, and
adjust material usage. Among them, the use of higher quality
materials and improved processing technology can signifi-
cantly improve the collision performance, but it will also lead
to an inevitable increase in manufacturing costs. While in
practical applications, optimizing the body design, especially
the structural design of the front of the car, is the most widely
used improvement. In the front part of the car, the structure of
the bumper, energy absorbing box, front longitudinal beam,
fender, hood, and other components will impact the safety

of the collision, which requires the use of algorithms in the
design process, to carry out multiobjective optimization on
these structures [1, 2].

To this end, many researchers have contributed to this
aspect, and a variety of intelligent algorithms have emerged.
Fonseca and Fleming [3] first proposed a multiobjective
genetic algorithm based on Pareto optimal concept in 1993.
Later, Sun et al. [4] used the nondominated sorting genetic
algorithm (NSGA-II) to optimize the shape of the thin-walled
tube, which improved the absorbed energy and reduced the
peak impact force. Kirkpatrick [5] proposed a simulated
annealing algorithm for large-scale combination optimiza-
tion problems in 1983. Suppapitnarm et al. [6] improved the
optimization performance of the algorithm in engineering
practice by improving the acceptance criteria and cooling
accuracy table of the simulated annealing algorithm. The
Italian scholar Dorigo [7] was inspired by the ant colony
searching for food behavior in nature and proposed the ant
colony algorithm (ACA). Karl [8] et al. further introduced the
concept of pheromone vector into the ant colony algorithm to
coordinate the relationship between the various targets and
deal with multiobjective asset selection. The particle swarm
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algorithm appeared relatively late, which was first used by
Jacqueline [9] in multiobjective optimization in 1999. Fang
[10] et al. used the particle swarm optimization algorithm
together with the response surface approximation model to
optimize the multiobjective reliability of the vehicle door and
achieved good results.

In recent years, several intelligent algorithms, such as
particle swarm optimization (PSO), genetic algorithms, and
simulated annealing algorithms, have received widespread
attention in the area of scheduling [11–13]. Research shows
that these algorithms suffer from defects when applied to
complex optimization problems. Hence, the optimization
results for a single technique tend to be unsatisfactory.
Therefore, algorithm improvements based on fusion ideas
have been proposed by domestic and foreign scholars [14, 15].

PSO has several advantages, including fast convergence,
few setting parameters, and simple and easy implementation;
hence, it can be used to solve nonlinear, nondifferentiable,
andmultipeak optimization problems, particularly in science
and engineering fields [16, 17]. However, the algorithm suffers
from major disadvantages, including “premature” phenom-
ena and “unripe” phenomena [18, 19].The insufficient conver-
gence speed and insufficient accuracy of PSO hinder it from
meeting requirements. In addition, its global search ability is
poor, and it easily falls into the local extremum [20]. These
drawbacks make degradation inevitable in the evolution
process and cause the failure of finding the global optimum
results. The features exhibited by chaotic thoughts show that
chaotic sequences appear to be particularly random, the
tracks of chaotic variables are regular, and the entire search
space can be searched without repetition; therefore, chaotic
sequences are superior to blind random search and avoid the
disadvantage of evolutionary algorithms of falling into the
local optimum [21, 22].

It is because of the aforementioned defects of the PSO
algorithm that the present study introduces the chaos idea
and proposes an improved PSO algorithm that uses chaos
theory to dynamically adjust its parameters 𝑟1 and 𝑟2. In order
to verify the effect of the method in actual optimization, eight
sheets which have great influence on the frontal collision
safety performance of a minibus were selected, and the
thickness of the eight panels was used as the design variable.
The peak acceleration 𝑎𝑚𝑎𝑥 at the lower end of the B-pillar,
the mass m of the vehicle, the backward intrusion amount D1
at the dashboard tube beam, the backward intrusion amount
D2 at the steering column hole of the dash panel, and the
backward intrusion amountD3 at the clutch plate of the lower
dash panel were used as a study response. The improved
particle swarm optimization algorithm is used for multiob-
jective optimization design. Compared with the traditional
particle swarm optimization algorithm, the results show that
the improved one is superior to the traditional particle swarm
optimization algorithm in terms of optimization effect and
solution speed.

2. Improved PSO Algorithm

In 1995, a group of researchers led by Kennedy and Eberhart
developed a new calculation method for the study of bird

predation behavior.This calculationmethod uses the iterative
changes of particles to simulate bird predation behavior and
searches a certain number of particles for optimal particles in
the spatial solution set [23, 24].

The PSO algorithm is similar to bird predation. Each
solution to the optimization problem is similar to a bird that
is preying on a defined space; in this scenario, the bird is
the “particle.” Each particle has its own position, and the
ith particle position is expressed as 𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝐷).
The speed of flight is expressed as = (V𝑖1, V𝑖2, . . . , V𝑖𝐷).
Moreover, each particle has an adaptive value determined
by the objective function. In each iteration of the particle
swarm, the particle needs to determine two extreme values:
the individual extremum pbest (the optimal solution found
by the particle itself) and the global extremum gbest (the
optimal solution found by the group). After determining
these two extreme values, the particle’s d-dimensional (1 ≤ d
≤ D) velocity V𝑖𝑑 and location 𝑥𝑖𝑑 are updated according to
the following equation:

]𝑖𝑑 (𝑡 + 1) = 𝜔 × ]𝑖𝑑 (𝑡) + 𝑐1 × 𝑟1 × [Ρ𝑖𝑑 (𝑡) − 𝜒𝑖𝑑 (𝑡)]
+ 𝑐2 × 𝑟2 × [Ρ𝑔𝑑 (𝑡) − 𝜒𝑖𝑑 (𝑡)]

(1)

𝑥𝑖𝑑 (𝑡 + 1) = 𝑥𝑖𝑑 (𝑡) + V𝑖𝑑 (𝑡 + 1) , (2)

where 𝜔 is the inertia weight, 𝑐1 and 𝑐2 are acceleration
constants, and 𝑟1 and 𝑟2 are random values that vary between
[0, 1].
2.1. Previous Algorithm Defect. The PSO algorithm can easily
fall into the local optimal solution in the search process.
According to (1), when 𝑥𝑖𝑑 = 𝑝𝑖𝑑 = 𝑝𝑔𝑑, the flight speed
of the particles depends only on 𝜔 and V𝑖𝑑. If the values of
V𝑖𝑑 and 𝜔 are unequal to zero, then 𝑥𝑖(𝑡 + 1) ̸= 𝑥𝑖, and the
particles fly away from the original trajectory. If V𝑖𝑑 is equal
to zero, then V𝑖𝑑(𝑡 + 1) is also equal to zero. Once all the
particles achieve 𝑝𝑔𝑑, the particle stops flying and converges
to the local optimal solution.

At each time 𝑡, the particles search within a certain
range of space under the influence of group information and
their own historical experience. When a superior solution is
found, the guidance information is updated, a new search
is launched, and the optimization process is continued.
However, the convergence speed in the late search slows down
given that the flight direction of all particles is determined
according to their entire experience. After reaching a certain
level, the algorithm falls into stagnation, thereby hindering
the achievement of an accurate solution.

Although some achievements have been made in the
convergence analysis of the PSO algorithm, the premise is
based on the assumption that the individual and global
extremum values are constant. For the relevant conclusions
of parameter selection, the proposed parameter values are
highly unsatisfactory in practical applications despite the
existence of a certain reference role. According to the basic
principle of the PSO algorithm, correlations exist among the
method parameters, especially the inertia weight and learn-
ing factor. Their mutual influence is also highly important.
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However, this mutual influence is often ignored, which leads
to debatable results [25]. The experiment study [26] found
that the bigger the value of 𝜔, 𝑐1, and 𝑐2, the greater the
probability of no convergence, and the value of 𝜔 has the
largest effect. Choosing the appropriate 𝜔, 𝑐1, and 𝑐2 can
thus guarantee the convergence of particles. Therefore, it is
necessary to improve the global search ability of the PSO
algorithm. The optimization of vehicle collision performance
requires an algorithm with a fast running speed to meet
the scheduling aging requirements and rapid convergence to
the global optimal solution to ensure scheduling accuracy.
Therefore, the PSO algorithm needs to be improved such that
it eliminates inferior solutions as soon as possible, avoids
overiteration near these inferior solutions, and solves the
collision performance optimization model [27] with many
decision variables and complex scenes.

2.2. Algorithm Improved byChaos�ought. Chaos is a univer-
sal nonlinear phenomenon whose behavior is complex and
similar to random phenomena but has delicate internal regu-
larity. Optimization search using chaotic variables is superior
to blind random search as it can avoid the disadvantage of
evolutionary algorithms of falling into the local optimum
due to the ergodicity of chaos [28]. A chaotic idea is used to
adaptively adjust the parameters related to particle velocity
update. When generating chaotic sequences, the following
logistic model is used:

𝜆𝑡+1𝑖 = 𝜇 × 𝜆𝑡𝑖 × (1 − 𝜆𝑡𝑖) ; 𝑖 = 1, 2, . . . , n, (3)

where 𝜆𝑡𝑖 is the value of 𝜆𝑖 after the chaotic evolution in step
𝑡, 𝜆𝑖 ∈ [0, 1], and 1 ≤ 𝜇 ≤ 4. When 𝜇 = 4 and 𝜆𝑖 is
not 0.25, 0.5, and 0.75, the system exhibits complete chaotic
characteristics, the generated chaotic sequence shows excel-
lent randomness, and the trajectory of the chaotic variable
can traverse the entire search space without repetition. The
chaotic optimization of parameters 𝑟1 and 𝑟2 is as follows:

𝑟𝑖 (t + 1) = 4.0 × 𝑟𝑖 (t) × (1 − 𝑟𝑖 (t))
𝑟𝑖 (t) ∈ (0, 1.0) , 𝑖 = 1, 2. (4)

The inertia weight𝜔 can balance the global and local searches
of the PSO algorithm by controlling the effect of historical
speed on the current velocity of the particle. Simultaneously,
a suitable 𝜔 can diminish the time needed to find the optimal
solution. The inertia weight setting for each particle is as
follows:

𝜔 (t) = 𝜔𝑚𝑎𝑥 − (𝜔𝑚𝑎𝑥 − 𝜔𝑚𝑖𝑛) × 𝑡
𝑡𝑚𝑎𝑥 , (5)

where𝜔𝑚𝑎𝑥 and 𝜔𝑚𝑖𝑛 are the maximum and minimum values
of the inertia weight, respectively, and 𝑡 and 𝑡𝑚𝑎𝑥 are the
current algebra and maximum number of iterations, respec-
tively [29]. The execution process of chaotic particle swarm
optimization algorithm is as follows: Firstly, the chaotic idea
is used to dynamically adjust the parameters 𝑟1 and 𝑟2 of the
particle swarm optimization algorithm to produce a good
group.Then, in the evolution, formula (1) and formula (2) are
used to lead the particle swarm to the optimal solution search.
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Figure 1: 3D graphics of Sphere function.

2.3. Performance Test of Improved Algorithm. This study uses
four typical mathematical standard test functions to test and
evaluate the improved PSO algorithm and thus verify its
optimization performance.

2.3.1. Sphere Function

𝑓 (𝑥) =
𝑛

∑
𝑖=1

𝑥2𝑖 . (6)

The function is a unimodal one that is mainly used to test
the optimization precision of the algorithm. The search space
and global optimal solution are −100 ≤ 𝑥𝑖 ≤ 100 and 𝑓(𝑥) =0; 𝑥𝑖 = 0, respectively. The 3D graphical representation of the
function is shown in Figure 1.

2.3.2. Rosenbrock Function

𝑓 (𝑥) =
𝑛−1

∑
𝑖=1

(100 (𝑥2𝑖 − 𝑥𝑖−1)2 + (𝑥𝑖 − 1)2) . (7)

This function is a multipeak test one. A particularly narrow
trough exists between the local optimum and the global
optimal solution. Moreover, the function is commonly used
to test the execution performance of the algorithm. The
search space and global optimal solution are −10 ≤ 𝑥𝑖 ≤10 and 𝑓(𝑥) = 0; 𝑥𝑖 = 0, respectively. The 3D graphical
representation of the function is shown in Figure 2.

2.3.3. Rastrigin Function

𝑓 (𝑥) = 100𝑛 +
𝑛

∑
𝑖=1

[𝑥2𝑖 − 10 cos (2𝜋𝑥𝑖)] . (8)

The function is amultipeak test function, and the distribution
of minimum values is regular. The search space and global
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Figure 2: 3D graphics of Rosenbrock function.
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Figure 3: 3D graphics of Rastrigin function.

optimal solution are −10 ≤ 𝑥𝑖 ≤ 10 and 𝑓(𝑥) = 0; 𝑥𝑖 = 0.
The 3D graphical representation of the function is shown in
Figure 3.

2.3.4. Griewank Function

𝑓 (𝑥) = 1
4000

𝑛

∑
𝑖=1

𝑥2𝑖 +
𝑛

∏
𝑖=1

cos( 𝑥𝑖√𝑖) + 1. (9)

Similar to the Rastrigin function, the Griewank function
has multiple minimum values that exhibit a regular distri-
bution. The search space and global optimal solution are
−600 ≤ 𝑥𝑖 ≤ 600 and 𝑓(𝑥) = 0; 𝑥𝑖 = 0, respectively.
The 3D graphical representation of the function is shown
in Figure 4.

The particle swarm and improved PSO algorithms are
applied to run the four test functions. The initial parameters
of the two algorithms are set as follows: the inertia weight
of the particle swarm algorithm is 0.9, and the acceleration
constant is 𝑐1 = 𝑐2 = 1.4.Themaximumandminimum inertia
weight values of the improved PSO algorithm are 𝜔𝑚𝑎𝑥 = 0.9

0
500

50

600

100

4000

150

2000
−400

−200

−600
−500

Figure 4: 3D graphics of Griewank function.

and 𝜔𝑚𝑖𝑛 = 0.4, respectively; the acceleration constant is 𝑐1 =𝑐2 = 1.4; and 𝜇 = 4.The two optimization algorithms have 0.5
step size, 2000 iterations, and 10 particles. Each test function
is tested 20 times, and the optimal andworst solutions and the
average value of the solution are obtained. The performance
comparison between the two algorithms under different test
functions is shown in Table 1. At the same time, the average
value of the fitness function curve obtained in 20 tests was
taken to generate a fitness function curve as shown in Figures
5–8.

The test results are shown in Figures 5–8. For the Sphere
function, the improved PSO algorithm presents a remarkable
reduction in the fitness value over the PSO algorithm. By
the improved algorithm, the fitness value is close to zero,
and the convergence speed is slightly increased. For the
Rosenbrock function, the performance of the improved
PSO algorithm is slightly improved, and the fitness value is
diminished. However, the convergence speed of the improved
PSO algorithm under this function is not as good as that of
the PSO algorithm. For the Rastrigin function, the improved
PSO algorithm is excellent in terms of fitness value and con-
vergence speed. In addition, a large degree of improvement
is observed. For the Griewank function, the improved PSO
algorithm is slightly better than the PSO algorithm in terms
of fitness value and convergence speed, but the difference is
average. Evidently, for a single optimization, the improved
PSO algorithm is better than the PSO algorithm under the
four test functions.

As shown in Table 1, for the four test functions, the
optimal and average solutions of the improved PSOalgorithm
are better than those of the PSO algorithm. Moreover, the dif-
ference between the optimal and worst solutions obtained by
the improved PSO algorithm is smaller than that obtained by
the PSO algorithm. These results indicate that the improved
PSO algorithm is more stable than the PSO algorithm is in
the optimization process.

Based on the four common test functions, the improved
PSO algorithm proposed in this study exhibits an improve-
ment in global search ability and search speed more than the
PSO algorithm.
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Figure 5: Test results of Sphere function.
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Figure 6: Test results of Rosenbrock function.
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Figure 7: Test results of Rastrigin function.
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Figure 8: Test results of Griewank function.

Table 1: Comparison of algorithm performance.

Test function Optimal solution Worst solution Average solution
Improved particle swarm optimization Sphere 3.6×10−5 4.5×10−5 3.9×10−5
Particle swarm optimization Sphere 6.7×10−2 8.2×10−2 7.1×10−2
Improved particle swarm optimization Rosenbrock 1.2×10−1 1.6×10−1 1.4×10−1
Particle swarm optimization Rosenbrock 1.9 2.4 2.0
Improved particle swarm optimization Rastrigin 9.8×10−4 1.7×10−3 1.3×10−3
Particle swarm optimization Rastrigin 9.7×10−2 2.1×10−1 1.8×10−1
Improved particle swarm optimization Griewank 4.2×10−2 9.3×10−2 5.8×10−2
Particle swarm optimization Griewank 4.0×10−1 5.1×10−1 4.8×10−1

Z

YX

Figure 9: Finite element model of 100% frontal collision of
minibuses.

3. Multiobjective Optimization of
Minibus Collision

3.1. Design Variables and Responses Functions. A finite ele-
ment model of a 100% frontal overlap deformable barrier
collision of a minibus is shown in Figure 9. According to
C-NCAP’s new vehicle evaluation index, under the premise
of meeting the crash performance of the whole vehicle, the
front part of the vehicle body should be crushed and fully
deformed during the collision process so that substantial
collision kinetic energy is absorbed and the acceleration peak
at the lower end of the B-pillar is effectively decreased [30, 31].

t3

t2

t5

t6

t8

t7t1

t4
YX

Z

Figure 10: Design variables.

Therefore, the thickness of the eight sheets in the front part of
the vehicle body is selected as the design variable [32, 33], as
shown in Figure 10. The initial values of the design variable
are provided in Table 2.

Two minimum objective functions are set to reduce
collision acceleration and body mass, including acceleration
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Table 2: Initial values of design variable.

Design variable t1 t2 t3 t4 t5 t6 t7 t8
Initial value (mm) 1.10 1.25 1.10 1.10 1.65 1.63 0.89 0.70

Table 3: Training data.

(a) Design variable test

Number of groups t1/mm t2/mm t3/mm t4/mm t5/mm t6/mm t7/mm t8/mm
1 0.66 1.39 1.84 0.69 1.13 1.05 1.51 1.46
2 0.68 1.41 0.99 1.14 0.92 0.81 1.44 1.10
3 0.72 1.20 1.47 1.17 1.73 0.77 1.41 1.25
. . . . . . ... ... ... ... ... ... ...
70 2.00 1.17 0.68 2.00 1.52 1.81 0.75 1.89

(b) Response test design

Number of groups amax/(m/s2) m/kg D1/mm D2/mm D3/mm
1 54.8 717.5 86.5 240.0 230.0
2 52.9 716.9 84.5 209.5 210.0
3 55.3 717.7 92.1 246.2 237.7
. . . ... ... ... ... ...
70 46.5 717.4 96.5 261.8 262.0

peak 𝑎𝑚𝑎𝑥 at the lower end of B-pillar and mass m of the
vehicle. In order to control the damage of vehicle body
deformation to the occupant’s chest, head, foot, and other
parts, the response function at relevant positions is restrained
within acceptable level, such as the intrusion D1, D2, and D3
separately at the instrument panel tube beam, the steering
column hole, and the lower dash panel clutch pedal [34, 35].

3.2. Approximate Model. This study uses the Latin hypercube
test method [36] to obtain 70 sets of training data combined
with the design variables and crash performance indicators
of the vehicle finite element model (Table 3). On the basis of
these data, this study establishes the Kriging approximation
model [37]; in order to verify the prediction accuracy of the
approximatemodel, 20 sample pointswere randomly selected
in Table 3, and the accuracy of the approximate model of
the established 100% frontal collision model was evaluated
based on the results obtained from these sample points.
The evaluation results show that the established approximate
model satisfies the evaluation index of each response value
of the 100% positive overlap collision Kriging approximation
model (such as the average relative error RAAE ≥ 95% and
coefficient of determination 𝑅2 ≤ 15%). It is enough to replace
the original finite element model and carry out the next
multiobjective particle swarm optimization design [38–40].

3.3. Multiobjective Optimization Design. In the multiobjec-
tive optimization design, the acceleration peak at the lower
end of the B-pillar and intrusion amount of the key part
should be kept as small as possible, and the vehicle weight

[41] should be reduced. The mathematical model expression
of the multiobjective optimization design is as follows:

min 𝑎𝑚𝑎𝑥 (𝑡1, 𝑡2, 𝑡3 . . . 𝑡8)
min𝑚(𝑡1, 𝑡2, 𝑡3 . . . 𝑡8)
𝐷1 (𝑡1, 𝑡2, 𝑡3 . . . 𝑡8) ≤ 97.6𝑚𝑚
𝐷2 (𝑡1, 𝑡2, 𝑡3 . . . 𝑡8) ≤ 260𝑚𝑚
𝐷3 (𝑡1, 𝑡2, 𝑡3 . . . 𝑡8) ≤ 268.4𝑚𝑚
𝑡1, 𝑡2, 𝑡3 . . . 𝑡8

∈ [1.1, 1.25, 1.1, 1.1, 1.65, 1.63, 0.89, 0.7] .

(10)

The PSO algorithm has an inertia weight of 0.9 and an
acceleration constant of 𝑐1 = 𝑐2 = 1.4. The optimization
algorithm has 0.5 step size, 2000 iterations, and 10 particles.
The maximum and minimum inertia weight values of the
improved PSO algorithm are 𝜔𝑚𝑎𝑥 = 0.9 and 𝜔𝑚𝑖𝑛 = 0.4,
respectively; the acceleration constant is 𝑐1 = 𝑐2 = 1.4; and
𝜇 = 4. The improved PSO algorithm also has 0.5 step size,
2000 iterations, and 10 particles. The approximate model is
optimized, and the results are compared, as shown in Table 4.

As shown in Table 4, the approximate model is opti-
mized by the PSO algorithm. The results of the collision
show that although the collision evaluation parameters have
different degrees of improvement, they are still not ideal.
The optimized vehicle acceleration and key parts of intrusion
will still cause considerable damage to the passengers inside
the vehicle. After the optimization of the improved PSO
algorithm for the approximate model, the peak acceleration
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Table 4: Comparison of optimization results.

(a) Design variable

t1/mm t2/mm t3/mm t4/mm t5/mm t6/mm t7/mm t8/mm
Original finite element model 1.10 1.25 1.10 1.10 1.65 1.63 0.89 0.70
Particle swarm optimization 1.20 1.00 1.30 0.90 1.10 1.30 0.92 0.51
Improved particle swarm optimization 1.15 1.02 1.23 0.92 0.96 1.30 0.90 0.49

(b) Collision target response

amax /(m/s2) D1/mm D2/mm D3/mm m/kg
Original finite element model 57.60 97.60 260.60 268.40 716.85
Particle swarm optimization 53.20 90.10 252.40 254.20 710.61
Improved particle swarm optimization 47.90 84.70 241.60 242.10 710.40
Particle swarm optimization percentage -7.64% -7.68% -3.15% -5.29% -0.87%
Improved particle swarm optimization percentage -16.84% -13.22% -7.29% -9.80% -0.90%

Table 5: Optimized response fitting effect table.

Evaluation index Approximate model prediction Optimized finite element results
D1 84.7mm 86.2mm
D2 241.6mm 243.3mm
D3 242.1mm 243.4mm
𝑎𝑚𝑎𝑥 47.9m/s2 48.5m/s2

m 710.4kg 710.41kg

at the lower end of the B-pillar is decreased to 47.9 m/s2 . The
intrusion amount D1 of the instrument panel tube beam is
decreased from 97.6mm to 84.7mm. Moreover, the backward
intrusion amount D2 of the steering column hole is decreased
from 260.6mm to 241.6mm, and the lower front panel clutch
pedal is inwardly invaded.The amount of backward intrusion
D3 of the lower front panel clutch pedal is decreased from
268.4mm to 242.1mm, and the entire vehicle quality is
diminished from 716.85kg to 710.4kg. Relative to the PSO
algorithm, the improved PSO has a remarkable improvement
in terms of the effect of the performance evaluation index.
This feature is in accordance with the expected results.
After comprehensive consideration, this study finds that the
improved PSO algorithm is better than the PSO algorithm for
the Kriging approximation model. Moreover, the improved
PSO algorithm is used as the optimization scheme for the
100% front collision of the car. The fitting effect of each
response value after optimization is shown in Table 5. It
can be seen that the fitting errors of each evaluation index
are small. The approximate model prediction accuracy meets
the requirements, and the obtained optimization result can
represent the optimization result of the original finite element
model.

4. Conclusion

(1) In this study, the PSO algorithm is improved by dealing
with the method's various limitations, such as slow con-
vergence speed, low precision, and tendency to easily fall
into the local extremum. Then, the chaos idea is introduced,
and the parameters related to particle velocity update are

adaptively adjusted by using chaos thought to generate
chaotic sequences. Four commonly used mathematical test
functions with different characteristics are used to verify the
performance of the improved PSO algorithm. The results
show that the improved PSO algorithm has stronger opti-
mization ability than the PSO algorithm.

(2)ThePSO and improved PSO algorithms are applied to
vehicle collision optimization. According to the comparison
results, the evaluation index of the collision performance after
optimization by the PSO algorithm improves, but the effect
is unremarkable. This result indicates the need for further
optimization. After using the improved PSO algorithm,
the improvement effect of the vehicle crash performance
evaluation index is remarkable. Therefore, the optimized
design of the improved PSO algorithm is used as the final
optimization method, thereby providing a new design for car
crash optimization.
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