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This paper is concernedwith the problemof constraint control for anAntilock Braking System (ABS)with time-varying asymmetric
slip ratio constraints. A quarter vehicle braking model with system uncertainties and a Burckhardt’s tire model are considered. The
Time-varying Asymmetric Barrier Lyapunov Function (TABLF) is embedded into the controllers for handling the time-varying
asymmetric slip ratio constraint problems. Two adaptive nonlinear control methods (TABLF1 and TABLF2) based on TABLF
are proposed not only to track the optimal slip ratio but also to guarantee no violation on the slip ratio constraints. Simulation
results show that the proposed controllers can guarantee no violation on slip ratio constraints and avoid self-locking. In the
meantime, TABLF1 controller can achieve a faster convergence rate, shorter stopping time, and shorter distance, compared to
TABLF2 controller with the same control parameters.

1. Introduction

AnAntilock Braking System (ABS) is one of the main vehicle
active safety devices and it has a function to avoid vehicle
wheels self-locking, to shorten braking distance, to ensure the
lateral stability according to the regulatedwheel slip ratio.The
basic objective of ABS is to regulate wheel slip at its optimum
value while maximizing longitudinal tire-runway friction to
generate large lateral force. Many ABS control algorithms
were developed in the past.

Traditional ABS control algorithms are based on wheel
acceleration. One example of such algorithms is logic thresh-
old method [1], in which slip ratio and acceleration are the
first and second control thresholds, respectively. However,
this method heavily depends on various parameters that need
to be determined by experience or experiment. As a result, it
is difficult to evaluate the stability of the system.

In recent years ABS based on the slip ratio control
algorithm has much attention because of its better control
performance. The main objective of the slip control is to
regulate wheel slip at its optimum value for ensuring that
the vehicle braking system has a maximum tire-road fric-
tion. Many theoretical studies have been conducted on slip

ratio control algorithms, including combined control [2, 3],
adaptive control [4, 5], nonlinear control [6], extremum
seeking control [7, 8], sliding-mode control methods [9–
12], fuzzy/neural network controls [13, 14], feedback control
[15], and reinforcement Q-learning [16, 17]. Although these
control algorithms have improved the response time and
received the better slip ratio tracking performance, there
are some limitations in these algorithms. The fuzzy control
algorithm relies heavily on the staffs’ experience. Therefore,
it is hard to determine and debug the relevant parameters.
As to the sliding-mode control algorithm, the existence of
chatter problems restricts its application. The neural network
control algorithm and reinforcement Q-learning algorithm
are burdened with high data rate and complex arithmetic.

All the above control algorithms are mainly focused on
how to track the optimum slip ratio with a good dynamic per-
formance without considering how to fundamentally avoid
slip rate working in unstable areas. However, in practice,
the optimal slip rate varies with the change of pavement,
especially on abrupt or uneven pavement. When the slip
rate changes instantaneously, the existing control algorithm
cannot guarantee that ABS works absolutely in the stable
region, which will result in vehicle sideslip or tail flick.
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Therefore, the ideal ABS system requires avoiding working
in unstable areas fundamentally. In fact, there are healthy
region, light slip region, and deep slip region according to
the relationship between the slip ratio and the combination
coefficient in braking operating region [18]. When a slip ratio
controller works in the deep slip region, the ABS system
is unable to obtain the maximum tire-road friction and
the system would be self-locking in worst cases. Since road
adhesion force depends on the normal force between the
tire and the road surface, the normal force on the wheel
is directly affected by the road roughness, thus influencing
the braking performance of ABS on an uneven road. In this
special case, the optimal slip ratio constraint boundaries will
change with the variation of road. In other words, the optimal
slip ratio constraint boundaries are time-varying. Therefore,
it is important to address a constrained control algorithm of
time-varying slip ratio for ensuring that the system output
does not violate the time-varying constraints and that the
vehicle works in a stable region.

Constrained control algorithms have been investigated,
including a governor method [19, 20] and a model predictive
controller [21, 22]. Different from these methods, Barrier
Lyapunov Function (BLF) will become infinity when the
variable approaches the constrained boundary. In view of
this characteristic, BLF has been widely applied to state
constraint and output constraint problems [23–26] in the area
of general control theory and has achieved good tracking
performance without violation on constraints. In recent
years, constrained control algorithms based on BLF have
been studied extensively [27–32]. In [31], an adaptive fuzzy
NN control algorithm has been proposed for an uncertain
constrained robot with unknown dynamics and constraints.
Control design with output constraint and control design
with all state constraints were proposed for constrained
robots. A tan-type BLF had been employed to handle the
effect of constraint. The uncertain dynamics of robots had
been approximated online by using the learning capability
from the fuzzy NN structure. In [32], a cooperative control
method has been investigated for a nonuniform gantry
crane system with constrained tension. A novel integral-
Barrier Lyapunov Function was proposed to keep the ten-
sion values remaining in the constrained space. The system
parameter uncertainties have been handled by two adaption
laws. However, the time-varying constraint bounds are not
considered in [31, 32]. In [33, 34], the constraint control
methods based on BLF are adopted to avoid the slip rate
working in the unstable region in aircraft landing system.
But, because the working condition of the aircraft landing
system is relatively single, neither the time-varying slip rate
constraint control nor the uncertainty caused by modeling
errors and external disturbances are considered in these two
papers. However, the working condition of vehicle is more
complex than that of aircraft, especially on abrupt or uneven
pavement.

Motivated by above literatures, two adaptive time-varying
constraint control methods based on Time-varying Asym-
metric Barrier Lyapunov Function (TABLF) are proposed to
solve the optimum slip ratio tracking problem. The main
contributions of this paper include the following:

(1) We concern with a constraint control problem with
time-varying asymmetric slip ratio constraints in an ABS,
which fundamentally avoids the ABS working in the unstable
region and ensures the stability and safety in the braking
process.(2) TABLF is introduced into the design process of the
constrained controller to realize time-varying slip rate con-
strained control, and the system uncertainties are considered
to improve system robustness of the algorithm.(3) Simulations demonstrate the effectiveness of our
TABLF control algorithm over the Quadratic Lyapunov
Function (QLF) control algorithm.

The rest of this paper is organized as follows. In Sec-
tion 2, the vehicle dynamic mode and an antilock system
are described and discussed. Sections 3 and 4 introduce
Barrier Lyapunov Function and the design of the adaptive
time-varying asymmetric wheel slip constrained controllers.
The wheel slip constrained controllers are evaluated through
the simulations in Section 5, followed by some concluding
remarks in Section 6.

2. System Dynamics

2.1. A Quarter Car Model. To simplify the system model,
this paper neglects the secondary factors and makes some
assumptions as follows:(1)The tires are rigid.(2)The system ignores the influence of the lateral wind.

A quarter car model [35] that holds the necessary char-
acteristics of the whole vehicle was selected in this paper.
The free body diagram of the quarter car model is shown in
Figure 1. The force balance equation [35] in the longitudinal
direction is

𝑚V̇ = −𝜇 (𝜆)𝑚𝑔 − 𝑐VV2 (1)

𝐽�̇� = 𝑟𝜇 (𝜆)𝑚𝑔 − 𝑟𝑓𝜔 − 𝑇𝑏 (2)

where𝑚 = 1/4 vehicle mass, V = linear velocity of vehicle,𝜇(𝜆) = coefficient of friction between road and tyre which
is nonlinear function of slip ratio and road dynamics, 𝑐V =
aerodynamics drag coefficient, 𝐽 = the moment of inertia of
the wheel,𝜔 = the angular velocity of the wheel, 𝑟 = the radius
of the wheel, 𝑓𝜔 = viscous wheel friction force (𝑓𝜔 = 𝑐𝜔,
where 𝑐 is coefficient of viscous friction ), 𝑇𝑏 = the braking
torque acting on the wheel, and 𝜆 = wheel slip ratio that is
ratio of difference of wheel and vehicle velocity to maximum
velocity among the two velocities.

In the ABS controller design, due to the existence of
the plant uncertainties and measured noise, the stability of
the closed-loop control system is affected. Thus, to assess
the robustness of the controller, we consider the plant
uncertainties and unmodeled dynamics. Equations (1) and
(2) can be rewritten as

𝑚V̇ = −𝜇 (𝜆)𝑚𝑔 − 𝑐VV2 + Δ 1 (𝑡) (3)

𝐽�̇� = 𝑟𝜇 (𝜆)𝑚𝑔 − 𝑟𝑓𝜔 − 𝑇𝑏 + Δ 2 (𝑡) (4)
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Figure 1: Free body diagram of the quarter car model.




1

Ｇ；Ｒ

stable region unstable region

∗ p

Figure 2: The relationship between friction coefficient and wheel
slip.

where Δ 1(𝑡) and Δ 1(𝑡) include the uncertainty parameter
deviation, external disturbance, and uncertain model error
influencing on the stability of the system.

The wheel slip 𝜆 is defined as

𝜆 = V − 𝜔𝑟
V
× 100% (5)

Differentiating (5), we can obtain

�̇� = (1 − 𝜆) V̇ − 𝑟�̇�
V

(6)

Substituting (3) and (4) into (6), we have

�̇� = −1
V
(𝑟2𝜇 (𝜆)𝑚𝑔𝐽 − 𝑟2𝑓𝜔𝐽 + (1 − 𝜆) 𝜇 (𝜆) 𝑔

+ (1 − 𝜆) 𝑐V2𝑚 ) + 𝑇𝑏𝑟V𝐽 + (1 − 𝜆)Δ 1 (𝑡)𝑚V − 𝑟Δ 2 (𝑡)
V𝐽

(7)

2.2. Burckhardt’s Tire Model and Problem Definition. There is
a high nonlinear relationship between slip ratio 𝜆 and road
adhesion coefficient 𝜇(𝜆), which depends not only on the tire
model but also on the road conditions. In this paper, the tire

Table 1: Friction model parameters.

Surface conditions c1 c2 c3
Dry asphalt 1.2801 23.9900 0.5200
Wet asphalt 0.8570 33.800 0.3470
Dry concrete 1.1973 25.168 0.5373
Snow 0.1946 94.1290 0.0646
Ice 0.0500 306.3900 0.0010

friction model introduced by Burckhardt [36] has been used
to simulate an antilock brake system.

𝜇 (𝜆) = 𝑐1 (1 − 𝑒−𝑐2𝜆) − 𝑐3𝜆 (8)

𝜆𝑘 = 1𝑐2 log 𝑐1𝑐2𝑐3
𝜇 (𝜆𝑘) = 𝑐1 − 𝑐3𝑐2 (1 − log 𝑐1𝑐2𝑐3 )

(9)

where 𝑐1 is the maximum value of the friction curve, 𝑐2 is the
shape of the friction curve, 𝑐3 is the difference between the
maximum value and the value at 𝜆 = 1 of the friction curve.𝜆𝑘 is themaximum slip ratio, 𝜇(𝜆𝑘) is themaximum adhesion
coefficient. Different values of these parameters may denote
different ground-contact friction conditions. Table 1 shows
the parameters of the friction model for different runway
surfaces.

Figure 2 shows the relationship between friction coeffi-
cient and wheel slip.

The entire wheel slip range is divided into two regions
according to the road surface adhesion coefficient curve: the
stable region and the unstable region [37]. If the wheel slip is
located in the unstable region due to the brake torque, which
is bigger than the ground brake torque, then the wheel speed
decreases, the slip ratio increases, and the ground brake force
decreases continuously, until the vehicle wheel was locked.
Consequently, the purpose of the proposed control scheme
based on TABLF is to constrain wheel slip ratio in the stable
region throughout the vehicle braking process.

Defining state variable 𝑥 = 𝜆, input variable 𝑢 = 𝑇𝑏, and
output variable𝑦, theAntilockBraking Systemof vehicles can
be rewritten as

�̇� = 𝑓 (𝑥) + 𝑔 (𝑥) 𝑢 + 𝑑 (𝑡)
𝑦 = 𝑥 (10)

where𝑓(𝑥) = −(1/V)(𝑟2𝜇(𝑥)𝑚𝑔/𝐽−𝑟2𝑓𝑤/𝐽+(1−𝑥)𝜇(𝑥)𝑔+(1−𝑥)(𝑐V2/𝑚)), 𝑔(𝑥) = 𝑟/V𝐽, 𝑑(𝑡) = (1−𝜆)Δ 1(𝑡)/𝑚V−𝑟Δ 2(𝑡)/V𝐽,
and |𝑑(𝑡)| is upper bound, but the bound is unknown.

The control objective for a nonlinear dynamic system
is to determine an output feedback control system such
that the output 𝑦 can track a desired trajectory 𝑦𝑑(𝑡) while
ensuring that all the closed-loop signals are bounded and
that the output constraints are not violated. Furthermore, the
constraint controller based on BLF is designed to suppress
the total disturbances in slip dynamics to improve the ABS
system robustness.
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Figure 3: Symmetric (left) and an Asymmetric (right) Barrier Lyapunov Function.

3. Barrier Lyapunov Function Preliminaries

For establishing constraint satisfaction and performance
bounds, the following definitions, assumptions, and Lemma4
(see [23]) are necessary.

Definition 1 (see [24]). A Barrier Lyapunov Function is a
scalar function 𝑉(𝑥), defined with respect to the system�̇� = 𝑓(𝑥, 𝑡) on an open region 𝐷 containing the origin,
that is continuous, positive definite, has continuous first-
order partial derivatives at every point of𝐷, has the property𝑉(𝑥) → ∞ as 𝑥 approaches the boundary of𝐷, and satisfies𝑉(𝑥) ≤ 𝑏, ∀𝑡 ≥ 0, along the solution of �̇� = 𝑓(𝑥, 𝑡) for𝑥(0) ∈ 𝐷 and some positive constant 𝑏.

A Barrier Lyapunov Function should be symmetric or
asymmetric according to the boundary character, as shown
in Figure 3.

Assumption 2 (see [26]). There exist constants 𝐾𝑐𝑖, 𝐾𝑐𝑖, 𝑖 =0, 1, 2, satisfying 𝑘𝑐1(𝑡) ≥ 𝐾𝑐0 and 𝑘𝑐1(𝑡) ≤ 𝐾𝑐0, and its time
derivatives satisfy |𝑘(𝑖)𝑐𝑖 | ≥ 𝐾𝑐𝑖, |𝑘(𝑖)𝑐𝑖 | ≤ 𝐾𝑐𝑖, 𝑖 = 1, 2, ∀𝑡 ≥ 0.
Assumption 3 (see [26]). There exist positive constants 𝑌1, 𝑌2
and functions 𝑌0(𝑡), 𝑌0(𝑡) satisfying 𝑌0(𝑡) > 𝑘𝑐1(𝑡), 𝑌0(𝑡) <𝑘𝑐1(𝑡), such that the desired trajectory 𝑦𝑑(𝑡) and its time
derivatives satisfy 𝑌0(𝑡) ≤ 𝑦𝑑(𝑡) ≤ 𝑌0(𝑡) and | ̇𝑦𝑑(𝑡)| ≤ 𝑌1,|�̈�𝑑(𝑡)| ≤ 𝑌2, ∀𝑡 ≥ 0, implying that they are continuous and
available in a compact setΩ𝑦𝑑 fl {[𝑦𝑑, ̇𝑦𝑑, ̈𝑦𝑑]𝑇 : 𝑦2𝑑+ ̇𝑦2𝑑+ ̈𝑦2𝑑 ≤𝛿𝑦𝑑} ⊂ R3.
Lemma 4 (see [21]). For any positive functions 𝑘𝑎1(𝑡), 𝑘𝑏1(𝑡),
let S1 = {𝑆1 ∈ R | −𝑘𝑎1(𝑡) < 𝑆1 < 𝑘𝑏1(𝑡)} ⊂ R, and 𝑁 fl
R𝑙 × S1 ⊂ R𝑙+1 be open sets. Consider the system

̇𝜂 = ℎ (𝑡, 𝜂) (11)

where 𝜂 fl [𝜔 𝑆1]𝑇 ∈ 𝑁 and ℎ fl R+ × 𝑁 → R𝑙+1

is piecewise continuous with respect to 𝑡 and locally Lipschitz
with respect to 𝜂, uniformly with respect to 𝑡, on R+ × 𝑁.
Suppose that there exist functions 𝑈 : R𝑙 → R+ and 𝑉1 :

S1 → R+ continuously differentiable and positive definite in
their respective domains, such that

𝑉1 (𝑧) → ∞ as 𝑧 → −𝑘𝑎1 (𝑡) or 𝑧 → 𝑘𝑏1 (𝑡)𝛾1 (‖𝜔‖) ≤ U (𝜔) ≤ 𝛾2 (‖𝜔‖) (12)

where 𝛾1 and 𝛾2 are class 𝐾∞ functions. Let 𝑉(𝜂) fl 𝑉1(𝑆1) +𝑈(𝜔) and 𝑆1(0) ∈ S1. If the inequality holds
�̇� = 𝜕𝑉𝜕𝜂 ℎ ≤ −𝑐𝑉 + V (13)

in the set 𝜂 ∈ 𝑁 and 𝑐, V are positive constants, then 𝑆1(𝑡)
remains in the open set S1, ∀𝑡 ∈ [0,∞].
4. Controller Design

In this section, slip ratio constraints are directly integrated
into the controller design process to guarantee the constraints
are not violated. We employ the Time-varying Asymmetric
Barrier Lyapunov Function to design the controller.

Define the tracking error as

𝑆 (𝑡) = 𝑦 − 𝑦𝑑 (𝑡) (14)

Define the time-varying output constraints 𝑘𝑎(𝑡), 𝑘𝑏(𝑡) as
𝑘𝑎 (𝑡) = 𝑦𝑑 (𝑡) − 𝑘𝑐 (𝑡)
𝑘𝑏 (𝑡) = 𝑘𝑐 (𝑡) − 𝑦𝑑 (𝑡) (15)

where 𝑘𝑐(𝑡) is the time-varying lower bound of slip rate
constraint, 𝑘𝑐(𝑡) is the time-varying upper bound of slip rate
constraint.

4.1. Time-Varying Constraint Backstepping Controller 1. We
choose the Time-varying Asymmetric Barrier Lyapunov
Function as

𝑉 = 12 (1 − 𝑞 (𝑆)) log 𝑘2𝑎 (𝑡)𝑘2𝑎 (𝑡) − 𝑆1 (𝑡)2
+ 12𝑞 (𝑆) log 𝑘2𝑏 (𝑡)𝑘2

𝑏 (𝑡) − 𝑆1 (𝑡)2 +
12𝛾�̃�22

(16)
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where

𝑞 (𝑆) = {{{
1, 0 < 𝑆 (𝑡) < 𝑘𝑏 (𝑡)0, −𝑘𝑎 (𝑡) < 𝑆 (𝑡) ≤ 0 (17)

𝑘𝑎(𝑡) and 𝑘𝑏(𝑡) are the time-varying constraints on 𝑆1, which
can be set independently according to the upper and lower
bounds of the desired trajectory 𝑦𝑑(𝑡), �̃�2 = 𝑘2 − �̂�2, �̂�2 is the
estimate of uncertainty upper bound 𝑘2 and 𝑘2 ≥ |𝑑(𝑡)|, and𝛾 is a positive constant.

Let S fl {𝑆 ∈ R : −𝑘𝑎(𝑡) < 𝑆 < 𝑘𝑏(𝑡)} ∈ R. By
Assumptions 2 and 3, there exist positive constants 𝑘𝑏, 𝑘𝑏, 𝑘𝑎,𝑘𝑎 such that

𝑘𝑎 < 𝑘𝑎 (𝑡) < 𝑘𝑎,
𝑘𝑏 < 𝑘𝑎 (𝑡) < 𝑘𝑏,∀𝑡 ≥ 0.

(18)

Note. (1) It is clear that for any 𝑆(𝑡) ∈ (−𝑘𝑎(𝑡), 𝑘𝑏(𝑡)),𝑉(𝑆(𝑡)) ≥ 0 and only if 𝑆(𝑡) = 0 we have 𝑉(𝑆(𝑡)) = 0.
It implies that 𝑉(𝑆(𝑡)) is positive definite, because �̇�(𝑆(𝑡)) is
continuous within each of the two intervals 𝑆(𝑡) ∈ (−𝑘𝑎(𝑡), 0)
and 𝑆(𝑡) ∈ (0, 𝑘𝑏(𝑡)), respectively. Meanwhile, we have
lim𝑆→0+(𝑑𝑉/𝑑𝑆) = lim𝑆→0−(𝑑𝑉/𝑑𝑆) = 0. It implies that𝑉(𝑆(𝑡)) is continuously differentiable. Thus, 𝑉 is a valid
Lyapunov function candidate.(2) When 𝑘𝑎(𝑡) and 𝑘𝑏(𝑡) are constants, the output
constraints should be extended to be static constraints. When𝑘𝑎(𝑡) = 𝑘𝑏(𝑡), the time-varying asymmetric barrier function
can be extended to time-varying symmetric barrier function,
so the time-varying asymmetric barrier function affords
greater flexibility on initial output conditions.

Differentiating (16), we can obtain

�̇� = (1 − 𝑞) 𝑆 (𝑡) ( ̇𝑆 (𝑡) − (�̇�𝑎 (𝑡) /𝑘𝑎 (𝑡)) 𝑆 (𝑡))𝑘𝑎 (𝑡)2 − 𝑆 (𝑡)2
+ 𝑞𝑆 (𝑡) ( ̇𝑆 (𝑡) − (�̇�𝑏 (𝑡) /𝑘𝑏 (𝑡)) 𝑆 (𝑡))𝑘𝑏 (𝑡)2 − 𝑆 (𝑡)2 + 1𝛾�̃�2 ̇̃𝑘2

(19)

From (17), we have 𝑞 = 0 and 1 − 𝑞 = 1 when −𝑘𝑎(𝑡) <𝑆(𝑡) ≤ 0. Equation (19) can be rewritten as

�̇� = 𝑆 (𝑡) 1 − 𝑞𝑘2𝑎 (𝑡) − 𝑆 (𝑡)2 ( ̇𝑆 (𝑡) −
�̇�𝑎 (𝑡)𝑘𝑎 (𝑡) 𝑆 (𝑡)) + 1𝛾 �̃�2 ̇̃𝑘2 (20)

From (17), we have 𝑞 = 1 and 1 − 𝑞 = 0 when 0 < 𝑆(𝑡) <𝑘𝑏(𝑡). Rewriting (19) yields
�̇� = 𝑆 (𝑡) 𝑞𝑘2

𝑏 (𝑡) − 𝑆 (𝑡)2 ( ̇𝑆 (𝑡) −
�̇�𝑏 (𝑡)𝑘𝑏 (𝑡) 𝑆 (𝑡)) + 1𝛾�̃�2 ̇̃𝑘2 (21)

According to (20) and (21), we have

�̇� = 𝑆 (𝑡) ( 1 − 𝑞𝑘2𝑎 (𝑡) − 𝑆 (𝑡)2 +
𝑞𝑘2

𝑏 (𝑡) − 𝑆 (𝑡)2)( ̇𝑆 (𝑡)
− (1 − 𝑞) �̇�𝑎 (𝑡)𝑘𝑎 (𝑡) 𝑆 (𝑡) − 𝑞 �̇�𝑏 (𝑡)𝑘𝑏 (𝑡) 𝑆 (𝑡)) + 1𝛾 �̃�2 ̇̃𝑘2
= 𝑆 (𝑡)( 1 − 𝑞𝑘2𝑎 (𝑡) − 𝑆 (𝑡)2 +

𝑞𝑘2
𝑏 (𝑡) − 𝑆 (𝑡)2)(𝑓 (𝑥)

+ 𝑔 (𝑥) 𝑢 − �̇�𝑑 + 𝑑 (𝑡) − (1 − 𝑞) �̇�𝑎 (𝑡)𝑘𝑎 (𝑡) 𝑆 (𝑡)
− 𝑞 �̇�𝑏 (𝑡)𝑘𝑏 (𝑡) 𝑆 (𝑡)) + 1𝛾�̃�2 ̇̃𝑘2

(22)

Set 𝜃 = (1 − 𝑞)/(𝑘2𝑎(𝑡) − 𝑆(𝑡)2) + 𝑞/(𝑘2𝑏(𝑡) − 𝑆(𝑡)2) and we
have 𝜃 > 0.

The adaptive controller is designed as

𝑢 = 1𝑔 (𝑥) {−𝑓 (𝑥) + �̇�𝑑 (𝑡) − [𝑘1 + 𝑘1 (𝑡)] 𝑆 (𝑡)
− �̂�2 sign (𝑆 (𝑡))}

(23)

where 𝑘1 is a positive constants; the time-varying gain 𝑘1(𝑡)
is given by

𝑘1 (𝑡) = √(1 − 𝑞) (�̇�𝑎 (𝑡)𝑘𝑎 (𝑡))
2 + 𝑞(�̇�𝑏 (𝑡)𝑘𝑏 (𝑡))

2 + 𝛽 (24)

where 𝛽 ≥ 0.
The adaptive law is designed as follows:̇̂𝑘2 = 𝛾𝜃 |𝑆 (𝑡)| (25)

Remark 5. Let 𝐾1(𝑡) = 𝑘1(𝑡) + (1 − 𝑞)(�̇�𝑎(𝑡)/𝑘𝑎(𝑡)) +𝑞(�̇�𝑏(𝑡)/𝑘𝑏(𝑡)). 𝛽 can guarantee 𝐾1(𝑡) ≥ 0 when �̇�𝑎(𝑡) and�̇�𝑏(𝑡) are both zero.
Setting𝐾1(𝑡) = 𝑘1(𝑡)+(1−𝑞)(�̇�𝑎(𝑡)/𝑘𝑎(𝑡))+𝑞(�̇�𝑏(𝑡)/𝑘𝑏(𝑡))

and substituting (23), (24), and (25) into (22), we can obtain

�̇� = 𝑆 (𝑡) 𝜃{−[𝑘1 + 𝑘1 (𝑡) + (1 − 𝑞) �̇�𝑎 (𝑡)𝑘𝑎 (𝑡) + 𝑞 �̇�𝑏 (𝑡)𝑘𝑏 (𝑡)]
⋅ 𝑆 (𝑡) + 𝑑 (𝑡) − �̂�2 sign (𝑆 (𝑡))} + 1𝛾�̃�2 ̇̃𝑘2 = 𝑆 (𝑡)⋅ 𝜃 [− (𝑘1 + 𝐾1 (𝑡)) 𝑆 (𝑡) + 𝑑 (𝑡) − 𝑘2 sign (𝑆 (𝑡))
+ �̃�2 sign (𝑆 (𝑡))] + 1𝛾 �̃�2 ̇̃𝑘2 = −𝜃 (𝑘1 + 𝐾 (𝑡)) 𝑆 (𝑡)2
− 𝜃 (𝑘2 |𝑆 (𝑡)| − 𝑆 (𝑡) 𝑑 (𝑡)) + 𝜃�̃�2 |𝑆 (𝑡)| + 1𝛾 �̃�2 ̇̃𝑘2
≤ −𝜃 (𝑘1 + 𝐾 (𝑡)) 𝑆 (𝑡)2 − 𝜃 (𝑘2 |𝑆 (𝑡)| − |𝑆 (𝑡)|
⋅ |𝑑 (𝑡)|) + �̃�2 (𝜃 |𝑆 (𝑡)| + 1𝛾 ̇̃𝑘2) ≤ −𝜃 (𝑘1 + 𝐾 (𝑡))
⋅ 𝑆 (𝑡)2

(26)
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According to (26), �̇� is negative definite when the
control law is (23), and the Time-varying Asymmetric Barrier
LyapunovFunction is (16).The system is asymptotically stable
based on Barbalat’s lemma [21]. 𝑆(𝑡) is guaranteed to converge
to zero asymptotically.

4.2. Time-Varying Constraint Backstepping Controller 2. In
Section 4.1, we have the following results:

�̇� = 𝑆 (𝑡) 𝜃(𝑓 (𝑥) + 𝑔 (𝑥) 𝑢 − ̇𝑦𝑑 + 𝑑 (𝑡)
− (1 − 𝑞) �̇�𝑎 (𝑡)𝑘𝑎 (𝑡) 𝑆 (𝑡) − 𝑞 �̇�𝑏 (𝑡)𝑘𝑏 (𝑡) 𝑆 (𝑡)) + 1𝛾�̃�2 ̇̃𝑘2

(27)

The adaptive controller is designed as

𝑢 = 1𝑔 (𝑥) {−𝑓 (𝑥) + �̇�𝑑 (𝑡)
− 𝑘1 [(1 − 𝑞) (𝑘2𝑎 (𝑡) − 𝑆 (𝑡)2) + 𝑞 (𝑘2𝑏 (𝑡) − 𝑆 (𝑡)2)]
⋅ 𝑆 (𝑡) + 𝑘1 (𝑡) 𝑆 (𝑡) − �̂�2 sign (𝑆 (𝑡))}

(28)

where 𝑘1 is a positive constants; the time-varying gain 𝑘1(𝑡)
is given by

𝑘1 (𝑡) = (1 − 𝑞) �̇�𝑎 (𝑡)𝑘𝑎 (𝑡) + 𝑞 �̇�𝑏 (𝑡)𝑘𝑏 (𝑡) (29)

The adaptive law is designed as follows:

̇̂𝑘2 = 𝛾𝜃 |𝑆 (𝑡)| (30)

Substituting (28), (29), and (30) into (27), we can obtain

�̇� = 𝑆 (𝑡) 𝜃 [−𝑘1 [(1 − 𝑞) (𝑘2𝑎 (𝑡) − 𝑆 (𝑡)2)
+ 𝑞 (𝑘2𝑏 (𝑡) − 𝑆 (𝑡)2)] 𝑆 (𝑡) + 𝑘1 (𝑡) 𝑆 (𝑡) − (1 − 𝑞)
⋅ �̇�𝑎 (𝑡)𝑘𝑎 (𝑡) 𝑆 (𝑡) − 𝑞 �̇�𝑏 (𝑡)𝑘𝑏 (𝑡) 𝑆 (𝑡) + 𝑑 (𝑡) − �̂�2 sign (𝑆 (𝑡))]
+ 1𝛾 �̃�2 ̇̃𝑘2 = −𝑘1𝑆 (𝑡)2 + 𝑆 (𝑡) 𝜃 [𝑑 (𝑡) − 𝑘2 sign (𝑆 (𝑡))
+ �̃�2 sign (𝑆 (𝑡))] + 1𝛾 �̃�2 ̇̃𝑘2 = −𝑘1𝑆 (𝑡)2
− 𝜃 [𝑘2 |𝑆 (𝑡)| − 𝑆 (𝑡) 𝑑 (𝑡)] + 𝜃�̃�2 |𝑆 (𝑡)| + 1𝛾 �̃�2 ̇̃𝑘2
≤ −𝑘1𝑆 (𝑡)2 − 𝜃 [𝑘2 |𝑆 (𝑡)| − |𝑆 (𝑡)| |𝑑 (𝑡)|]
+ �̃�2 [𝜃 |𝑆 (𝑡)| + 1𝛾 ̇̃𝑘2] ≤ −𝑘1𝑆 (𝑡)2

(31)

Remark 6. From (17), we have 𝑞 = 0 and 1 − 𝑞 = 1 when−𝑘𝑎(𝑡) < 𝑆(𝑡) ≤ 0. We have

𝑆 (𝑡) 𝜃 {−𝑘1 [(1 − 𝑞) (𝑘2𝑎 (𝑡) − 𝑆 (𝑡)2) 𝑆 (𝑡)
+ 𝑘𝑞 (𝑘2𝑏 (𝑡) − 𝑆 (𝑡)2)] 𝑆 (𝑡)} = 𝑆 (𝑡)
⋅ 1 − 𝑞𝑘2𝑎 (𝑡) − 𝑆 (𝑡)2 [−𝑘1 (1 − 𝑞) (𝑘2𝑎 (𝑡) − 𝑆 (𝑡)2) 𝑆 (𝑡)]
= −𝑘1𝑆 (𝑡)2

(32)

From (17), we have 𝑞 = 1 and 1 − 𝑞 = 0 when 0 < 𝑆(𝑡) <𝑘𝑏(𝑡). We have

𝑆 (𝑡) 𝜃 {−𝑘1 [(1 − 𝑞) (𝑘2𝑎 (𝑡) − 𝑆 (𝑡)2) 𝑆 (𝑡)
+ 𝑘𝑞 (𝑘2𝑏 (𝑡) − 𝑆 (𝑡)2)] 𝑆 (𝑡)} = 𝑆 (𝑡)
⋅ 𝑞𝑘2
𝑏 (𝑡) − 𝑆 (𝑡)2 [−𝑘1𝑞 (𝑘2𝑏 (𝑡) − 𝑆 (𝑡)2) 𝑆 (𝑡)]
= −𝑘1𝑆 (𝑡)2

(33)

So we can have

𝑆 (𝑡) 𝜃 {−𝑘1 [(1 − 𝑞) (𝑘2𝑎 (𝑡) − 𝑆 (𝑡)2)
+ 𝑞 (𝑘2𝑏 (𝑡) − 𝑆 (𝑡)2)] 𝑆 (𝑡)} = −𝑘1𝑆 (𝑡)2 (34)

According to (31), �̇� is negative definite when the control
law is (28), and the Time-varying Asymmetric Barrier Lya-
punov Function is (16). The system is asymptotically stable
based on Barbalat’s lemma [21]. 𝑆(𝑡) is guaranteed to converge
to zero asymptotically.

5. Simulation Analysis

In this section, we present the simulations study to illustrate
the performance of the proposed controllers. To illustrate the
effectiveness of our control algorithm, we compare it with the
control algorithm based on QLF under the same parameter
condition.

For system (10) and definition (14), consider the QLF
candidates as follows:

𝑉 = 12𝑆 (𝑡)2 + 12𝛾�̃�22 (35)

Differentiating (35), we can obtain

�̇� = 𝑆 (𝑡) ̇𝑆 (𝑡) + 1𝛾 �̃�2 ̇̃𝑘2
= 𝑆 (𝑡) [𝑓 (𝑥) + 𝑔 (𝑥) 𝑢 − ̇𝑦𝑑 (𝑡) + 𝑑 (𝑡)] + 1𝛾 �̃�2 ̇̃𝑘2

(36)

The adaptive QLF control law is designed as

𝑢 = 1𝑔 (𝑥) [−𝑓 (𝑥) + �̇�𝑑 (𝑡) − 𝑘1𝑆 (𝑡) − �̂�2 sign (𝑆 (𝑡))] (37)
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Table 2: Vehicle model parameters.

Description Symbol value
the moment of inertia of the
wheel 𝐽 0.65 𝑘𝑔𝑚2
the radius of the wheel 𝑟 0.31𝑚
1/4 vehicle mass 𝑚 350 𝑘𝑔
gravitational constant 𝑔 9.8𝑚/𝑠2
aerodynamics drag coefficient 𝑐V 0.595𝑁/𝑚2/𝑠2
coefficient of viscous friction 𝑐 2.1468 ×10−6𝑁𝑚𝑠
where 𝑘1 is a positive constants and the adaptive control law
is designed as follows:

̇̂𝑘2 = 𝛾 |𝑆 (𝑡)| (38)

Substituting (37) and (38) into (36), we have

�̇� = 𝑆 (𝑡) [−𝑘1𝑆 (𝑡) + 𝑑 (𝑡) − �̂�2 sign (𝑆 (𝑡))] + 1𝛾 �̃�2 ̇̃𝑘2
= −𝑘1𝑆 (𝑡)2
+ 𝑆 (𝑡) [𝑑 (𝑡) − 𝑘2 sign (𝑆 (𝑡)) + �̃�2 sign (𝑆 (𝑡))]
+ 1𝛾 �̃�2 ̇̃𝑘2

= −𝑘1𝑆 (𝑡)2 − [𝑘2 |𝑆 (𝑡)| − 𝑆 (𝑡) 𝑑 (𝑡)] + �̃�2 |𝑆 (𝑡)|
+ 1𝛾 �̃�2 ̇̃𝑘2

≤ −𝑘1𝑆 (𝑡)2 − [𝑘2 |𝑆 (𝑡)| − |𝑆 (𝑡)| |𝑑 (𝑡)|]
+ �̃�2 [|𝑆 (𝑡)| + 1𝛾 ̇̃𝑘2] ≤ −𝑘1𝑆 (𝑡)2

(39)

According to (39), �̇� is negative definite when the control
law is (37) and theQuadratic LyapunovFunction is (35).Thus,
the system is stable.

To eliminate the chattering phenomenon, the saturation
function (40) is used to replace the switching term sign(𝑆(𝑡)
in the control law (23), (28), and (37).

𝑠𝑎𝑡 (𝑆 (𝑡)𝜑 ) =
{{{{{{{
sign(𝑆 (𝑡)𝜑 ) , |𝑆 (𝑡)| > 𝜑𝑆 (𝑡)𝜑 , |𝑆 (𝑡)| ≤ 𝜑 (40)

where 𝜑 = 0.2.
Themain parameters [35] of the vehiclemodel are showed

in Table 2 for a controller simulation analysis.
Desired slip ratio for dry asphalt surface is 𝜆∗ = 0.12.

From Table 1 we can have 𝑐1 = 1.2801, 𝑐2 = 23.9900, and𝑐3 = 0.52. In a way similar to [38], we use 0.02 sin(30𝑡)
as the influence of road roughness on slip rate. Thus, we
have 𝜆(𝑡)∗ = 0.12 + 0.02 sin(30𝑡). The uncertain parametersΔ 1(𝑡) = 0.5 ∗ sin(𝑡), Δ 2(𝑡) = 0.5 ∗ sin(𝑡).

The controller parameters are chosen as follows: 𝑘𝑐(𝑡) =0.144 + 0.024 sin(30𝑡), 𝑘𝑐(𝑡) = 0. From formula (15), we
can have 𝑘𝑎(𝑡) = 0.12 + 0.02 sin(30𝑡), 𝑘𝑏(𝑡) = 0.024 +0.004 sin(30𝑡). The controller gain 𝑘1 = 190, ̇̂𝑘2(0) = 0.8,𝛽 = 0.1, 𝛾 = 30.

The initial conditions of the vehicle are V(0) =25.0015𝑚/𝑠 and𝑤(0) = 80.65 𝑟𝑎𝑑/𝑠, which implies 𝜆(0) = 0.
In order to avoid the singular value of slip rate at V = 0, we
will stop simulation when V = 0.1𝑚/𝑠.The simulation results
are shown in Figure 4.

The time-varying upper limit of the optimal slip rate
is 𝑘𝑐(𝑡) = 0.144 + 0.024 sin(30𝑡) and the time-varying
lower limit of the optimal slip rate is 𝑘𝑐(𝑡) = 0. The time-
varying constrained range is represented by the yellow lines
in Figure 4(a). The upper bound of tracking error constraint
is 𝑘𝑏(𝑡) = 0.024 + 0.004 sin(30𝑡) and the lower bound of
tracking error constraint is −𝑘𝑎(𝑡) = −(0.12 + 0.02 sin(30𝑡)).
The time-varying tracking error constraint is represented
by the yellow lines in Figure 4(b). From Figures 4(a) and
4(b), it can be seen that TABLF1 and TABLF2 controller
can receive good tracking performance of slip ratio, the
slip ratio stays strictly within the time-varying slip ratio
constraint boundary (𝑘𝑐(𝑡), 𝑘𝑡(𝑡)), and tracking error stays
strictly within the error constraint boundary (−𝑘𝑎(𝑡), 𝑘𝑏(𝑡)).
This implies theABSwill provide themaximumbraking force
at its steady area. However, under the QLF controller, the slip
ratio constraint boundary and error constraint boundary are
violatedwhen theABSworks at the high speed process, which
means that the slip ratio is already in an unstable area and the
heavy wheel skidding of vehicle occurs.

The reason for this phenomenon is that the Time-varying
Asymmetric Barrier Lyapunov Function is adopted when we
designed the controllers in this paper. Furthermore, the out-
put variable is strictly within the bounds of constraints. Nev-
ertheless, the output variable cannot be guaranteed within
the bounds of constraints when the Quadratic Lyapunov
Function is used.

Figures 4(c), 4(d), and 4(e) demonstrate the vehicle veloc-
ity and wheel velocity under different controllers. Compared
with the QLF controller, the wheel speed of the TABLF has
no oscillation. This can improve the vehicle ride comfort and
stationarity. Figure 4(f) shows the stopping distance. From
the stopping time and stopping distance, TABLF1 controller
is superior to QLF controller, and QLF controller is superior
to TABLF2 controller. But, by restricting the slip ratio, the slip
ratio can be avoided in the unstable region and the stability of
the vehicle braking system is improved in TABLF1 controller
and TABLF2 controller. Figure 4(g) illustrates the braking
torque. In contrast to the QLF controller, the braking torque
of the TABLF1 controller and TABLF2 controller have no
oscillation, which is helpful to prolong the lifespan of the
actuator.

Table 3 shows the results of the TABLF1 controller,
TABLF1 controller and QLF controller in the same param-
eters.

Table 4 shows the comparison results of the TABLF1
controller, TABLF1 controller and QLF controller in the same
parameters.
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Table 3: Results of three controllers.

Convergence time Stopping time Stopping distance
QLF 0.3480s 2.1860s 27.13m
TABLF1 0.1200s 2.1720s 26.80m
TABLF2 0.4440s 2.2120s 27.50m

Table 4: Comparison results of three controllers.

Violation constraint Convergence rate Stopping distance Stopping time Wheel speed oscillation
QLF Y faster shorter shorter Y
TABLF1 N fastest shortest shortest N
TABLF2 N slowest longest longest N
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Figure 4: Simulation results on time-varying constraint boundary.
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Figure 5: Simulation result of TABLF2 controller (𝑘1 = 550) and QLF controller (𝑘1 = 190) on time-varying constraint boundary.

In order to reduce the stopping time and stopping dis-
tance of the TABLF2 controller, we can increase the controller
parameter 𝑘1 to reduce the braking time without violating
the constraint boundary. From formula (37), it can be seen
that the overshoot of slip ratio of the QLF controller will be
more serious with the increase of the parameter 𝑘1.Therefore,
we only contrasted TABLF2 controller whose parameter 𝑘1
increased with theQLF controller whose parameter 𝑘1 = 190.
Figure 5 shows the comparison result of TABLF2 controller
(𝑘1 = 550) and QLF controller (𝑘1 = 190) on time-varying
constraint boundary.

From Figure 5, the TABLF2 controller receives the better
tracking performance, the smoother braking torque, the
shorter stopping time and stopping distancewithout violating
the constraint boundary.

The stopping time is 2.1740s and stopping distance is
26.88munder the TABLF2 controller, while the stopping time
is 2.1860s and stopping distance is 27.13m under the QLF
controller.

6. Conclusions

In this paper, a quarter vehicle braking model with system
uncertainties forABS is proposed and two adaptive constraint
controllers are designed based on TABLF to guarantee no
violation on the slip ratio constraints such that the vehicle
works in the stable region. The proposed controllers and the
controller based on QLF are compared via simulations on
the pavement of time-varying slip constraint boundaries. The
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simulation results show that TABLF1 controller and TABLF2
controller can implement zero steady state error tracking of
the wheel slip and can guarantee that the slip ratio constraint
boundaries are not violated on different pavements. By
contrast, the controller based on QLF causes the violation of
the constraint boundary at high speeds. This means that the
vehicle has worked in an unstable region. In the meantime,
the proposed controllers can improve the vehicle ride comfort
and stationarity and prolong the lifespan of the actuator
because the wheel speed and the braking torque have no
oscillation compared with the QLF controller. The simulation
results also indicate that in the stopping time and stopping
distance, TABLF1 controller is superior to QLF controller,
and QLF controller is superior to TABLF2 controller with
the same gain parameter. By increasing parameter 𝑘1, the
TABLF2 controller can have a shorter stopping time and
stopping distance without violating the constraint boundary
than the QLF controller.
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