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Portfolio management is an important technology for reasonable investment, fund management, optimal asset allocation, and
effective investment. Portfolio optimization problem (POP) has been recognized as an NP-hard problem involving numerous
objectives as well as constraints. Applications of evolutionary algorithms and swarm intelligence optimizers for resolving multi-
objective POP (MOPOP) have attracted considerable attention of researchers, yet their solutions usually convertMOPOP to POPby
means of weighted coefficientmethod. In this paper, a multi-swarmmulti-objective optimizer based on p-optimality criteria called
p-MSMOEAs is proposed that tries to find all the Pareto optimal solutions by optimizing all objectives at the same time, rather than
through the above transforming method.The proposed p-MSMOEAs extended original multiple objective evolutionary algorithms
(MOEAs) to cooperative mode through combining p-optimality criteria and multi-swarm strategy. Comparative experiments of
p-MSMOEAs and several MOEAs have been performed on six mathematical benchmark functions and two portfolio instances.
Simulation results indicate that p-MSMOEAs are superior for portfolio optimization problem to MOEAs when it comes to
optimization accuracy as well as computation robustness.

1. Introduction

In real life, most optimization problems are multi-objective
optimization problem (MOP). InMOP, numerous contradic-
tory objectiveswhich are subject to several certain constraints
must be optimized at the same time. In general, the common
approach to solve MOP is to find Pareto optimal set. And
Pareto optimality theory indicates that if no vector 𝑥 ∈ 𝐶
makes 𝐹(𝑥) < 𝐹(𝑥∗), vector 𝑥∗ ∈ 𝐶 is Pareto optimality.
Pareto optimal set could improve at least one objective
without deteriorating other objectives. Currently, MOP has
made progress in both theory and application [1, 2], yet
there are still many challenges because of its complexity. As
an effective method to solve MOP, MOEAs could obtain
solutions with good diversity [3]. Consequently, they are
widely found in various practical applications, such as power

dispatching [4], financial management [5], electric machine
designing [6], and spectrum allocation [7].

As a problem-solving technique, the main strengths
of MOEAs are their fast convergence and efficient search
ability. However, it is still a challenge to overcome the local
convergence or balance diversity and convergence of swarms
inMOP for the researchers. Many researchers have attempted
to settle this issue with the ideas of optimality criterion
and multi-swarm strategy. Optimality criterion could find
the best solution according to the different needs of the
problem. Yet the conventional Pareto method does not have
the advantage of such flexibility. Meanwhile, multi-swarm
strategy is prominent in improving diversity.

In k-optimality employed in literature [8], the dominating
solution could have an inferior performance on some partic-
ular objectives, which is acceptable to decision maker. The
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number of objectives is prescribed previously by means of
the adjustment of k value. This is difficult for other methods.
In literature [9], Optimality Criteria method is employed to
seek the optimum through finding a solution that satisfies
some prespecified criteria, which are postulated to the cor-
responding optimal result for the problem. However, only
applying optimality criteria, multi-objective algorithms may
suffer from excessive loss of diversity. Indeed, multi-swarm
strategy could restrict such rapid convergence and increase
diversity effectively due to cooperation and exchange between
swarms. In literatures [10–13], several MOEAs introduce a
multi-swarm strategy. These proposed algorithms contain
multiple slave swarms, and the quantity of slave swarms is
equal to that of objective functions. During evolution, every
slave swarm is dedicated to optimizing a certain objective
to discover its non-dominated solutions. An improved par-
ticle swarm optimization (PSO) algorithm is proposed in
literature [14]. It is shown that whole swarm is stochastically
separated into some small-scale sub-swarms. The swarm is
reorganized stochastically every R generations. In that case,
the good information obtained by each sub-swarm could be
exchanged. In hybrid multi-swarm PSO algorithm shown in
literature [15], PSO and differential evolution approach are
employed during evolution. It is worth noting that all above
algorithms utilize only one strategy to improve the algorithm
and suffer from the balance of diversity and convergence,
which have the potential for improvement.

In this paper, two classes of strategies combining MOEAs
are adopted to solve MOP, p-optimality criteria [3], and
multi-swarm strategy. P-optimality criteria are employed in
selection operator during evolution. These criteria have the
ability of determining the most feasible solutions among
ones located in the same non-domination rank. Therefore,
they have the potential to better the convergence of feasible
solutions in late stages of evolution. Meanwhile, competition
and cooperation techniques among sub-swarms are designed
inmulti-swarm strategy.Distribution list and replacement list
are devised, guaranteeing the interaction between swarms.
Multiple swarms are utilized for optimizing objectives, and
each separated sub-swarm employs the MOEAs combining
p-optimality criteria to find out all the non-dominated solu-
tions. Multi-swarm strategy enables improving the diversity
of feasible solutions and preventing local convergence. A
multi-swarm multi-objective optimizer combining the above
strategies, called multi-swarm multi-objective optimization
evolutionary algorithms based on p-optimality criteria (p-
MSMOEAs), is proposed. Several groups of experiment are
conducted to evaluate the performance of p-MSMOEAs and
MOEAs.

Simultaneously, p-MSMOEAs are employed to solve
MOPOP. Markowitz puts forward the classic mean-variance
(MV) portfolio model, which became the theoretical basis
of modern portfolios [16, 17]. In Markowitz’s approach,
the expected return of portfolio and the risk of portfolio
(represented bymean and variance of assets, respectively) are
described as two criteria of portfolio model. In the presence
of the above two criteria, there is a tradeoff between risk
and return. Since Markowitz proposed the MV theory, a
large number of studies have been done to extend or modify

the basic model in different directions [18–20]. However,
the study of multi-objective model considering expected
cost of assets is a little rare. In this paper, a three-objective
portfolio model considering expected return, expected cost,
and risk is designed to solve MOPOP. In the proposedmodel,
expected return is measured by mean of assets and should
be maximized, risk is weighed by semi-variance of assets
and should be minimized, and expected cost is represented
by Euclidean distance of weight vectors and should be
minimized. Afterwards, it is optimized by p-MSMOEAs.

The remainder of this paper is structured as follows.
Section 2 presents three MOEAs. In Section 3, after an
introduction to p-optimality criteria and multi-swarm strat-
egy, p-MSMOEAs in this study are pictured. In Section 4,
performance of p-MSMOEAs and MOEAs on six commonly
used multi-objective benchmark functions will be shown.
In Section 5, fulfillment of p-MSMOEAs for MOPOP is
presented. Finally, Section 6 summarizes the paper.

2. Multi-Objective Optimization
Evolutionary Algorithms

2.1. NSGA-II Algorithm. NSGA-II algorithm named by Deb
et al. has been identified as a computationally fast MOEA.
And because of its simplicity, excellent diversity, and con-
vergence of feasible solutions, this algorithm is proved to
be one of the most efficient MOEAs. It is prominent in
two aspects: fast non-dominated sorting for individuals and
elitist selection [21].The fast non-dominated sorting depends
on the indexes of non-dominated rank as well as crowding
distance. Further information about process of NSGA-II
algorithms could be seen in [22].

2.2. MODE Algorithm. MODE algorithm is a simple and
powerful MOEA for MOP over a continuous domain. The
outstanding advantages of MODE are its speed and robust-
ness. MODE is mainly composed of three components:
mutation, Pareto-based evaluation, and selection. Among
them, Pareto-based evaluation is the same as NSGA-II. In
addition, each vector of the individual undergoes a mutation
process with certain mutation probability 𝑝𝑚. At last, there is
a parameter 𝜎𝑐𝑟𝑜𝑤𝑑 in selection operator that could indicate
the distance between a solution and its surrounding solution
in objective space. Further information about the process of
MODE algorithms could be seen in [23].

2.3. MOEA/D Algorithm. The main idea of MOEA/D algo-
rithm lies in decomposing MOP into multiple scalar sub-
problems and optimizing them at the same time [24]. Every
sub-problem utilizes the information of its neighboring sub-
problems, which reduces its computational complexity of
each generation. Scalarizing functions which are provided
with uniformly distributed weight vectors is the fitness
evaluation condition of MOEA/D [25]. In the computa-
tional experiments of this paper, the Tchebycheff function
is employed to decompose. Further information about the
process of MOEA/D algorithms could be seen in [24].
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Figure 1: Hierarchical interaction topology.

3. Multi-SwarmMulti-Objective Optimizer
Based on p-Optimality Criteria

3.1. Introduction of P-Optimality Criteria. P-optimality crite-
ria named by Emiliano (2014) are a new kind of optimality
criteria to solve MOP. These criteria have the ability of
determining the most feasible solutions among the ones
located in the same non-domination rank.

As described in [3], the criteria are defined as follows. Let|𝐾󸀠| ̸= ∞ be finite set of feasible solutions. A vector 𝑎∗ ∈ 𝐾󸀠 is
an optimal solution if 𝑎 ∈ 𝐾󸀠 and 𝑃𝑖(𝑎∗) ≥ 𝑃𝑖(𝑎), where 𝑃𝑖(𝑎)
is the probability that 𝑎 is better than other solutions from𝐾󸀠
in terms of an objective function (𝑓𝑖, 𝑖 = 1, 2, . . . , 𝑘). Pi(a) is
calculated as follows:

𝑃𝑖 (𝑎) = 1 − 𝑆𝑖 (𝑎) + 1󵄨󵄨󵄨󵄨𝐾󸀠󵄨󵄨󵄨󵄨 (1)

where Si(a) is the rank of a according to the objective function
f i through the quick-sort algorithm.

Thence, the aim is searching a vector 𝑎∗ ⊆ 𝐾󸀠 that
maximizes 𝑓(𝑎) = 𝑘−1 ∙ ∑𝑘𝑖=1 𝑃𝑖(𝑎) or equivalently𝑓(𝑎) =∑𝑘𝑖=1 𝑃𝑖(𝑎).

If 𝑎∗ maximizes 𝑓(𝑎), the following formula should be
maximized as well.

𝑓 (𝑎) = 𝑘 − 𝑘∑
𝑖=1

𝑃𝑖 (𝑎) = 𝑘∑
𝑖=1

(1 − 𝑃𝑖 (𝑎)) = 𝑘∑
𝑖=1

󵄨󵄨󵄨󵄨1 − 𝑃𝑖 (𝑎)󵄨󵄨󵄨󵄨 (2)

Inspired by the p-norm, the following function is consid-
ered:

𝑝-function (𝑎) = ( 𝑘∑
𝑖=1

(1 − 𝑃𝑖 (𝑎))𝑝)
1/𝑝

(3)

where 𝑝 > 0, and pi(a) is calculated as (1). Then, p-optimality
criteria could be defined as follows.

Let |𝐾󸀠| ̸= ∞ be the finite set of feasible solutions. A
vector 𝑎∗ ∈ 𝐾󸀠 is optimal if 𝑎 ∈ 𝐾󸀠 and p-function(𝑎∗) ≤
p-function(a).

P-optimality criteria have the ability of determining the
most feasible solutions among ones located in the same non-
domination rank. Section 3.3 will illustrate the evolution of
MOEAs combining p-optimality criteria.

3.2. Introduction of Multi-Swarm Strategy. The above three
algorithms introduced in Section 2 use the analogy of
single swarm. However, only with combining p-optimality
criteria, the above multi-objective algorithms may suffer
from excessive loss of diversity. Indeed, multi-swarm strategy
could restrict such rapid convergence and increase diversity
effectively due to cooperation and exchange between swarms.

The linchpin of multi-swarm strategy lies in two aspects:
on the one hand, K individuals with superior performance
are selected from sub-swarms to compose a distribution
list. Meanwhile, each sub-swarm prepares a replacement list
comprised of K individuals with inferior performance. K
is predefined, and the individuals in distribution list and
replacement list are selected by non-domination rank and
crowding distance.

Thewhole swarm is evolved in the form of predetermined
number sub-swarms, each of them performs the same multi-
objective algorithm at early stage. After some predefined
generations of evolution, the individuals in distribution list
from one sub-swarm are sent to the adjacent sub-swarm to
replace individuals in its replacement list. Taking this order,
the last sub-swarm performs information transformation
with first sub-swarm, as shown in Figure 1.

Figure 1 illustrates hierarchical interaction topologies
among individuals. Ring is adopted in swarm level, and
ring as well as star topologies are simultaneously employed
in individual level. Different sub-swarms are arranged in a
unidirectional ring. In other words, every sub-swarm could
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Main steps of p-MSNSGA-II(1) Set the number of swarm (m), the size of each swarm (N), the lower and upper bound of p (p-lb, p-ub),
the maximum number of cycles (MCN), the number of swarm maximum cycles (SMCN)
and the number of exchange of swarms (EN)(2) repeat(3) Initialize the sub-swarms 𝑆1, 𝑆2, . . . , 𝑆𝑚, assign 𝑝1, 𝑝2, . . . , 𝑝𝑚 for each swarm(4) repeat(5) The initialized solutions are sorted based on non-domination(6) For each sub-swarm 𝑆𝑡𝑗

Selection operator based on p-optimality criteria are adopted to select superior individuals
Recombination operator and mutation operator are used
Offspring swarm is 𝑆𝑡𝑗󸀠 created
Non-domination and crowding distance are used by 𝑆𝑡𝑗 and 𝑆𝑡𝑗󸀠 to create 𝑆𝑡+1𝑗
If mod (I,SMCN)=0
Exchange amongm sub-swarms

End if(7) End for(8) Until cycle = SMCN ∗EN(9) Sub-swarms are integrated together and sorted based on non-domination(10) Until cycle =MCN

Algorithm 1: Pseudocode for p-MSNSGA-II.

accept individuals in its distribution list from adjacent sub-
swarm to replace individuals of its replacement list. The
simplicity of the structure makes this interaction topology
very fast in interaction [26].

3.3. Description of the Proposed p-MSMOEAs. Multi-swarm
non-dominated sorting genetic algorithm II based on p-
optimality criteria, named p-MSNSGA-II, is demonstrated in
this part.

3.3.1. 𝑝-MSNSGA-II Algorithm. At the beginning of p-
MSNSGA-II algorithm, the maximum number of cycles
(MCN), the number of swarm maximum cycles (SMCN),
and the number of exchange of swarms (EN) are set. The
algorithm will loop a predefined number of times (MCN). As
an example, the following tth loop will be described.

In initialization, m sub-swarms (𝑆1, 𝑆2, . . . , 𝑆𝑚) of N
solutions are stochastically generated. Each solution has n
real-valued variables. The control parameter of p-optimality
criteria pj ∈ [p-lb, p-ub] (1 ≤ j ≤ m) is determined for each
sub-swarm 𝑆𝑡𝑗 (p-lb and p-ub are lower and upper limits of
pj, respectively). Values p1, p2, . . ., pm are isometric, and p1 =
p-lb and pm = p-ub. Solutions in sub-swarm are sorted and
assigned a certain rank based on the non-domination sorting.

For sub-swarm 𝑆𝑡𝑗, three operators, including selection,
recombination, and mutation, are involved in the update
process. The current sub-swarm 𝑆𝑡𝑗 is represented as parent
swarm. Firstly, a group of q solutions is stochastically selected
from 𝑆𝑡𝑗, and then the solution with the least value of p-
function is determined. After repetitions, N solutions are
selected. Secondly, the recombination operator and mutation
operator in NSGA-II are employed. Finally, the new sub-
swarm 𝑆𝑡𝑗󸀠 of size N is regarded as the offspring swarm. The

combination of parent and offspring swarms 𝑅𝑡𝑗 = 𝑆𝑡𝑗 ∪ 𝑆𝑡𝑗󸀠
is carried out. Consequently, non-domination sorting and
crowding distance are utilized to create new parent swarm𝑆𝑡+1𝑗 .

After predefined generations SMCN, K individuals with
superior performance are selected from sub-swarms into
distribution list, as introduced in Section 3.2. And K indi-
viduals with inferior performance are selected from sub-
swarms into replacement list. After EN times of information
transformation among sub-swarms, all sub-swarms merge
into one whole swarm. Thereafter, the whole swarm is no
longer partitioned.

3.3.2. Flowchart. The general steps of p-MSNSGA-II algo-
rithm are shown in Algorithm 1. And the flowchart is
illustrated in Figure 2.

3.3.3. Other p-MSMOEAs. MODE and MOEA/D based on
multi-swarm strategy and p-optimality criteria (named p-
MSMODE algorithm and p-MSMOEA/D algorithm, respec-
tively) are similar to the above p-MSNSGA-II algorithm.

The p-MSMODE algorithm and p-MSMOEA/D algo-
rithm also start by stochastically generating m initial sub-
swarms. For p-MSMODE algorithm (or p-MSMOEA/D algo-
rithm), before evolution operation, the superior individuals
are chosen from each sub-swarm based on p-optimality
criteria and then are placed in the intermediate mating pool
(or temporary elite population) for subsequent evolution
operation. After some predefined generations of evolution, K
individuals with superior (inferior) performance are selected
for information transformation same as p-MSNSGA-II algo-
rithm. After EN times of information transformation among
sub-swarms, all sub-swarms merge into one whole swarm.
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Figure 2: The flowchart of the p-MSNSGA-II algorithm.
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Table 1: Comparison of performance on SCH2.

SCH2 p-MSNSGA-II p-MSMODE p-MSMOEA/D NSGA-II MODE MOEA/D

Converge Metric

Max 2.04e-05 1.72e-04 8.03e-04 7.80e-04 3.83e-03 9.96e-03
Min 3.93e-06 1.20e-06 7.05e-04 3.78e-04 3.35e-03 7.29e-03
Avg 5.01e-06 8.73e-05 7.59e-04 4.01e-04 3.54e-03 8.19e-03
Std 2.10e-06 1.61e-05 3.99e-05 1.10e-05 1.98e-04 5.29e-04

DiversityMetric

Max 8.62e-02 6.48e-02 1.13e-01 1.16e-01 1.19e-01 1.31e-01
Min 3.06e-02 4.93e-02 7.01e-02 4.09e-02 6.62e-02 7.25e-02
Avg 6.81e-02 5.19e-02 7.73e-02 6.48e-02 7.21e-02 8.59e-02
Std 5.59e-03 4.95e-03 2.57e-03 1.27e-03 5.50e-03 7.60e-03

Table 2: Comparison of performance on ZDT3.

ZDT3 p-MSNSGA-II p-MSMODE p-MSMOEA/D NSGA-II MODE MOEA/D M2OABC

Converge Metric

Max 1.28e-04 2.86e-04 4.34e-04 2.26e-02 2.05e-02 3.05e-02 4.64e-03
Min 5.37e-05 2.04e-05 3.96e-04 1.09e-02 5.51e-03 7.40e-03 3.55e-03
Avg 8.59e-05 2.51e-05 4.15e-04 2.03e-02 1.76e-02 8.62e-03 4.07e-03
Std 3.00e-05 4.92e-04 1.59e-05 5.71e-02 7.85e-03 6.30e-02 3.23e-04

DiversityMetric

Max 6.40e-02 6.52e-02 1.28e-01 6.59e-02 9.82e-02 1.32e-01 6.71e-02
Min 3.79e-02 5.65e-02 5.65e-02 4.63e-02 5.85e-02 6.55e-02 5.57e-02
Avg 4.62e-02 6.24e-02 7.69e-02 5.21e-02 7.73e-02 8.45e-02 6.27e-02
Std 2.49e-03 2.31e-03 1.42e-02 3.85e-03 7.42e-03 1.80e-02 1.39e-02

4. Test and Results

To completely evaluate the performance of above p-
MSMOEAs without bias against some certain selected
problems, four two-objective as well as two three-objective
benchmark functions are utilized. Formulas of those
functions could be seen in Appendix.

4.1. Evaluation Method. For the purpose of facilitating the
quantitative assessment of the performance of proposed
algorithms, two performance metrics should be considered:
convergence metric 𝛾 and diversity metric Δ. More detailed
information about them could be seen in [27, 28].

4.2. Experimental Setting. Experiments have been executed
with p-MSNSGA-II, p-MSMODE, p-MSMOEA/D, NSGA-II,
MODE, and MOEA/D. To contrast different algorithms with
a fair time metric during experiment, population size is set as
200, and the number of function evaluations (FEs) is set as
40000. Each algorithm runs 10 times, using a PC Intel Core
i5-7200U, 2.50 GHz CPU with 8GB of RAM.

For NSGA-II, MODE, and MOEA/D, parameter settings
are the same as original algorithms described in [22–24],
respectively.

For p-MSNSGA-II, p-MSMODE, and p-MSMOEA/D,
the whole swarm with 200 individuals is equally partitioned
into 4 sub-swarms. And the lower and upper bounds of the p-
optimality criteria’s interval are set as 0.5 and 2.0, respectively
(according to [3]). The number of swarm maximum cycles
(SMCN) and the number of exchange of swarms (EN) are
set as 20 and 10, respectively. The algorithm will loop 5

times (MCN). And the other setting is the same as original
algorithms.

4.3. Results and Discussion. Test results of p-MSMOEAs
and MOEAs on six benchmark functions, including max-
imum, minimum, average, and standard deviation of the
convergence metric (𝛾) and the diversity metric (Δ) values,
are listed in this part. Besides, CPU time is employed to
measure the time complexity of the algorithms. To further
demonstrate performance of p-MSMOEAs, results of another
multi-swarm algorithm, multi-hive multi-objective artificial
bee colony (M2OABC) algorithmproposed in [26], on several
of above benchmark functions, are also listed in the following.
M2OABC algorithm has been proved to be effective and
robust with combining multi-hive strategy.

4.3.1. Two-Objective Functions. Tables 1–4 and Figures 3–6
show the optimization results of these algorithms for two-
objective functions. In Figures 3–6, the solid lines represent
true Pareto front (PF), while the star spots stand for found
non-dominated solutions.

On SCH2 function, it can be noticed that p-MSMOEAs
have superior performance to MOEAs in terms of 𝛾 metric
and Δ metric after 40000 FEs from Table 1. Figure 3 shows
that p-MSMOEAs have great potential to discover a well-
distributed as well as diverse solution set for SCH2 function.
YetMOEA/D only finds a sparse distr ibution, although it can
basically archive true PF for SCH2.

On ZDT3, ZDT4, and ZDT6 functions, Tables 2–4 show
that performance of p-MSMOEAs in both 𝛾 metric and Δ
metric is better than that of MOEAs and lightly better than
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Figure 3: PF obtained by p-MSMOEAs and MOEAs on SCH2.
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Table 3: Comparison of performance on ZDT4.

ZDT4 p-MSNSGA-II p-MSMODE p-MSMOEA/D NSGA-II MODE MOEA/D

Converge Metric

Max 1.14e-02 7.51e-03 9.41e-03 1.21e-01 7.68e-02 9.93e-02
Min 1.01e-02 1.12e-03 1.62e-03 2.40e-02 1.97e-03 3.01e-02
Avg 1.04e-02 2.61e-03 4.77e-03 3.69e-02 1.64e-02 4.78e-02
Std 5.78e-04 1.14e-02 1.56e-02 1.44e-02 2.05e-02 2.41e-02

DiversityMetric

Max 7.91e-02 9.87e-02 1.19e-01 1.09e-01 1.68e-01 1.18e-01
Min 6.13e-02 4.90e-02 7.05e-02 6.32e-02 9.05e-02 8.24e-02
Avg 6.63e-02 7.02e-02 9.81e-02 8.93e-02 9.08e-02 1.00e-01
Std 7.36e-03 8.87e-03 6.78e-03 1.12e-02 1.64e-01 6.89e-03

Table 4: Comparison of performance on ZDT6.

ZDT6 p-MSNSGA-II p-MSMODE p-MSMOEA/D NSGA-II MODE MOEA/D M2OABC

Converge Metric

Max 3.87e-05 6.45e-04 6.74e-04 7.72e-02 7.37e-02 7.01e-02 1.76e-03
Min 2.39e-05 2.71e-05 3.21e-04 5.31e-02 2.72e-03 5.09e-02 9.64e-05
Avg 2.95e-05 2.89e-04 4.30e-04 6.98e-02 3.71e-02 5.48e-02 5.03e-04
Std 6.08e-06 1.10e-05 7.63e-05 6.52e-03 2.17e-02 6.45e-03 7.40e-01

DiversityMetric

Max 7.51e-02 7.32e-02 1.01e-01 1.12e+00 1.24e+00 1.16e+00 1.18e-01
Min 5.87e-02 4.08e-02 6.76e-02 6.12e-01 9.31e-01 6.19e-01 6.08e-02
Avg 6.37e-02 5.68e-02 8.14e-02 8.35e-01 9.99e-01 8.96e-01 7.96e-02
Std 1.26e-03 4.03e-03 2.06e-03 1.08e-01 1.91e-02 1.87e-01 1.93e-02

Table 5: Comparison of performance on DTLZ2.

DTLZ2 p-MSNSGA-II p-MSMODE p-MSMOEA/D NSGA-II MODE MOEA/D M2OABC

Converge Metric

Max 3.02e-03 7.13e-04 5.67e-03 6.51e-02 7.97e-02 6.27e-02 3.10e-03
Min 2.88e-03 2.30e-05 6.80e-05 3.05e-02 7.50e-04 1.58e-03 2.56e-03
Avg 2.96e-03 1.96e-04 4.06e-04 4.15e-02 1.79e-03 5.51e-03 2.85e-03
Std 6.30e-04 8.48e-05 5.87e-04 8.10e-03 2.11e-02 1.01e-02 1.54e-04

DiversityMetric

Max 4.60e-02 4.64e-02 7.61e-02 6.73e-01 4.92e-01 9.98e-01 4.66e-02
Min 3.37e-02 3.75e-02 2.16e-02 3.85e-01 4.23e-01 2.88e-01 3.95e-02
Avg 4.46e-02 4.21e-02 4.76e-02 5.07e-01 4.77e-01 5.39e-01 4.30e-02
Std 1.97e-03 1.88e-03 7.12e-03 5.32e-02 7.81e-02 1.29e-01 2.27e-03

that of M2OABC. Figures 4–6 show that MOEAs produce
poor results on these test functions and they are almost
impossible to achieve true PF, while p-MSMOEAs have great
potential to approach true PF.

4.3.2. Three-Objective Functions. Figure 7 shows the true PF
for two three-objective functions. Tables 5 and 6 and Figures
8 and 9 show the optimization results of p-MSMOEAs,
MOEAs, and M2OABC algorithms on DTLZ2 and DTLZ3.

On DTLZ2 function, when given 10000 FEs for seven
algorithms, performance of p-MSMOEAs is better than that
ofMOEAs and is comparable to that ofM2OABC as shown in
Table 5. Figure 8 shows that p-MSMOEAshave great potential
to obtain a superior PF for DTLZ2, especially p-MSNSGA-II
and p-MSMODE. Moreover, the performance of MOEAs inΔmetric is a little worse than that of p-MSMOEAs.

On DTLZ3 function, it could be observed from Table 6
that performance of p-MSMOEAs algorithms in both 𝛾
metric and Δ metric has considerable competitiveness over
this problem. From Figure 9, it can be seen that the fronts

obtained from p-MSMOEAs and MOEAs are found to have
a basically outstanding result in terms of convergence, while
they do not perform satisfactorily in terms of diversity.
However, p-MSMOEAs are better than MOEAs for the
problem.

4.3.3. Time Complexity Analysis. In order to demonstrate the
difference in the time complexity of six algorithms, Figure 10
plots the average CPU time over 10 runs.

Figure 10 shows theCPU time for six algorithms and gives
the results on six benchmark functions (SCH2, ZDT3, ZDT4,
ZDT6, DTLZ2, and DTLZ3). The results show that the time
complexity of the original three MOEAs is basically the same,
and NSGA-II and MOEA/D are slightly better than MODE.
The time complexity of p-MSMOEAs is slightly higher than
that of MOEAs, but within acceptable limits. In addition, for
two-objective functions (SCH2, ZDT3, ZDT4, and ZDT6),
the time complexity of p-MSMOEAs is about 1.32-1.64 times
that of the original MOEAs. However, as the number of
objectives increases, this difference is more pronounced. For
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Figure 4: Continued.
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Figure 4: PF obtained by p-MSMOEAs, MOEAs, and M2OABC on ZDT3.

Table 6: Comparison of performance on DTLZ3.

DTLZ3 p-MSNSGA-II p-MSMODE p-MSMOEA/D NSGA-II MODE MOEA/D

Converge Metric

Max 4.10e-02 1.05e-01 8.26e-01 6.56e-01 1.08e+00 1.02e+00
Min 3.48e-02 1.86e-03 6.73e-02 5.08e-02 1.53e-01 1.78e-01
Avg 3.92e-02 4.70e-02 1.84e-01 1.21e-01 3.72e-01 3.60e-01
Std 2.55e-01 1.23e-01 1.24+00 8.65e-01 2.38e+00 2.6+00

DiversityMetric

Max 6.97e-02 4.67e-02 1.21e-01 1.24e-01 4.81e-02 1.27e-01
Min 4.21e-02 3.49e-02 2.70e-02 4.54e-02 3.61e-02 3.45e-02
Avg 5.87e-02 3.75e-02 8.00e-02 9.42e-02 4.16e-02 8.02e-02
Std 7.35e-03 2.62e-03 1.52e-02 2.07e-02 2.81e-03 2.06e-02

example, for three-objective functions (DTLZ2 and DTLZ3),
the time complexity of p-MSMOEAs is about 1.38-1.92 times
that of MOEAs. It is worth mentioning that although p-
MSMOEAs consume more CPU time, there is a significant
improvement in performance compared to MOEAs.

5. Application for Multi-Objective
Portfolio Management

5.1. Introduction of MOPOP. MOPOP has always had an
indispensable place in modern risk management. Its ultimate
goal is to find an optimal way of distributing a set of available
assets, and the budget is scheduled. This is why MOPOP
is favored by investors in terms of determining portfolio
strategies. However, there is not a single portfolio that could
fully satisfy the needs of all investors. In fact, investors'
preference for risk-return ultimately determines a portfolio
is an optimal one or not.

5.1.1. Two-Objective Portfolio Model. Markowitz [16] pro-
posed a formal two-objective portfolio model, which is
MV portfolio model. He used the mean returns of assets
and covariance of them to describe the investment return

and risk, respectively. His model considers two conflicting
aspects: maximizing expected return of a portfolio while
minimizing its risk [28]. In the existence of risk and return,
the optimal solution is not a value yet a set of optimal
portfolios, which weighs between above two aspects.

The MV model considered in this paper could be shown
as follows [16]:

min 𝜎2 = 𝑁∑
𝑖=1

𝑁∑
𝑗=1

𝑤𝑖𝑤𝑗𝜎𝑖𝑗 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑖𝑛𝑔 𝑟𝑖𝑠𝑘
max 𝑟 = 𝑁∑

𝑖=1

𝑤𝑖𝑟𝑖
𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑖𝑛𝑔 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑟𝑒𝑡𝑢𝑟𝑛

Subject to
𝑁∑
𝑖=1

𝑤𝑖 = 1
0 ≤ 𝑤𝑖 ≤ 1, 𝑖 = 1, 2, . . . , 𝑁

𝑏𝑢𝑑𝑔𝑒𝑡 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡

(4)
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Figure 5: PF obtained by p-MSMOEAs and MOEAs on ZDT4.
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Figure 6: Continued.
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Figure 6: PF obtained by p-MSMOEAs, MOEAs, and M2OABC on ZDT6.
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Figure 7: True PF on DTLZ2 and DTLZ3.

where 𝜎2 is variance of portfolios and wi and wj are the
weights of assets i and j in all assets, respectively. 𝜎ij is
covariance between above two assets. N denotes quantity
of available assets, and r expresses expected return while ri
represents expected return of the asset i.

Although being popular in the past, the above MVmodel
has an assumption that the return of assets is normally
distributed. Unfortunately, the conditions are a bit harsh in
real life and are rarely satisfied. There is now a widespread
recognition of the fact that portfolios in reality do not follow
a multivariate normal distribution. Skewness started to be
considered in POP [29]. This implies the risk criteria of
MV model could replace the variance with semi-variance.

Markowitz indeed recommended that models considering
semi-variance are preferable [30].

5.1.2. Three-Objective Portfolio Model. In this section, a
three-objective portfolio model, return-risk-cost model, is
proposed. The two main innovations are the addition of
transaction costs and replacement of the risk criterion. There
exist three criteria in the proposed model: expected return
(measured by mean of assets) that should be maximized,
risk (semi-variance of assets) that should be minimized, and
expected cost (Euclidean distance of weight vectors) that
should be minimized.
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Figure 8: PF obtained by p-MSMOEAs and MOEAs on DTLZ2.
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Figure 10: CPU time of MOEAs and p-MSMOEAs on six benchmark functions.

The MV model has a fact-based function limitation; that
is, the weight of each asset in the portfolio should be a non-
negative real number and the sum of them should be 1. In
themodifiedMarkowitzmodel by Fernandez andGomez, the
upper and lower limit constraints are added. The constraints
of the modified model could be shown as follows:

𝑁∑
𝑖=1

𝑤𝑖 = 1
𝑎𝑖𝑧𝑖 ≤ 𝑤𝑖 ≤ 𝑏𝑖𝑧𝑖, 𝑖 = 1, 2, . . . ,𝑁
0 ≤ 𝑎𝑖 ≤ 1,0 ≤ 𝑏𝑖 ≤ 1
𝑧𝑖 = {1, for 𝑤𝑖 > 00, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑁∑
𝑖=1

𝑧𝑖 = 𝐾

(5)

The semi-variance is described in [29] as follows:

Σ𝑖𝑗𝐵 = 𝐸 {min (𝑅𝑖 − 𝐵, 0) ∙min (𝑅𝑗 − 𝐵, 0)}
= ( 1

T
) ∙ 𝑇∑
𝑡=1

[min (𝑅𝑖𝑡 − 𝐵, 0) ∙min (𝑅𝑗𝑡 − 𝐵, 0)] (6)

where B indicates the return after comparison; Rit expresses
the return of asset i in period t.

An indirectmethod is employed in this paper to represent
transaction costs.There are two assumptions that the transac-
tion cost is related to the quantity of an asset and the distance
between current portfolio as well as the expected portfolio
is considered in transaction cost. According to the above
assumptions, the distance which is the number of different

weights in two different portfolios could be quantified as the
Euclidean distance:

𝑑 (𝑊𝑖,𝑊𝑗) = √ 𝑁∑
𝑛=1

(𝑤𝑖𝑛 − 𝑤𝑗𝑛)2 (7)

with higher values meaning higher transaction costs.
Hence, the return–risk-cost portfolio model proposed in

this paper could be formalized as follows:

max 𝐸 = 𝑁∑
𝑖=1

𝑤𝑖𝑟𝑖 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑖𝑛𝑔 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑟𝑒𝑡𝑢𝑟𝑛
min 𝑅 = 𝑁∑

𝑖=1

𝑁∑
𝑗=1

𝑤𝑖𝑤𝑗Σ𝑖𝑗 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑖𝑛𝑔 𝑟𝑖𝑠𝑘
min 𝐶 = √ 𝑁∑

𝑛=1

(𝑤𝑖𝑛 − 𝑤𝑗𝑛)2
𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑖𝑛𝑔 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑐𝑜𝑠𝑡

(8)

Among them, budget constraints are given as follows:

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑁∑
𝑖=1

𝑤𝑖 = 1
𝑎𝑖𝑧𝑖 ≤ 𝑤𝑖 ≤ 𝑏𝑖𝑧𝑖, 𝑖 = 1, 2, . . . ,𝑁
0 ≤ 𝑎𝑖 ≤ 1,0 ≤ 𝑏𝑖 ≤ 1
𝑧𝑖 = {{{

1, for 𝑤𝑖 > 00, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒



Mathematical Problems in Engineering 17

Table 7: Comparison of performance on MV portfolio model.

two-objective portfolio model p-MSNSGA-II p-MSMODE p-MSMOEA/D

Hypervolume indicator

Max 1.07e-02 3.65e-02 2.98e-02
Min 4.20e-03 1.97e-02 9.25e-03
Avg 8.74e-03 2.17e-02 1.35e-02
Std 5.46e-02 6.77e-03 7.50e-02

Table 8: Comparison of performance on return-risk-cost portfolio model.

three-objective portfolio model p-MSNSGA-II p-MSMODE p-MSMOEA/D

Hypervolume indicator

Max 1.49e-01 5.41e-01 6.37e-01
Min 3.63e-02 9.86e-02 7.02e-02
Avg 8.17e-02 1.07e-01 2.83e-01
Std 3.95e-02 2.59e-01 3.91e-01

𝑁∑
𝑖=1

𝑧𝑖 = 𝐾
Σ𝑖𝑗𝐵
= ( 1

T
)

∙ 𝑇∑
𝑡=1

[min (𝑅𝑖𝑡 − 𝐵, 0) ∙min (𝑅𝑗𝑡 − 𝐵, 0)]
(9)

It is worth mentioning that the number of model objec-
tives can also be increased if there are suitable indicators.

5.2. Applications for Portfolio Problem. A numerical example
is provided to demonstrate the effectiveness of p-MSMOEAs
for solving MOPOP in this part. A Cesarone’s study shows
that limiting the size of portfolio is capable of improving
performance [31]. So historical daily data of 12 assets from
Shanghai Stock Exchange are employed in the experiment,
which are collected by every stock'smonth rates from January
2010 to December 2016.

Running p-MSMOEAs in MATLAB software, under the
mentioned above models, the efficient frontiers of the p-
MSMOEAs are calculated, as shown in Figures 11 and 12. In
addition, since the true PF of the portfolio problems is not
clear, all the PF of p-MSMOEAs algorithms are integrated
to obtain a PF as the reference PF (true PF) [32]. The
hypervolume indicator has been utilized to evaluate the
performance of p-MSMOEAs. The results of comparison are
listed in Tables 7 and 8.

Figure 11 gives the generated non-dominated solutions
of MV model using p-MSMOEAs. Risk and expected return
are almost positively correlated, which means the greater risk
the investors can accept, the greater expected return they can
obtain. Investors could select a portfolio approach based on
their preference for risk to get a corresponding return.

Obviously, in Figure 11, efficient curves of p-MSNSGA-II
and p-MSMOEA/D are smooth and continuous, while
p-MSMODE's is converse. From Table 7, it shows that
performance of p-MSNSGA-II, p-MSMOEA/D, and p-
MSMODE in hypervolume indicator is decreasing in
order.

Figure 12 gives the generated non-dominated solutions of
return-risk-costmodel using p-MSMOEAs.Thedistributions
of solutions are located in three-dimensional coordinate
graphs corresponding to return, risk, and cost. As can be
seen, risk and expected return are also almost positively
correlated when cost is not considered. Similarly, this is
also the case with cost and risk, cost and expected ben-
efit without considering another variable, which is consis-
tent with the reality. When considering these three vari-
ables, investors could select a portfolio approach based on
their preference for risk and cost to receive corresponding
benefits.

Apparently, in Figure 12, the distribution of non-
dominated solutions in Figure 12(a) as well as Figure 12(c),
which resolved by p-MSNSGA-II and p-MSMODE, is more
uniform and more diverse in the whole searching space.
From Table 8, it can be perceived that the performance of p-
MSNSGA-II is better than p-MSMODE and p-MSMOEA/D
in terms of hypervolume indicator.

6. Conclusion

In this paper, a multi-swarm multi-objective optimizer based
on p-optimality criteria called p-MSMOEAs is proposed.
In p-MSMOEAs, p-optimality criteria are employed to
ensure algorithms converge to true PF. In addition, multiple
swarm cooperative coevolution is adopted, guaranteeing
the diversity of the whole population. P-MSMOEAs are
simply constructed and easily achieved and have considerable
potential to solve complex MOP. With six mathematical
benchmark functions, p-MSMOEAs are proven to obtain
good distributed PF with respect to optimization accuracy
and convergence robust.
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Additionally, a constrained MOPOP with three criteria,
expected return (mean of return), risk (semi-variance of
return), and expected cost (the Euclidean distance of weight
vectors), is proposed. And p-MSMOEAs are utilized to
resolve the return-risk-cost portfolio model. The proposed
p-MSMOEAs are considered to be capable of getting a good
diversity of solutions' distribution.

Appendix

(1) SCH2: this is a single-variable (𝑛 = 1) problem having a
convex Pareto optimal set. The functions used are as follows:

𝑆𝐶𝐻2:
{{{{{{{{{{{{{
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓1 (𝑥) =

{{{{{{{{{

−𝑥, if𝑥 ≤ 1𝑥 − 2, if 1 < 𝑥 ≤ 34 − 𝑥, if 3 < 𝑥 ≤ 4𝑥 − 4, if 𝑥 > 4𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓2 (𝑥) = (𝑥 − 5)2
(A.1)

where the variable lies in the range [−5, 10].(2) ZDT3: this is a 30-variable (𝑛 = 30) problem having a
number of disconnected Pareto optimal fronts:

𝑍𝐷𝑇3:
{{{{{{{{{{{{{

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓1 (𝑥) = 𝑥1
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓2 (𝑥) = 𝑔 (𝑥) [1 − √ 𝑥1𝑔 (𝑥) − 𝑥1𝑔 (𝑥) sin (10𝜋𝑥1)]

𝑔 (𝑥) = 1 + 9 (∑𝑛𝑖=2 𝑥𝑖)(𝑛 − 1)
(A.2)

where all variables lie in the range [0, 1]. The Pareto optimal
region corresponds to 𝑥∗1 = 0 for 𝑖 = 2, 3, . . . , 30, and hence
not all points satisfying 0 ≤ 𝑥∗𝑧 ≤ 1 lie on the Pareto optimal
front.(3) ZDT4: this is a 10-variable problem having a convex
Pareto optimal set.

𝑍𝐷𝑇4:{{{{{{{{{{{{{{{

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓1 (𝑥) = 𝑥1𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓2 (𝑥) = 𝑔 (𝑥) [1 − √𝑓1 (𝑥)𝑔 (𝑥) ]
𝑔 (𝑥) = 91 + 10∑

𝑖=2

(𝑥2𝑖 − 10 cos (4𝜋𝑥𝑖))
(A.3)

where 𝑥1 ∈ [0, 1], 𝑥𝑖 ∈ [−5, 5], 𝑖 = 2, . . . , 𝑛.(4) ZDT6: this is a 10-variable problem having a noncon-
vex Pareto optimal set. Moreover, the density of solutions a

cross the Pareto optimal region is nonuniformand the density
towards the Pareto optimal front is also thin:

𝑍𝐷𝑇6:
{{{{{{{{{{{{{{{{{

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓1 (𝑥) = 1 − exp (−4𝑥1) sin6 (6𝜋𝑥1)
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓 (𝑥) = 𝑔 (𝑥) [1 − (𝑓1 (𝑥)𝑔 (𝑥) )

2]
𝑔 (𝑥) = 1 + 9 [(∑𝑛𝑖=2 𝑥𝑖)(𝑛 − 1) ]

0.25

(A.4)

where all the variables lie in the range [0, 1]. The Pareto
optimal region corresponds to 0 ≤ 𝑥∗1 ≤ 1 and 𝑥∗1 = 0 for𝑖 = 2, 3, . . . , 10.(5) DTLZ2: this test problem has a spherical Pareto-
optimal front:

𝐷𝑇𝐿𝑍2:

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓1 (𝑥) = (1 + 𝑔 (𝑥𝑀)) cos(𝑥1𝜋2 ) . . . cos (𝑥𝑀−1𝜋2 )
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓2 (𝑥) = (1 + 𝑔 (𝑥𝑀)) cos(𝑥1𝜋2 ) . . . sin (𝑥𝑀−1𝜋2 )

. . .
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓𝑀 (𝑥) = (1 + 𝑔 (𝑥𝑀)) sin (𝑥1𝜋2 )
𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 0 ≤ 𝑥𝑖 ≤ 1, for 𝑖 = 1, . . . , 𝑛
𝑤ℎ𝑒𝑟𝑒 𝑔 (𝑥𝑀) = ∑

𝑥𝑖∈𝑥𝑀

(𝑥𝑖 − 0.5)2
(A.5)
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Figure 11: PF obtained by p-MSMOEAs on MV portfolio model.

where the Pareto-optimal solutions corresponds to 𝑥∗𝑖 =0.5 (𝑥∗𝑖 ∈ 𝑥𝑀) and all objective function values must
satisfy ∑𝑀𝑚=1(𝑓∗𝑚)2 = 1. As in the previous problem, it is

recommended to use 𝑘 = |𝑥𝑀| = 10. The total number of
variables is 𝑛 = 𝑀 + 𝑘 − 1 is suggested.(6) DTLZ3: this test problem has a spherical Pareto-
optimal front:

𝐷𝑇𝐿𝑍3 :

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓1 (𝑥) = (1 + 𝑔 (𝑥𝑀)) cos(𝑥1𝜋2 ) . . . cos (𝑥𝑀−1𝜋2 )
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓2 (𝑥) = (1 + 𝑔 (𝑥𝑀)) cos(𝑥1𝜋2 ) . . . sin (𝑥𝑀−1𝜋2 ). . .𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓𝑀 (𝑥) = (1 + 𝑔 (𝑥𝑀)) sin (𝑥1𝜋2 )
𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 0 ≤ 𝑥𝑖 ≤ 1, for 𝑖 = 1, 2, . . . , 𝑛
𝑤ℎ𝑒𝑟𝑒 𝑔 (𝑥𝑀) = 100 [󵄨󵄨󵄨󵄨𝑥𝑀󵄨󵄨󵄨󵄨 + ∑

𝑥𝑖∈𝑥𝑀

(𝑥𝑖 − 0.5)2 − cos (20𝜋 (𝑥𝑖 − 0.5))]
(A.6)
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where 𝑘 = |𝑥𝑀| = 10, and the total number of variables 𝑛 =𝑀 + 𝑘 − 1 is suggested.
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