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With the rapid development and wide application of distributed generation technology and new energy trading methods, the
integrated energy system has developed rapidly in Europe in recent years and has become the focus of new strategic competition
and cooperation among countries. As a key technology and decision-making approach for operation, optimization, and control of
integrated energy systems, power consumption prediction faces new challenges. &e user-side power demand and load char-
acteristics change due to the influence of distributed energy. At the same time, in the open retail market of electricity sales, the
forecast of electricity consumption faces the power demand of small-scale users, which is more easily disturbed by random factors
than by a traditional load forecast. &erefore, this study proposes a model based on X12 and Seasonal and Trend decomposition
using Loess (STL) decomposition of monthly electricity consumption forecasting methods. &e first use of the STL model
according to the properties of electricity each month is its power consumption time series decomposition individuation. It
influences the factorization of monthly electricity consumption into season, trend, and random components. &en, the change in
the characteristics of the three components over time is considered. Finally, the appropriate model is selected to predict the
components in the reconfiguration of the monthly electricity consumption forecast. A forecasting program is developed based on
R language and MATLAB, and a case study is conducted on the power consumption data of a university campus containing
distributed energy. Results show that the proposed method is reasonable and effective.

1. Introduction

1.1. Literature Review. An integrated energy system generally
refers to the optimization of the allocation of various energy
resources in accordance with the energy structure and energy
endowment of a region. It often combines advanced technol-
ogies, such as waste heat utilization, heat pump, and energy
storage, thereby fully using high- and low-grade energy to
provide technical solutions for cold, hot, and electric products
for users in the region. As an important approach to accelerate
the transformation to sustainable energy worldwide, the in-
tegrated energy system has attracted much attention in recent
years. Accurate electricity consumption forecasting not only
plays a decisive role in comprehensive planning, operation,
management, and cascade utilization of energy system, but also

acts as a key technology to promote the energy market. To date,
load forecasting technology is mature [1–4], but it cannot be
fully applied to power consumption forecasting in integrated
energy systems because of the following reasons: (1) the demand
and load characteristics of energy users change accordingly with
the integration of distributed energy; (2) the reorganization of
the open-competition electricity market causes the monthly
electricity consumption forecast to become an issue faced by
small-scale users, and the impact of randomness on the forecast
results is greatly increased; and (3) in the mechanism of the
electricity retail market, the performance appraisal system is
measuredmonthly.&erefore, finding a newmonthly electricity
consumption forecasting method is important.

Electricity consumption forecasting of integrated energy
systems involves studying power data and analyzing their
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characteristics, determining the internal variation law of his-
torical data and the relationship between historical data and their
influencing factors, and then predicting power demand [5]. &e
monthly electricity consumption data is a time series, which is
usually influenced by season, user behavior, and economic
development. &erefore, such time series can be decomposed
into components that represent various influencing factors. A
time series forecasting method based on decomposition tech-
nology has been applied in many fields, including power de-
mand information [6–9]. In reference [10], moving regression
and smoothing spline are used as decomposition models to
decompose the time series of power demand. Two neural
networks (NNs) are trained to predict the decomposition results.
Results show that the decomposition prediction ismore accurate
than direct prediction. Damrongkulkamjorn P. and Churueang
P. [11] used a classical decomposition model to decompose the
time series into the trend component and the seasonal com-
ponent, and Seasonal AutoRegressive Integral Moving Average
(SARIMA) and weighted method are used to predict each
component. Yan et al. [12] used an X12 multiplier model to
decomposemonthly electricity consumption series and establish
differentmodels to predict each component.&eX12model not
only overcomes the shortcomings of the classical decomposition
model, that is, the trend values of several samples at the be-
ginning and the end of the model cannot be estimated, but also
has more advantages for the series whose prediction properties
change with time. Wu et al. [13] used three methods, namely,
AutoRegressive IntegralMovingAverage (ARIMA)model, X12-
ARIMA model, and polynomial regression, to predict the
software monthly error number. &e superiority of the X12-
ARIMA model was verified, and the limitations of the X12
model, such as its ability to deal with quarterly or monthly data
only and its inability to control the rate of change of seasonal
components, were identified. Guo et al. [14] considered the
impact of economic disturbance on electricity consumption and
used the X12-ARIMA model to combine economic factors and
electricity consumption series to predict the final electricity
consumption. &is method can predict the final electricity
consumption more accurately, but it requires the data of eco-
nomic factors. A brief summary of the studied literature is
presented in Table 1, including [15–18] that will be further
explained in Section 1.2.

1.2. Motivation. &is paper proposes a monthly power
consumption comprehensive forecasting method based on
the Seasonal and Trend decomposition using Loess (STL)
model, which is a time series decomposition model based
on the local weighted regression scatter smoothing method.
&e model can process data for any type of seasonal var-
iation factor, and users can control the seasonal component
change rate and the smoothness of the trend component. In
addition, it is more robust to outliers. &e STL model has
been applied in many fields [15–17]. Lu et al. [18] suc-
cessfully applied the STL model to load prediction but did
not consider the influence of seasonal inflection point on
the change rate of seasonal components. In the present
study, the proposed methodmade full use of the advantages
of the STL model; set up different components of the rate of

change in season; realized the seasonal component of
periodic and aperiodic decomposition; decomposed the
power sequence into trend, seasonal, and stochastic
components; and utilized the X12 model to extract the
trend component in economic data fitting. &e Vector
AutoRegression (VAR) model was used to predict the trend
component, the neural network was used to predict the
seasons, the average method was used to predict the
random component, and the component projection re-
construction was used for monthly electricity consumption
forecasting. &is paper adopts R language and MATLAB to
compile the algorithm and verifies and analyzes the ef-
fectiveness of the proposed method through the actual
monthly electricity consumption data of a university park.

2. Problem Description

In the monthly electricity sales forecast, predicting the
electricity sales of the following month based on the his-
torical electricity sales data is necessary, taking into account
the climate, seasons, holidays, user types, economy, and
other factors. In the prediction process, monthly electricity
consumption can be decomposed into components that
represent various influencing factors, and the effects of
different influencing factors on each component can be
considered to select an appropriate model to predict the
monthly electricity consumption. &e problem description
of the monthly electricity sales forecast is shown in Figure 1.

2.1. Analysis of the Relationship between Electricity Con-
sumption andMonths. Monthly electricity consumption with
the development of time is variable.&e change in the nature of
human activity, such as seasonal change (e.g., in schools,
electricity use is reduced duringwinter and summer vacations),
causes power consumption to increase or decrease [19]. A
month contains not only social behavior information, such as
holidays, but also natural information represented by seasons.
&is section takes the monthly electricity consumption of a
university park in North China in 2017 as an example to
analyze the influence of months on electricity consumption
from two aspects: the relationship between electricity con-
sumption and holidays, and the relationship between electricity
consumption and seasons. &e monthly power consumption
curve of a university park in the north is shown in Figure 2.

2.1.1. Relationship between Electricity Consumption and
Holidays. Figure 2 shows that power consumption started to
decline in January and generally reached a low point in
February and March, given that the park included the uni-
versity.&e winter holiday was in January andMarch, and the
Spring Festival was in February and March. From March to
April, electricity consumption began to reach a slight peak
because of various student activities in the back-to-school
season. Electricity consumption was relatively stable from
May to July. Electricity consumption decreased in July due to
the summer holiday and rebounded in September during the
back-to-school season. Holiday factors that affect monthly
electricity consumption cannot be easily reflected in short
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holidays. &erefore, the relationship between winter and
summer vacations and the Spring Festival and monthly
electricity consumption can indirectly reflect the relationship
between holidays and electricity consumption.

2.1.2. Relationship between Electricity Consumption and
Seasons. In addition to the winter and summer holidays and
the Spring Festival, the turning point of the electricity
consumption curve is related to the abrupt change of sea-
sons. Winter and spring occur in January, spring and
summer inMarch, summer and autumn in July, and autumn

and winter in October. Figure 2 shows that the alternating
seasons use the power curve to produce an inflection point.

2.2. Analysis of the Relationship between Electricity Con-
sumption and Economic Development. Electric power is
required for a developing economy, and regional economic
development is closely related to electric power demand
[20]. &e relationship between electricity consumption and
economic development in a university park in North China
is analyzed based on the actual situation of a city in North
China.

Table 1: Literature review summary.

Ref. Forecasted variable(s) Forecasting method(s) Decomposition method(s) Decomposition component(s)

[6] Monthly load ARIMA X12 Trend, seasonal, and irregular
components.

[7] Daily and weekly load NN Wavelet transform
Trend load series under different

frequency bands and the
detailed load series.

[8] Monthly load

Hybrid method combining
ARIMA, support vector

machine (SVM), and Holt-
Winters

Seasonal adjustments and H-P
filter

Trend, seasonal, cyclic, and
irregular components.

[9] Fault line(s) Intrinsic mode function (IMF) Empirical mode decomposition
(EMD)

Zero sequence current at
different frequencies.

[10] Monthly load NN
Moving regression and

smoothing spline
decomposition models

Trend and fluctuation series.

[11] Monthly load SARIMA Multiplicative decomposition Trend and seasonal components.

[12] Monthly load ARIMA X12 Trend, seasonal, and random
components.

[13] Monthly number of a
software bug

Hybrid method combining
ARIMA, X12, and polynomial

regression
X12 Seasonal and cyclic components.

[14] Monthly load
Hybrid method combining
ARIMA and vector error

correction (VEC)
X12

Trends of load and economy,
seasonality, holiday, and
irregular components.

[15] Mean flying hours between
failures for aircraft

Hybrid method combining grey
box, back propagation NN

(BPNN), and SVM.
STL Long-term trend and seasonal

components.

[16] Future geospatial incidence
levels

Kernel density estimation with
dynamic kernel bandwidth STL Annual, seasonal, weekend

effect, and random components.

[17] Bids for amazon EC2 spot
instances

Benchmarked time series
forecasting methods such as
naı̈ve, ARIMA, and ETS

STL Spike and seasonal components.

[18] Daily and weekly load Hybrid method combining
Holt-Winters and SVR STL Base component and weather

sensitive component.

Historical data of
monthly

electricity
consumption

Monthly
electricity

consumption
forecast results

Monthly electricity consumption forecasting model
algorithms library

Decompose

Trend
component

Seasonal
component

Random
component

Season, holiday,
economy, and
other factors

Adjust Adjust AdjustAdjust

Figure 1: Monthly electricity sales forecast problem description diagram.
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2.2.1. Data Sources. &e quarterly gross domestic product
(GDP) data of a northern city from January 2010 to De-
cember 2017 and the monthly electricity consumption data
of a university park in North China from January 2010 to
December 2017 are used in the analysis because GDP is an
important indicator to measure the regional economic
conditions. However, monthly GDP data cannot be obtained
at present due to limited data availability [21]. &erefore, in
this section, the quarterly GDP with the data sample size
closest to the monthly is selected to represent the economic
factor and analyze its qualitative relationship with monthly
electricity consumption.

2.2.2. Data Processing and Analysis. A university park in a
northern city provided the power consumption data from
January 2010 to December 2017. &e National Bureau of
Statistics provided the quarterly GDP data of a certain
northern city from January 2010 to December 2017. &e
quarterly GDP growth rate and power consumption quarter-
on-quarter growth changes over time clusters are plotted in
the bar chart, as shown in Figure 3. &is section presents the
standardized data processing to unify the dimension and for
easy comparison.

Figure 3 shows that the peak of quarterly GDP growth
rate is always ahead of the peak of the monthly electricity
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Figure 2: Monthly electricity consumption curve of a university park in Shenyang from 2010 to 2017.
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consumption growth rate because of the time-lag effect of
economic factors on electricity consumption. However, the
fluctuation of GDP can be reflected in the fluctuation of
electricity consumption after a period of time. &erefore,
the relationship between quarterly GDP and monthly
electricity consumption can indirectly reflect the re-
lationship between economic development and electricity
consumption. &e analysis reveals that monthly electricity
consumption is closely related to the impact of economic
development. Assuming that economic changes develop in
a volatile manner over a certain period of time, electricity
consumption can be approximately considered a volatile
change.

3. Monthly Electricity Consumption
Forecasting Method Based on X12 and STL
Decomposition Model

&e variation characteristics of time series of each com-
ponent are different due to different influencing factors [22].
Among them, the trend component is mainly affected by
economic factors to reflect a longer period of development
direction. Seasonal component is a periodic fluctuation with
a fixed length and amplitude under the influence of seasonal
variation. Random components are formed by various ac-
cidental factors [23]. &e individual components were
predicted by using a decomposition technique, and then the
predicted values of each component were reduced to the
predicted values of monthly electricity consumption.
&erefore, different decomposition strategies should be
adopted for power consumption sequences in different
months, and then the characteristics of each component
should be predicted. &e comprehensive prediction strategy
of monthly electricity consumption based on the X12 and
STL decomposition model is shown in Figure 4.

&e proposed monthly electricity consumption pre-
diction method based on the X12 and STL decomposition
models combines a variety of mathematical models. &e
trend components in economic data were extracted by the
X12 decomposition model, and the trend components of
economic factors and electricity consumption were fitted by
the VAR model. &e seasonal component can be extracted
from the historical data of electricity consumption because
the time contains the information of seasons and holidays,
and the BP neural network model is established for pre-
diction. If the random component changes irregularly and
its value fluctuates at approximately 1, then the average value
method is used for direct calculation. &is paper takes a
university campus in North China as an example to verify
the validity of the monthly electricity consumption pre-
diction method based on the X12 and STL decomposition
models.

3.1. Monthly Electricity Consumption and Economic Factor
Decomposition

3.1.1. Decomposition of Monthly Electricity Consumption
Based on the STL Model. &e STL model is a time series

decomposition method that uses robust local-weighted re-
gression as a smoothing method. When estimating the value
of a response variable, a subset of data is selected from the
vicinity of the predicted variable, and then linear or qua-
dratic regression is performed on the subset by using the
weighted least squares method to reduce the weight of the
value far from the estimated point. Finally, the value of the
response variable can be estimated by the local regression
model. &is point-by-point method is generally used to fit
the whole curve to decompose the time series accurately
[24].

&e decomposition model is mainly divided into the
time series additive model and the time series multiplication
model. &e additive model assumes that the influence of
each component is independent of each other, and each
component is expressed in absolute terms. &e multiplica-
tion model assumes that the influence of each component
on the development of phenomena is interrelated based on
the absolute amount of the trend component, and the
other components are expressed in proportion. &e de-
composition model adopts the multiplication model because
of the interactive influence of each factor on electricity
consumption. &e monthly electricity consumption series is
expressed by the product of three components, which
represent the trend, seasonal, and random factors. &e
original time series can be decomposed as follows:

Y � Ytrend × Yseasonal × Yrandom � Yt × Ys × Yr, (1)

where Y is the time series of electricity consumption, Yt is
the trend component, Ys is the seasonal component, and Yr

is the random component.
When decomposing, the seasonal component of the

month at the seasonal inflection point fluctuates greatly with
time, and the seasonal component of the samemonth should
be changed every year.&us, the nonperiodic decomposition
of seasonal component is adopted, whereas the seasonal
component of the month at the nonseasonal inflection point
fluctuates slightly with time, and the seasonal component of
the same month every year is almost constant. &e seasonal
component is used for periodic decomposition.

3.1.2. Decomposition of Economic Factors Based on the X12
Model. &e economic factors and electricity consumption
are affected by seasonal changes and random factors, but
the influence of economic factors on electricity con-
sumption is mainly reflected in the trend components [25].
To avoid the influence of redundant components, this study
adopts the X12 model to perform seasonal adjustment on
the GDP data, stripping out the seasonal component and
random component and leaving the trend component of
GDP to predict the trend component of electricity con-
sumption. &e X12 model is a seasonal decomposition
model proposed by the Census Bureau of the US De-
partment of Commerce. &is paper selects the multipli-
cative decomposition model to express the GDP sequence
as the product of trend factors, seasonal factors, and
random factors because the influences of various factors on
GDP are interactive.
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E � Etrend × Eseasonal × Erandom � Et × Es × Er, (2)

whereE is the time series of themonthly GDP,Et is the trend
component, Es is the seasonal component, and Er is the
random component.

3.2. 1ree-Component Prediction Models of Monthly Elec-
tricity Consumption. &e trend component is a development
direction formed by the influence of economic growth over a
long period of time; it shows a stable trend. Seasonal com-
ponent is a periodic fluctuation that is affected by seasonal
alternation. Random components are small perturbations that
exhibit no obvious change in characteristics under the in-
fluence of accidental factors. &ree models are selected to
predict the trend, seasonal, and random components.

3.2.1. VAR Prediction Model of Trend Component. &e VAR
model is one of the most commonly used econometric
models for the analysis and prediction of economic in-
dicators. GDP data were taken as the influencing factors of
monthly electricity consumption and included in the VAR
model to predict the trend component of electricity con-
sumption. &e model is built based on the statistical

properties of data and takes each endogenous variable in the
system as a function of the lagged value of all endogenous
variables to construct the model [26] as follows:

yt � A1yt− 1 + · · · + Apyt− p + BXt + εt, (3)

where yt is an endogenous variable vector of k-dimension, Xt

is a vector of the d-dimensional exogenous variable, p is the
hysteresis order, Ap andB are the coefficient matrices that
must be estimated, and εt is a k-dimensional disturbance
vector. Assuming that the covariance matrix of εt is a positive
definite matrix with k-dimensions, the formula is as follows:

y1t

y2t

⋮

ykt

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
� A1

y1t− 1

y2t− 1

⋮

ykt− 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ A2

y1t− 2

y2t− 2

⋮

ykt− 2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ · · · + B

x1t

x2t

⋮

xdt

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

ε1t

ε2t

⋮

εkt

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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Figure 4: Strategy diagramof comprehensivemonthly electricity consumption forecastmethod based on the X12 and STL decompositionmodels.
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&at is, the VAR (p) model with k time series variables is
composed of k equations, and the endogenous variable lags
behind the VAR (n) model of order n. &e above equation is
simply transformed into

􏽥yt � A1􏽥yt− 1 + · · · + Ap 􏽥yt− p + 􏽥εt, (5)

where 􏽥yt is the residual of yt’s regression with respect to
exogenous variable Xt, namely,

A(L)􏽥yt � 􏽥εt, (6)

where A(L) � Ik − A1L − A2L
2 − · · · − ApLp is the k-order

parameter square matrix of lagging operator L and impact
vector 􏽥εt is a white noise vector, which has no structural
meaning [27].

When considering the unrestricted VAR model without
exogenous variables, the expression is as follows:

yt � A1yt− 1 + · · · + Apyt− p + εt. (7)

If the determinant det[A(L)] satisfies the stability
condition, then it can be expressed as the vector dynamic
average form of the infinite order:

yt � C(L)εt, (8)

where C(L) � A(L)− 1 and C(L) � C0 + C1L + C2L
2 + · · · ,

C0 � Ik.
&e estimation of the VAR model can be performed

through the least square method, and the estimator of the
matrix can be obtained as follows:

􏽢
􏽘 �

1
T

􏽘 􏽢εt􏽢εt
′, (9)

where 􏽢εt � yt − 􏽢A1yt− 1 − 􏽢A2yt− 2 − · · · − 􏽢Apyt− p. When the
parameter of VAR is estimated, given that A(L)C(L) � Ik,
the parameter estimation of the corresponding vector dy-
namic average model can be obtained. &e estimator of the
VAR model can be obtained by the ordinary least squares
(OLS) method because no contemporaneity correlation
problem exists [28].

3.2.2. Prediction Models of Seasonal Components. When
forecasting seasonal components, we should consider the
month on season alternation points and season stabilization
points.

(1) For months on season stabilization points, the sea-
sonal components are decomposed periodically. &e
seasonal component of the predicted month is the
same as that of the same period in history, that is,

Ysi,j
� Ysi− 1,j

, (10)

where Ysi,j
represents the seasonal component of the

monthly electricity consumption in the jth month of
the ith year.

(2) For months on season alternation points, the seasonal
components are decomposed nonperiodically, and the
seasonal components change greatly during the

historical period. &e BP neural network is
adopted to predict the seasonal component, and
the process includes forward propagation process
deduction and error reverse propagation process
deduction. &e BP neural network prediction
model is

Ysi
� f Ysi− 1

, Ysi− 2
, . . . , Ysi− n

􏼐 􏼑,

Ysi
� ϑ + 􏽘

m

t�1
ctf 􏽘

n

k�1
wktYsi− k

+ δt
⎛⎝ ⎞⎠,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(11)

where Ysi
is the predicted value of the seasonal component of

the ith month; Ysi− k
(k � 1, 2, . . . , n) is the observed value of

the first n cycles; ϑ and δt(t � 1, 2, . . . , m) are the output bias
weight and the hidden layer bias weight, respectively; ct(t �

1, 2, . . . , m) is the connection weight from the hidden layer to
the output layer; f is the activation function of the hidden
layer; and wkt is the connection weight between the input
layer neurons and the hidden layer neurons [29]. &e detailed
steps of the BP neural network are given in Algorithm 1.

3.2.3. Average Prediction Model of Random Components.
No evident change trend is observed in the random com-
ponents, and the value is less than 1. &e average method is
used to predict the random components of the sequence.&e
random components of the predicted month are considered
the historical average of the random components of the same
month. &e average prediction model is

Yri,j
�
1
n

Yri− 1,j
+ Yri− 2,j

+ · · · + Yri− n,j
􏼒 􏼓, (12)

where Yri,j
is the random component of the monthly elec-

tricity consumption in the jth month of the ith year.

3.3. Reconstructing the Predicted Value of Monthly Electricity
Consumption. After the predicted value of each component
is obtained, the final predicted value of the monthly elec-
tricity consumption is obtained by using exponential mul-
tiplication, that is,

Yfi,j
� e

Yti,j · e
Ysi,j · e

Yri,j , (13)

where Yfi,j
is the prediction value of electricity consumption

in the jth month of the ith year; Yti,j
is the prediction value of

the trend component in the jth month of the ith year; Ysi,j
is

the prediction value of the seasonal component in the jth
month of the ith year; and Yri,j

is the prediction value of the
random component in the jth month of the ith year.

&e detailed steps of the monthly electricity consump-
tion forecasting method based on the X12 and STL de-
composition models are presented in Algorithm 2.

4. Sample Analysis

A comprehensive forecasting program for monthly elec-
tricity consumption based on the STL model is compiled by
using R. &e data are obtained from the measured monthly
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electricity consumption in a university park over a period of
eight years. A fixed sample size is used to model and forecast
the monthly electricity consumption. &e monthly electricity
consumption data in the first seven years are used as the sample
model, and the monthly electricity consumption data in the
eight-year period are used as the true value evaluation model.

4.1. Decomposition ofMonthly Electricity Consumption Based
on STL Model. &e STL model can control the seasonal
component change rate and then change the seasonal
component of the sequence. &e seasonal component of
electricity consumption in the inflection point month and
common month can be separated. &e season of the same

Input: Training set D � (xk , yk)􏼈 􏼉
m
k�1; learning rate η

Output: Multilayer Feedforward Neural Network Connecting Weights or &resholds
(1) function BP(D, η)

(2) Randomly initialize all connection weights and thresholds in the network within the range of (0, 1)
(3) repeat
(4) for all (xk , yk) ∈ D do
(5) Calculate the current sample output 􏽢yk � f(βj − θj)

(6) Calculate the gradient of the output neuron gj � − (zEk/z􏽢yk) · (z􏽢yk/zβj) � − (􏽢yk
j − yk

j )f′(βj − θj) � 􏽢yk
j(1 − 􏽢yk

j )

(􏽢yk
j − yk

j )

(7) Calculate the gradient of the hidden layer neuron eh � − (zEk/zbh) · (zbh/αh) � − 􏽐
l
j�1(zEk/zβj) · (zβj/bh)f′(αh − ch)

� 􏽐
l
j�1Whjgjf′(αh − ch) � bh(1 − bh)􏽐

l
j�1Whjgj

(8) Update the weights ΔWhj � ηgjbh ΔVih � ηehxi

(9) Update the threshold Δθj � − ηgj Δch � − ηeh

(10) end for
(11) until the stop conditions are achieved
(12) end function

ALGORITHM 1: BP neural network procedure.

Input: Monthly GDP time series E; monthly electricity consumption time series Y
Output: Predicted value of monthly electricity consumption

(1) function X12
(2) Decompose GDP sequence E

E � Etrend × Eseasonal × Erandom � Et × Es × Er

(3) function stl (ltsObject, s.window, robust�TRUE)
(4) while ltsObject on season stabilization points
(5) s.window⟵ period
(6) while ltsObject on season alternation points
(7) s.window⟵ 2n+ 1, n> 3
(8) end while
(9) Decompose monthly electricity consumption sequence Y Y � Ytrend × Yseasonal × Yrandom � Yt + Ys + Yr

(10) end function
(11) Predict the trend components
(12) function VAR
(13) Estimate the model with the least squares method 􏽢􏽐 � (1/T) 􏽐􏽢εt􏽢εt

′; 􏽢εt � yt − 􏽢A1yt− 1 − 􏽢A2yt− 2 − · · · − 􏽢Apyt− p

(14) Calculate the current sample output yt � A1yt− 1 + · · · + Apyt− p + εt

(15) end function
(16) Predict the seasonal components
(17) function BP(D, η)

(18) Randomly initialize all connection weights and thresholds in the network within the range of (0, 1)
(19) repeat
(20) for all (xk , yk) ∈ D do
(21) Calculate the current sample output 􏽢yk � f(βj − θj)

(22) end for
(23) until the stop conditions are achieved
(24) end function
(25) Predict the random components
(26) Yri,j

� (1/n)(Yri− 1,j
+ Yri− 2,j

+ · · · + Yri− n,j
)

(27) Reconstruct the predicted value of monthly electricity consumption
(28) Yfi,j

� e
Yti,j · e

Ysi,j · e
Yri,j

ALGORITHM 2: Procedure of the monthly electricity consumption forecasting method based on X12 and STL decomposition models.
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month changes every year, whereas the seasonal fluctuation
of electricity consumption in other months decreases be-
cause January and February are affected by the Spring
Festival and winter vacation, July and August are affected by
summer vacation, and March and November are affected by
seasonal alternation. &erefore, the seasonal components of
January to March, July to August, and November are
decomposed non-periodically, and the seasonal components
of April to June, September to October, and December are
decomposed periodically. &e monthly electricity con-
sumption is decomposed by the STL function in R language.
&emultiplicative model is transformed into the logarithmic
additive model by logarithmic transformation because the
STL function can only deal with the additive model, that is,

Yd � log(Y) � log Ytrend × Yseasonal × Yrandom( 􏼁

� log Ytrend( 􏼁 + log Yseasonal( 􏼁 + log Yrandom( 􏼁

� Yt + Ys + Yr ,

(14)

where Y is the time series of the original time series; Yd is the
time series object obtained by logarithmic transformation of
Y; Yt is the trend component; Ys is the season component;
and Yr is the random component.

Taking March and April as examples, the STL function is
used to draw the change curve of the sequence object Yd, and
the curve is decomposed into Yt, Ys, and Yr. &e change
trend of each component is shown in Figure 5. &e figure
shows that the seasonal component Ys of the seasonal in-
flection month changes gradually with time, but the seasonal
component Ys of the noninflection month changes peri-
odically; Yt has a steady growth trend, and Yr has no de-
velopment rule.

4.2. Monthly Electricity Consumption Trend Component
Prediction Based on EV. Econometric Views or EViews is
commonly referred to as an econometric package. It is a time
series software specially developed for large organizations to
process time series data [30]. A fixed sample size was used
for simulation analysis. When power consumption in dif-
ferent months was predicted, the sample changed. For
convenient description, the data from January 2010 to
December 2016 were used as input for explanation. &e
specific steps of the improved method of monthly electricity
consumption prediction combined with EViews are as
follows.

4.2.1. Data Decomposition. &e GDP of each quarter is
divided into months, on average, to obtain the approximate
monthly GDP data to ensure that the sample size of the
economic factors is consistent with monthly electricity
consumption. &e monthly GDP data of a city in the north
are obtained and decomposed using the X12 model. Proc/
Seasonal Adjustment/X12 is used to obtain the trend
component data of GDP. &e natural logarithm of trend
components can be initially obtained, and then the VAR
model can be established after data processing to ensure the
stability of data. &e trend component of GDP is shown in
Figure 6.

4.2.2. Determining the Lag Order. &e lag order is repre-
sented by p (1≪p≪ n, in which n is the sample size). &e
upper limit of the lag order is set to 12 because the time lag of
monetary policy is generally 6–12 months. &e trend
components of GDP and electricity consumption are opened
in the VAR package, the lag/length/criteria are clicked, and
the confidence interval of the lag order pops up, as shown in
Table 2.

Table 2 shows that when p � 11, the evaluation index is
the best; thus, the lag order is 11.

4.2.3. Exogenous Test of Variables. &e VAR model is ef-
fective in predicting the interrelated time series variable
system. If the variables are not related to each other, then the
VAR model [31, 32] is unsuitable. Exogenous tests are
conducted on two variables to determine whether GDP
changes play a major role in electricity consumption. View/
lag structure/Granger causality is clicked, and the exogenous
test results pop up, as shown in Table 3. &e table shows that
if the Prob value is less than 0.05, then no exogeneity is
observed, indicating that GDP significantly affects electricity
consumption, that is, it has predictive power, and estab-
lishing the VAR model is meaningful.

4.2.4. Establishing the VAR Model. &e model parameters
are estimated. &en, the VAR setting box of GDP and
electricity consumption data is opened, the OK button is
clicked, and the estimation result window pops up, as shown
in Table 4.

&e first part of the output shows the ordinary least
squares (OLS) regression statistics for each equation. &e
second part of the output shows the regression statistics of
the VAR model [33]. “Forecast” on the estimation result
interface is clicked, static prediction is selected, and “OK” is
clicked to obtain the predicted value of the monthly elec-
tricity consumption trend component.

4.2.5. Impulse Response. &e impulse response is performed
to understand the interaction between variables and the
degree of influence [34]. Impulse is clicked and set as
electricity consumption and GDP, and the response is set as
electricity consumption. &e impulse response of electricity
consumption is shown in Figure 7.

In the figure, the horizontal axis represents the number
of lag periods of impact; the vertical axis represents the
growth rate reflecting the trend component of GDP and
electricity consumption; the solid line represents the im-
pulse response function, the response degree, and duration
of this variable at present and in the future after the impact
of one standard deviation of the random error term of other
variables; and the dotted line represents the deviation zone
of plus or minus two standard deviations [35]. &e figure
shows that the response of electricity consumption is
caused by the change of GDP. At the beginning, the change
in GDP greatly affects electricity consumption. However,
the impact of impulse gradually declines from the third
stage.
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4.3. Monthly Electricity Consumption Using Seasonal
Component andRandomComponent PredictionBased on
MATLAB

4.3.1. Seasonal Component Prediction

(1) For months on season stabilization points: historical
contemporaneous values were directly taken as the
predicted values of seasonal components in the
current period.

(2) Formonths on season alternation points: the BP neural
network is written inMATLAB editor program code to
predict the profits in the first 12 months as samples.
&us, the set of 12 input neurons and output neurons is
1. &e current monthly electricity consumption is
forecasted. &en, the “run” button is clicked, and the
simulation results on the normalized prediction data,

namely, the electricity consumption forecast of the
current month using seasonal cycle components, are
obtained. &e training process and parameters of the
BP neural network are shown in Figure 8.

4.3.2. Random Component Prediction. &e predicted value
of the random component in the current period is expressed
by the average historical value of the random component of
the fixed sample size, according to Model 12.

4.4. Monthly Electricity Consumption Forecasting and Result
Analysis. Four models are programmed and analyzed using
the combined R language and MATLAB.

4.4.1. Model 1. &e ARIMA model is established based on
the previous change law of electricity consumption in ac-
cordance with the time series characteristics of electricity
consumption, without considering the influence of many
factors, and the monthly electricity consumption are pre-
dicted using conventional linear regression.

4.4.2. Model 2. &e SARIMAmodel is established to predict
the monthly electricity consumption by eliminating the
seasonal effects on the series through the seasonal difference
method in accordance with the time series characteristics of
electricity consumption, considering only the seasonal
factors affecting the monthly electricity consumption.

4.4.3. Model 3. &e monthly electricity consumption series
is expressed by the product of three components, which
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Figure 5: March (a) and April (b) trends of original electricity consumption sequence with its components.
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represent the trend, seasonal, and random factors, in ac-
cordance with the time series characteristics of electricity
consumption, and three components are modeled and
predicted by considering the influence of different factors.

4.4.4. Proposed Method. &e change rate of seasonal com-
ponents is set, and the time series is customized and
decomposed by the STL model in accordance with the time
series characteristics of electricity consumption in different
months. &ree components are predicted considering the
influence of different factors.

&e actual monthly electricity consumption data and
forecast results of a university park in 2017 are shown in
Table 5 and Figure 9.

Mean absolute error (MAE), root mean square error
(RMSE), relative error, and mean absolute percentage error
(MAPE) values were selected to evaluate the performance of
the model. &e error evaluation of the results of the four
prediction methods is shown in Table 6, and the minimum
error value is marked in bold and italic in Table 6.

MAE can reflect the actual situation of the predicted
error. &e formula of MAE for the ith month is as follows:

δMAE �
1
N

􏽘

N

i�1
δf,i − δt,i

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (15)

RMSE is more sensitive to outliers. &e calculation
formula of RMSE for the ith month is as follows:

δRMSE �

���������������

1
N

􏽘

N

i�1
δf,i − δt.i􏼐 􏼑

2
.

􏽶
􏽴

(16)

&e relative error can reflect the reliability of the pre-
dicted value. MAPE can not only measure the deviation
between the predicted value and the actual value but can also
consider the ratio between the error and the actual value.&e
relative error and MAPE of the ith month are as follows:

δi �
δf,i − δt,i

δt,i

× 100%,

δMAPE �
1
N

􏽘

N

i�1
δi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(17)

where δMAE refers to the MAE of the ith month, δRMSE
refers to the root mean square error of the ith month, δi

refers to the relative error of the ith month, δMAPE refers to
the average absolute percentage error of the ith month,
and δf,i and δt,i are the predicted electricity consumption
and actual electricity consumption of the ith month,
respectively.

&e following conclusions can be drawn based on the
evaluation of the prediction results of the four methods:

(1) &e relative errors of electricity consumption in 2017
reveal that the errors of the proposedmethod inmost

Table 2: Confidence interval for the lag order of the VAR model.

Lag Log L LR FPE AIC SC HQ
0 − 919.8341 NA 45308.415 25.60650 25.66974 25.63168
1 − 519.9274 766.4878 7581.285 14.60910 14.79882 14.68462
2 − 392.8206 236.5599 248.1805 11.18946 11.50567 11.31534
3 − 322.0301 127.8163 38.84761 9.334168 9.776853 9.510403
4 − 304.8392 30.08404 26.96743 8.967755 9.536922 9.194342
5 − 295.4543 15.90214 23.27183 8.818175 9.513823 9.095115
6 − 293.7491 2.794622 24.88266 8.881920 9.704049 9.209212
7 − 277.5902 25.58493 17.82851 8.544173 9.492784 8.921818
8 − 273.6755 5.980746 17.97444 8.546543 9.621635 8.974540
9 − 273.2689 0.598628 20.00905 8.646359 9.847933 9.124709
10 − 266.7881 9.181128 18.85117 8.577448 9.905503 9.106151
11 − 257.7192 12.34380 16.56391 8.436645 9.891182 9.015701
12 − 255.9084 2.364098 17.84887 8.497456 10.07847 9.126864

Table 3: Exogenous test results.

Excluded Chi-sq df Prob.
GDP_HP 30.56972 11 0.013
All 30.56972 11 0.013
POWER_HP 23.12329 11 0.0170
All 23.12329 11 0.0170
Dependent variable: LNGDP. Dependent variable: GDP_HP.

Table 4: VAR parameter estimation results.

LNGDP POWER_T

GDP_HP(− 1)
0.892644 − 0.318902
(0.11730) (0.30656)
[7.61004] [− 1.04026]

GDP_HP(− 2)
− 0.025358 0.608604
(0.12315) (0.32184)
[− 0.20592] [1.89100]

POWER_HP(− 1)
− 0.020718 − 0.160956
(0.04430) (0.11577)
[− 0.46773] [− 1.39035]

POWER_HP(− 2)
0.005056 0.036296
(0.04195) (0.10965)
[0.12052] [0.33102]

C
− 0.001664 − 0.006855
(0.00618) (0.01615)
[0.26925] [0.42438]
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Figure 7: Impulse response diagram of power consumption.

Figure 8: Training process of the BP neural network.
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months are less than those of methods 1, 2, and 3.
&e MAPE, MAE, and RMSE values suggest that the
errors of the proposed method are less than those of
methods 1, 2, and 3. &e forecast results show that
the coincidence between the predicted value of the
proposed method and the actual value is higher.
&ese results show that the accuracy of the four
methods is better than that of methods 1, 2, and 3.

(2) &e seasonal component change rate is adjusted by
the STL model. &e monthly prediction error in-
dicates that the prediction error of the proposed
method is less than that of method 3 in January,

March, July–August, and November, of which the
seasonal components are nonperiodically decom-
posed. &erefore, the decomposition method of
changing the seasonal component change rates for
different months of electricity consumption is
effective.

(3) Although the proposed method is superior to
methods 1, 2, and 3 in general, the prediction error in
March andNovember is still large because the data of
seasonal inflection point month have a mutation,
and the ARIMA model often has a large error when
dealing with abrupt data.

Table 5: Prediction results of monthly electricity consumption in 2017.

Month True value (kW·h)
Predicted value (kW·h)

Model 1 Model 2 Model 3 &e proposed method
1 1442390 1015637 1373173 1367599 1486094
2 845119 949851 1005304 819824 812497
3 685767 769105 649486 602850 701265
4 1229505 896167 1305590 1180485 1267620
5 1060960 1014361 1084692 1118136 1004093
6 1066720 1000885 1121492 1151494 1005170
7 1020280 1015933 1075962 1071765 969470
8 763400 869250 868404 781979 745155
9 653626 737681 706551 656776 678921
10 830280 823047 893032 870825 868556
11 1059400 904942 1306999 1183896 1130486
12 1110200 1000357 1272306 1162874 1133625
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Figure 9: Prediction graphical results of monthly electricity consumption in 2017.
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(4) In the process of using the STL model to decompose
monthly electricity consumption, although human
factors have been avoided as much as possible, some
manual intervention and randomness cannot be
avoided, as mainly reflected in the parameter setting
of the algorithm. &e mechanism of the STL model
should be further studied.

5. Discussion

&e proposed forecasting method by combining STL and
ARIMA models has achieved better performance in com-
parison with other classical forecasting methods, according
to results of the studied sample. &is improvement is also
attributed to decomposition strategy that has been applied,
i.e., decomposition of periodic and nonperiodic seasonal
components using the STL model. However, some limita-
tions of the proposedmethod do exist; meanwhile, theremay
be solutions that can further improve the performance of
forecasting. For instance, taking into account more human-
related factors may improve the results. Examples of these
factors are energy users’ preference on comfortable tem-
perature range related to air-conditioning devices and their
charging habits related to electric vehicles. In other words,
developing a more detailed classification of electricity load
categories and corresponding human behavior models may
be a possible way to improve our work, although this re-
quires a well-developed metering infrastructure and a much
larger amount of data samples.

&e effectiveness of using economic variables like the
GDP to support monthly energy demand forecast has also
been demonstrated by this study. Considering the fact that
only few countries and/or regions publish their GDP on a
monthly basis, utilizing other monthly economic factors,
such as relative strength index or consumer price index
may also be able to improve the performance. However,
before an economic factor is applied, it would be necessary
to study the correlation between it and the monthly energy
demand to ensure the strong correlation in both direction
and strength.

6. Conclusion

Following the rapid development of integrated energy
systems, forecasting electricity consumption will become a
key component for enabling proactive energy system
planning, smart operation, accurate billing, new business
related to electricity trading, etc.

When forecasting monthly electricity consumption,
most methods directly model and predict the time series of
historical data. However, in the actual forecasting process,
the time series of the monthly power sales often contains
components with different characteristics. A newmethod for
predicting monthly power sales is proposed based on the
analysis of the factors that affect the time series. &e pro-
posed method combines the STL and ARIMA models into
one framework solution. Its applicability and accuracy are
verified by a case study using practical time series monthly
energy consumption data and quarterly GDP values related
to an integrated energy system. Because it provides better
accuracy than other existing methods, the potential use of
this method in forecasting the energy demand of integrated
energy systems is high.
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