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(is study developed two-and-half dimensional (2.5-D) finite element method (FEM) to predict viscoelastic pavement responses
under moving loads and nonuniform tire contact stresses. (e accuracy of 2.5-D FEM was validated with two analytical solutions
for elastic and viscoelastic conditions. Compared to three-dimensional (3-D) FEM, the computational efficiency of the 2.5-D
method was greatly improved. (e effects of loading pattern and speed on pavement surface deflection and strain responses were
analyzed for asphalt pavements with four different asphalt layer thicknesses. (e analyzed pavement responses included surface
deflections, maximum tensile strains in the asphalt layer, and maximum compressive strains on top of subgrade. (e loading
patterns have influence on the mechanical responses. According to the equivalent rule, the point load, rectangle type, and
sinusoid-shape contact stresses were studied. It was found that the point load caused much greater pavement responses than that
of the area-based loading.When the tire loading was simplified as uniform contact stress in rectangular area, the maximum tensile
strains in the asphalt layer varied with the width/length ratio of contact area. Additionally, it was shown that the dynamic
responses of pavement structure induced by the sinusoid-shape contact stresses and realistic nonuniform stresses were quite
similar to each other in all the cases.(e pavement strain responses decreased as the speed increased due to viscoelastic behavior of
asphalt layer. (e study results indicate that asphalt pavement responses under moving load can be calculated using the proposed
2.5-D FEM in a fast manner for mechanistic-empirical pavement design and analysis.

1. Introduction

It is important to calculate pavement responses under
traffic loading for pavement design and analysis. Two
primary approaches, analytical solution and finite element
modeling, have been used for calculation of pavement
responses. (e Boussinesq solution is first derived to solve
stress and strain in the half-space system under vertical
force [1]. (e development of Burmister theory enables the
consideration of multilayer system in pavement analysis
[2]. Recently, many software applications have been de-
veloped based on multilayer elastic layer theory for
pavement structural analysis, such as BISAR, KENLAYER,

and WESLEA [1–5]. In these early analytical methods,
material linearity, isotropy, stationary loading, and no-slip
interface between layers are usually assumed in order to
solve the governing equations of pavement system with
multiple layers.

Due to viscoelastic nature of asphalt material, it is well
known that mechanical responses of asphalt pavement
under moving vehicular loading are affected by tire-pave-
ment interaction and speed [6, 7]. Analytical solutions of
viscoelastic pavement responses vary with different levels of
complexity depending on the assumptions of pavement
structure (such as finite beam, infinite plate on Winkler
foundation, or multiple layers) and moving loads (constant,
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harmonic, or random loads) [3, 4, 8–12]. (e solutions can
be closed-form solutions in analytical form based on the
corresponding principle or semianalytical form solved using
numerical techniques.

Although analytical solutions are fast and efficient to
calculate pavement responses, the scope of its application
and analysis accuracy are limited due to adopting many
simplified assumptions (such as full bonded layer interface,
linear and isotropic material properties, etc.). In addition,
the analytical solutions may not exist for complex problems
and cannot be customized for most cases. On the other hand,
FEM has been widely used by researchers for pavement
analysis, including axisymmetric FEM [13] and 3-D FEM
[14–16]. Although the 3-D FEMmodel can be a complex and
costly analysis tool, it provides the needed versatility and
flexibility to accurately simulate nonlinear material behav-
ior, complex layer interface condition, and nonuniform
distribution of tire loading. Compared to analytical solu-
tions, FEM has strong high versatility and can better adapt to
different conditions of complex pavement systems
[7, 17, 18]. However, due to the nonuniform contact stress
distribution at tire-pavement interface, the meshes of
pavement models need to be refined to capture the localized
stress patterns corresponding to moving loads. Additionally,
the time step needs to be divided into very small increments
in order to obtain the converged solutions of dynamic
problems. (erefore, the calculation process of FEM costs
much longer time than analytical solutions.

(e semianalytical solution is an approach combined
with the advantage of both accuracy and fast calculation
speed. Siddharthan et al. used a continuum, finite-layer
model to evaluate pavement responses undermoving surface
load [19]. (e moving load was decomposed into multiple
single harmonic pressure distributions, and viscoelastic layer
properties were defined by dynamic shear modulus and
internal damping ratio. (e model was later used to develop
the 3D-MOVE pavement analysis software. Taiebat and
Carter proposed a semianalytical finite element method to
investigate the laterally loaded pile problem in consolidating
elastic-plastic soil [20]. Chabot et al. developed the Visco-
Route 2.0 software based on Duhamel’s semianalytical
multilayer model to calculate pavement responses under
moving load within rectangular or elliptic contact area [21].
Lee developed ViscoWave based on the Laplace and Hankel
transform to solve viscoelastic pavement responses under
impulsive loading [22]. On the other hand, Eslaminia and
Guddati developed the Fourier finite element (FFE) method
to solve pavement problems from elastic domain to visco-
elastic domain with Prony series as representation of vis-
coelastic material [23]. Liu et al. applied the Fourier
transformation of space along the direction perpendicular to
traffic direction for calculating pavement responses under
moving loads and found the agreements between the results
from the semifinite element method (SFEM) and the ones
obtained using ABAQUS [24, 25].

(e 2.5-D FEM is based on Fourier transformation of
space along the traveling direction in wavenumber domain
as well as the time in frequency domain at the same time.(e
roadway has very long length while its width is relatively

small. (us, it is possible to simplify the 3-D problem to be
2.5-D case by Fourier transformation along the traffic di-
rection. Compared to 3-D FEM, 2.5-D FEM only needsmesh
discretization in transverse section. (erefore, its compu-
tational efficiency is greatly improved. Previous works have
applied 2.5-D FEM for solving the problems related to high-
speed railway and soil foundation [26–30]. In particular,
Yang and Hung applied the 2.5-D method to analyze en-
vironmental vibration control for high-speed railway [26].
Bian et al. discussed the critical speed of track-embankment-
ground system using 2.5-D FEM [30]. Gao et al. investigated
dynamic responses of rail tracks and saturated porous
ground subjected to moving loads caused by high-speed
trains [31]. However, these research studies focused on rail
track and ground behavior with the aim to reduce vibration
caused by high-speed train. Few research studies have uti-
lized 2.5-D FEM for pavement applications.

In this study, the mathematical principle of 2.5-D FEM
was implemented for pavement response analysis subject to
any arbitrary pattern of moving tire loading. (e predicted
pavement deflections and strain responses were validated
with analytical solutions. (e effects of tire-pavement
contact stresses and speed on pavement responses at dif-
ferent pavement structures were investigated. (is study
further developed 2.5-D FEM and brought new contribu-
tions in the following two aspects. First, the traditional 2.5-D
FEM used elastic materials, but in this duty linear visco-
elastic material was considered for asphalt layer. (is is
important for calculating asphalt pavement responses under
moving load. Secondly, the arbitrary shape of loads (such as
nonuniform contact stress distribution) at tire-pavement
interface was considered in the model.

2. Theory and Background

Figure 1 shows the typical flow chart that illustrates the
solving process implemented in 2.5-D FEM. (e solving
process of this method started from presenting governing
equation of elastic or viscoelastic and the relationship of
strain and stress in time domain of 3-D FEM. (en, the
correspondence form in wavenumber domain and fre-
quency domain was obtained. In the next step, the solutions
in wavenumber domain and frequency domain were de-
termined. Finally, the results were transformed from fre-
quency domain to time domain.

2.1. Governing Equations. Several assumptions are made to
derive the governing equations in 2.5-D FEM model. (e
material is assumed with isotropic properties. (e dimen-
sion of pavement structure is assumed to be infinite along
the traffic direction. Pavement layers are assumed to be fully
bonded at the interface. (e asphalt layer can be modeled as
elastic material or viscoelastic material, while the other layers
are modeled as elastic material. (e model is based on small
strain assumption.

(e illustration of 2.5-D FEMmodel converted from 3-D
model is shown in Figure 2. (e Fourier transform and its
inverse transform are predefined in equation (1) and (2):
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where F is a general function which represents the me-
chanical response in pavement structure; the superscript “s”
indicated the mechanical response in the wavenumber
domain; the superscript “t” indicates mechanical response in
the frequency domain; the superscript “st” indicates me-
chanical response in the wavenumber domain and the
frequency domain; ξx represents wavenumber along the x
axis (traffic direction); and w represents angle frequency.

2.1.1. Elastic Governing Equations. (e governing equation
of elastic ground is shown in equation (3) in tensor form:

σij � 2μεij + λδijεkk, (3)

where λ and μ are Lame constants; εij(i, j � 1, 2, 3) is strain
in the ground; σij(i, j � 1, 2, 3) is the stress in the ground;
and δij(i, j � 1, 2, 3) is Kronecker delta function.

(e equilibrium equation for elastic layers is formulated
by the following expressions:

σij,j + fi � ρ€ui, (4)

εij �
1
2

ui,j + uj,i􏼐 􏼑, (5)

where ρ is the density; ui(i � 1, 2, 3) is displacement vector;
and fi � (i � 1, 2, 3) is body force.
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Figure 1: Flowchart of solving process in 2.5-D FEM.
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Figure 2: Illustration of transformation from 3-D model to 2.5-D model. (a) 3-D model. (b) 2.5-D model.
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By substituting equations (4) and (5) into equation (3),
the Navier elastic equation can be obtained, as shown in the
following equation:

μui,jj +(λ + μ)uj,ji + fi � ρ€ui. (6)

Navier’s equation in the frequency domain and the
wavenumber domain can be described as follows:

μcμt
i,jj + λc + μc( 􏼁μt

j,ji + ω2ρμt
i + f

t
i � 0, (7)

where λc and μc are Lame constants can be expressed by the
following equation:

λc � λ(1 + 2βi),

μc � (1 + 2βi),
(8)

where β represents damp ratio and i is imaginary unit.
Based on small strain theory, the strain-displacement

relationship can be expressed as follows:
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(e stress-strain relationship is given by
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� Dεst
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(e model can be discretized into several quadrilateral
elements, and each element node has three degrees of
freedom, as shown in equations (12)–(18):
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where |J| is determinant of the matrix; N is the matrix of
shape function; and D is stiffness matrix.

2.1.2. Viscoelastic Governing Equations. (e Fourier trans-
form is a linear transform, so this rule could be applied to all
linear equations. Prony series has been widely used to
capture the modulus change of linear viscoelastic materials
with reduced time. For viscoelastic case, the equilibrium
equation is given as

B
Tσ � f , (19)

where f is the body force vector.
(e strain-displacement relationship is the same as the

one shown in equation (9).
For stress and strain relationship, the viscoelastic model

is different from elastic equation, as shown in equation (20)
[32]. For stress and strain relationship, the viscoelastic
model is different from elastic equation, as shown in the
following equation [32]:

σ � 􏽚
t

0
D(t − τ)

dε
dτ

dτ, (20)

where D(t − τ) is stiffness history matrix.
By applying Fourier transformation, the stress and strain

in the frequency domain are given by

σt
� iωD

t
(iω)εt

, (21)
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where Dt(iω) is stiffness history matrix in frequency
domain.

(e load P moves on the top of surface layer at a speed of
v, and the surface boundary condition is expressed by

tr � σzz τyz τxy􏼐 􏼑
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� P y, t −
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v
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(e property of material is assumed to be isotropic. By
applying the energy variation principle to equation (19),
equation (23) can be obtained:
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where U is the total potential energy of the system and δεst is
virtual strain in wavenumber domain and frequency
domain.

(e next step is to follow the general finite element
method which has been performed in equation (12)–(18).
However, the stiffness matrix is different from the one using
elastic theory, as shown in the following equation:
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(e Prony series as a general form of Maxwell model for
linear viscoelasticity is used here, as shown in equation (25).

E∗(ω) � E∞ + 􏽘
N

i�1

iωτiEi

1 + iωτi

, (26)

where E∞ is long-term equilibrium relaxation modulus;
E∗(ω) is dynamic modulus; τi and Ei are the parameters of
Prony Series; τi is the reduced time; and Ei is the elastic
component.

(e relationship between the shift factor and the tem-
perature can be approximated by Williams–Landel–Ferry
(WLF) function.

log aT( 􏼁 � −
C1 T − T0( 􏼁

C2 + T − T0( 􏼁
, (27)

where T0 is reference temperature (20°C in this study); aT is
actual temperature corresponding to the shift factor with
τ0 � τ/aT; and C1 and C2 are regression parameters.

2.2. Arbitrary Shape of Moving Force. According to Fourier
transformation, the dynamic vehicle load could be decou-
pled into a series of simple harmonic motions. For the sake
of simplicity, only one self-oscillation frequency was con-
sidered in this case. It is assumed that the vehicle moves at
speed of v and with width of Ly along y direction (per-
pendicular to traffic direction) on pavement surface. (e

moving load of the vehicle can be expressed in the following
equation:

f(x, y, z, t) � Φ(x − vt)δ y − Ly􏼐 􏼑e
iω0t

, (28)

where Φ(x − vt) is the load distribution along x direction
and ω0 is the self-oscillation of load.

(e load in the frequency and wavenumber domain is
shown in the following equation:

f
st ξx, y, z,ω( 􏼁 �

2π
v
δ ξx −

ω − ω0

v
􏼒 􏼓Φs ξx( 􏼁. (29)

A typical track with five axles is employed in our case, as
shown in Figure 3.(e track moves along the x direction at a
constant speed of v and with self-oscillation frequency ω0,
and the equation of moving load can be presented as shown
in the following equation:

f(x, y, z, t) � p1δ(x − vt) + p2δ x − vt + L1( 􏼁􏼂

+ p3δ x − vt + L1 + L2( 􏼁 + p4δ x − vt + L1(

+ L2 + L3) + p5δ x − vt + L1 + L2 + L3(

+ L4)]e
iω0tΦ(x − vt),

(30)

where P1, P2, P3, P4, andP5 represents the axle load of truck;
L1, L2, L3, andL4 represents the distance between difference
axles; and δ is the Dirac function.

By employing the predefined Fourier transformation, the
load in the frequency and wavenumber domain can be given
in the following equation:

f
st ξx, y, z,ω( 􏼁 �

2π
v
δ ξx −

ω − ω0

v
􏼒 􏼓 p1 + p2∗ e

− iL1ξx + p3􏼒

∗ e
− i L1+L2( )ξx + p4∗ e

− i L1+L2+L3( )ξx

+ p5∗ e
− i L1+L2+L3+L4( )ξx 􏼓Φs ξx( 􏼁.

(31)

According to the definition of Dirac function, equation
(32) can be obtained:

ξx �
ω − ω0

v
. (32)

(is means the wavenumber has specific relationship with
the frequency. (en, the double dimensional Fourier
transform can be simplified as one-dimensional Fourier
transform, and the computational cost could be reduced
significantly.

Tire-pavement interaction can be modeled as different
load patterns, such as point load and area-based load with
different distribution patterns, as shown in Figure 4.

(e load of distribution along traffic direction could be
transformed in the wavenumber domain, as shown in
equation (33)–(35).
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ΦR(x) �

b, (|x|≤ a),

0, (|x|> a),

⎧⎪⎨

⎪⎩

Φs
R ξx( 􏼁 �

2 ∗ b∗ sin aξx( 􏼁

ξx

,

(33)

ΦS(x) �
qpeak sin

π ∗x

2L
+
π
2

􏼒 􏼓, (|x| ≤L),

0, (|x| >L),

⎧⎪⎪⎨

⎪⎪⎩

Φs
S ξx( 􏼁 � qpeak ∗

sin (π/2L) + ξx( 􏼁∗ L( 􏼁

(π/2L) + ξx

+
sin ξx − (π/2L)( 􏼁∗ L( 􏼁

ξx − (π/2L)
􏼠 􏼡,

(34)

Φs
p ξx( 􏼁 �

2 ∗ π ∗F

v
, (35)

where the subscripts r, s, and p represent rectangle shape,
sinusoidal, and point load, respectively.

In 3-D finite element method, all the external and
body forces need be converted to equivalent nodal forces.
However, in the 2.5-D method, the load was solved in
frequency domain, and most of the time the distribution
of regular loads had analytical forms after Fourier
transformation. In this case, the analytical solution could
be used directly. (ere are also some cases that where the
distribution functions of loads along the traffic direction
have no analytical solution after Fourier transformations.
In this case, the method of equivalent area can be used for
approximate solutions, as shown in Figure 5. (e loads
with the elliptical or circular area are equivalent to the
loads distributed in multiple rectangle-shaped areas di-
vided from the elliptical or circular area. For exact so-
lutions, the node forces can be calculated and treated as
multiple point loads. (en, the ideal result can be ac-
quired using equation (31). (is makes the imple-
mentation of arbitrary-shape load in the 2.5-D FEM
model possible.

2.3. Mesh and Boundary Condition. Due to the orthogonal
properties of Fourier transformation, the 3-D FE model
of pavement was decomposed to the 2.5-D FE model in
frequency domain, while each element node in the 2.5-D
FE model had movements in three dimensions. (e
nodes were unrestricted to move at the traffic direction.
(e nodes at the bottom of pavement model were fixed in

this model. In order to obtain more accurate result
in dynamic problem. According to previous research
results, the maximum element size, minimum element
size, and model size should be decided by the wavelength
[33].

In the dynamic problem, wave reflection will occur from
the boundary, which will influence the results.(e boundary
condition should be selected properly. In this model,
pavement structure lays on unbounded soil medium. Due to
the limited size of the finite element model, it cannot handle
this boundary condition directly. Several methods have been
used in the literature to simulate the infinite foundation such
as boundary element [34], absorbing boundary [27], thin-
layer element [30], and infinite element [26, 35]. Among all
these methods, the absorbing boundary showed good ac-
curacy, and it is easy to be used in the practical application
[27].

Figure 6 illustrates the mesh and boundary condition of
the 2.5-D FEMmodel. In general, the minimum element size
is 0.01m by 0.0254m at the pavement near surface, and the
maximum element size is 0.5m by 0.5m in the subgrade.(e
model size was 6m by 6m. (e left and right boundaries
were absorbing boundaries, and the bottom boundary was
fixed. (e absorbing boundary depends on material prop-
erties and vibration frequency, as shown in the following
equation:

ffj � ki _uj, j � x, y, z, (36)

where ff is node force and _u is deformation velocity.

P1 P2 P3 P4 P5

L1 L2 L3 L4

Figure 3: Example of typical truck with five axle loads.
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(is could be transformed by the predefined Fourier
transformation in the frequency domain, as shown in
equations (37)–(39).

ff
t
j � − iωkju

t
j, j � x, y, z, (37)

in which

kx � ky � ρvs,

kz � ρvp,
(38)

where vs is velocity of shear waves and vp is velocity of
compression waves, and

vs �

��μ
ρ

􏽲

,

vp �

������
λ + 2μ

ρ

􏽳

.

(39)

(e absorbing boundary can be assembled to stiffness
matrix either to equation (17) (elastic material) or equation
(24) (viscoelastic material).

2.4. Strain, Stress, Velocity, and Acceleration. According to
the basic theory of the finite element method, the strain,

y

x

(a)

y

x

(b)

Figure 5: Illustration of ellipse and circle shapes that can be equivalent to rectangular distributed shapes.

Different loadings according to loading shape

Absorbing 
boundary

Fixed boundary

Figure 6: General model of pavement structure and loaded area.

–a a

b

Rectangle

(a)

–L L

Sinusoid

q = –qpeak sin(((π ∗ x)/(2L)) + (π/2))

(b)

F

Point load

(c)

Figure 4: Illustration of different loading patterns: uniform stress in rectangular area, sinusoid-shape stress distribution, and point load. (a)
Rectangle; (b) sinusoid; (c) point load.
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stress, velocity, and acceleration can be calculated by the
node displacements. Solving equation (15), the node dis-
placement can be obtained. (e strain, stress, velocity, and
acceleration in the frequency domain can be obtained
through equations (40)–(42), respectively.

σst
� Dεst

� DB
st

Nust
e , (40)

where ust
e is a vector concluding the node displacement of

element.

V
st

� iωμst
, (41)

where Vst is the node velocity of any element.

a
st

� − ω2μst
, (42)

where ast is the node acceleration of any element.

3. Model Verification

3.1. Verification with Elastic Analytical Solution. (e model
validation was first conducted by comparing the deflec-
tions computed using the analytical solution and the 2.5-D
FEMmethod. A single stratum on rigid bedrock represents
half-space foundation. (e applied load (P) was a point
load moving on pavement surface along the positive x
direction. (e density of ground (ρ) was assumed to be
2000 kg/m3. Poisson’s ratio and damping ratio were as-
sumed to be 0.25 and 0.05, respectively. (e velocity of
shear wave (υs) was 100m/s as the input property related
to material modulus.

(e proposed model was validated against the ana-
lytical solution by Eason [36] to verify its capability in
simulating dynamic responses in homogenous elastic
foundation. To demonstrate the method, the moving load
was applied with constant speed of 70m/s on pavement
surface. (e data extraction point was set as (0, 0, − 1m).
Figure 7(a) and 7(b) show the normalized displacement
obtained from the 2.5-D method and the analytical so-
lution in the longitudinal and vertical directions, re-
spectively. In addition to the normalized displacement,
the normalized vertical stress, which was determined by
the above mentioned two methods, is shown in
Figure 7(c). It was noted that the plotted displacements
and stresses were normalized by 2πρv2s /P and π/P, re-
spectively. (e maximum discrepancy between two so-
lutions was found less than 10%.

3.2. Verification with Viscoelastic Analytical Solution. To
further validate the developed 2.5-D FEM model, another
analytical model developed by Dong and Ma [9] was
employed to compare the results. In this case, the viscoelastic
pavement responses under moving load were solved. A
three-layer flexible pavement structure was used in the
analysis. (e asphalt surface layer was modeled as visco-
elastic material described with Prony series. (e semirigid
base layer and subgrade were modeled as elastic material
with the modulus of 1000MPa and 200MPa, respectively.
Four different speeds (10m/s, 20m/s, 25m/s, and 40m/s)
were considered. (e dual-tire loading was simulated as

nonuniform tire contact stresses under each tire rib applied
on pavement surface.

(e strains at the bottom of surface layer in three
directions at two speeds (10m/s and 40m/s) were com-
pared between the results obtained by analytical solutions
and 2.5-D FEM model, respectively. Figure 8 shows the
pulse shapes and magnitudes of vertical strains at the
bottom of surface layer. (e results derived by 2.5-D FEM
were in found good agreements with the analytical results.
(e speed effect was well observed with the shorter pulse
period and the smaller peak strain values at the higher
speed. (e horizontal strains at the bottom of the asphalt
layer are also presented in Figure 8. It revealed that the
transverse strain was always in tensile when the tire was
approaching or leaving the point of interest, while the
longitudinal strains were compressive when the tire was far
from the point of interest. (ese trends were consistent
with field measurements obtained from the embedded
strain gauges [37].

(e 2.5-D method is one kind of semianalytical solution.
(e computation efficiency was greatly improved by means
of the Fourier transformation. In other words, the 3-D
problem was reduced to several 2-D problems. As a result,
the number of element nodes and elements were greatly
reduced. For example, if the verification case of viscoelastic
solution of pavement was conducted using commercial
software such as ABAQUS [38], it required 155 minutes on a
workstation (Intel(R) Xeon(R) Silver 4116 CPUx2 (24
Cores), 64GB Memory), while the 2.5-D method could
obtain the same result in 226 seconds (i7 6700HQ, 8GB
Memory) in single thread.

4. Case Study Using 2.5-D FEM

4.1. Pavement Structure and Material Properties. In the
sensitivity analysis, the asphalt layer thickness varied from
10.16 cm to 25.4 cm, to consider the variation of pavement
structure, which represents common asphalt pavement in
local and major highways in the USA. (e viscoelastic
properties of pavement layers were kept the same as those
used in the second validation case [9]. (e pavement
material properties of each layer are shown in Tables 1
and 2. (e base and subgrade modulus was determined
based on one field section constructed at MnRoad for pave-
ment response measurement [39]. Considering that fatigue
cracking and rutting are the major failure mechanism of as-
phalt pavement, the pavement responses considered in the
analysis are tensile strains at the bottom of asphalt layer and
compressive strains on top of subgrade. (e same material
properties were used for all the analysis cases with different tire
loading patterns and speeds.

4.2. Effect of Tire Contact Stress Patterns. Four different tire
contact stress patterns were considered in the analysis, in-
cluding point load, uniform contact stress in rectangular area,
sinusoid-shape stress at each tire rib, and nonuniform contact
stress at each tire rib. (e illustrations of four contact stress
patterns are shown in Figure 9. (e total load on dual-tire is
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35.5 kN, and the tire inflation pressure is 724 kPa. (e
loading time is 2.56 seconds, and Fourier transformation is
conducted using 0.005-second time increment. (e point
load assumed concentrated forces applied on the specific
nodes at each tire center. (e uniform contact stress dis-
tribution assumed the contact stress equal to tire inflation
pressure, and the corresponding contact area was calcu-
lated with the specific width/length ratio. (e nonuniform
contact stress distribution is based on the measured contact
stress at each tire rib provided by tire manufacturer and the
predicted results from tire-pavement interaction model
[37, 40, 41]. (e sinusoid-shape contact stress mimics the
realistic contact stress distribution using the fitted sinu-
soidal function, which basically kept the nonuniform
pattern of contact stresses.

Figure 10 shows the calculated deflections at pave-
ment surface in the center of dual tires using different
loading patterns. As expected, the deflections decreased
with the increase of asphalt layer thickness. In general,
the point load and uniform contact stresses caused very
similar deflections, which were slightly greater than those
under sinusoid-shaped and nonuniform contact stresses.
Additionally, the deflections induced by sinusoid-shaped
and nonuniform contact stresses were close to each
other.

For asphalt pavement structures analyzed here, the
critical failure mechanisms are considered to be fatigue
(bottom-up) cracking and subgrade rutting, which are
caused by tensile strains in the asphalt layer and com-
pressive strains on top of subgrade, respectively. Figure 11
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Figure 7: (e normalized (a) longitudinal displacements; (b) vertical displacements; and (c) vertical stress in the ground (0, 0, − 1m) under
moving point load at 70m/s.
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shows the maximum horizontal tensile strains at the
bottom of asphalt layer, respectively, in the transverse and
longitudinal direction. Similar with deflections, the tensile
strains decreased with the increasing thickness of asphalt
layer. (e point load caused much greater tensile strains
than the area-based loading patterns, and their differences
gradually decreased when asphalt layer thickness in-
creased. As asphalt layer thickness varies from 10.16 cm to
25.4 cm, the longitudinal tensile strains induced by

nonuniform tire contact stresses were 31.3%, 16.1%, 9.2%,
and 6.1% smaller as compared to the ones under point
load, while the transverse tensile strains induced by
nonuniform tire contact stresses were 45.2%, 26.4%,
15.3%, and 9.1% smaller. On the other hand, the sinusoid-
shape contact stresses caused slightly greater tensile
strains as compared to the nonuniform contact stresses
for thin asphalt layer.

(e maximum compressive strains on top of subgrade
under different loading patterns are compared in Fig-
ure 12. As expected, compressive strains decreased sig-
nificantly as asphalt layer thickness increased. (e
decreasing trend was not linear and became less signifi-
cant as asphalt layer was thicker. As for the effect of
loading pattern, the compressive strains induced by
nonuniform contact stresses were 9.7%, 2.9%, 2.4%, and
2.1% smaller than those caused by point load as asphalt
layer thickness varied from 10.16 cm to 25.14 cm. On the
other hand, there were no obvious differences between the
compressive strains calculated using uniform and non-
uniform tire contact stresses. (is indicates that the effect
of localized tire contact stress diminishes at the deep
pavement depth.
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Figure 8: Validation of strains with analytical solutions [9] at (a) 10m/s and (b) 40m/s.

Table 1: Material parameters of each pavement layer.

Pavement structure Modulus (MPa) Poisson’s ratio Density (kg/m3) (ickness (cm)
Asphalt course Viscoelastic 0.35 2400 10.16–25.40
Base course 108 0.35 1762 20.32
Subgrade 58.6 0.40 1762 —

Table 2: Viscoelastic parameters of asphalt course in Prony Series.

Relaxation time Prony series parameters
1000 0.000541
100 0.000902
10 0.002705
1 0.007663
0.1 0.025243
0.01 0.071131
0.001 0.148753
0.0001 0.185896
0.00001 0.457167
Instantaneous modulus 10,000MPa
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Figure 9: Tire contact stress patterns: (a) point load, (b) uniform stress in rectangular area, (c) sinusoidal distribution, and (d) nonuniform
stresses under each rib (unit: kPa).

8 10 12 14 16 18 20 22 24 26
30

40

50

60

70

80

D
ef

le
ct

io
n 

(0
.0

1m
m

)

The thickness of asphalt layer (cm)

Point load
Uniform (c/d = 1.32)

Sinusoid
Nonuniform

Figure 10: Comparisons of de�ections at pavement surface under di�erent types of loading patterns.

Mathematical Problems in Engineering 11



4.3. Effect ofWidth/LengthRatio inRectangularContactArea.
In the uniform contact assumption in rectangular area,
the width/length ratio is an important parameter that
needs to be assumed to determine the shape of contact
area including the regular tire and wide tire. In the
analysis, the width/length ratio was changed at different
values to see its effect on pavement responses. Figure 13
shows the effects of width/length ratio on maximum
tensile strains at the bottom of asphalt layer, respectively,
for 10.16 cm, 15.24 cm, 20.32 cm, and 25.4 cm asphalt
layer.

(e results indicated that as the width/length ratio of
rectangular contact area increased, the longitudinal ten-
sile strain increased but the transverse tensile strain de-
creased. (is was because the distribution of load was
assigned more in the traffic direction as compared to the
transverse direction. (e effect of width/length ratio on
tensile strains became less significant as asphalt layer
thickness increased. In general, as the width/length ratio
of rectangular area was 1.3, the tensile strains caused by
the uniform contact stress were close to the ones caused by
nonuniform contact stresses. (is indicates that if the
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uniform contact stress is used as the simplified assump-
tion of tire-pavement interaction, the width/length ratio
needs to be carefully selected in order to reduce the
discrepancy as compared to the realistic tire-pavement
contact stress pattern.

4.4. Effect of Moving Speed. (e range of traffic speed is
10–40m/s (26–144 km/h), which covers the typical speed
of traffic.(e effect of speed on asphalt pavement response
was analyzed on pavement sections with four different
asphalt layer thicknesses. In the analysis, the realistic
nonuniform contact stresses were applied on pavement
surface. Figure 14 shows pavement surface deflections at
the center of dual tires at different speeds. (e results
show that pavement surface deflections decreased slightly
as speed increased regardless of pavement thickness effect.

(e calculated deflections at 20m/s, 30m/s, and 40m/s
were 1.51%, 2.09%, and 2.1% smaller than the one at 10m/
s. (is indicates that the speed effect on surface deflection
is not significant.

Figure 15 shows maximum tensile strains at the
bottom of asphalt layer at different speeds. (e effect of
speed on tensile strains was found more significant as
compared to the case of surface deflection. As the speed
increased from 10m/s to 20m/s and 30m/s, the decrease
of tensile strains was significant. However, the decrease of
tensile strain was minor as the speed further increased
from 30m/s to 40m/s. (e strain variations with speeds
were due to the fact that dynamic modulus of asphalt layer
increased with the increasing speed (loading frequency)
due to its viscoelastic behavior. (ese prediction results
are consistent with the field testing results reported in
reference [42].
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Figure 13: Effects of width/length ratio on tensile strains for (a) 10.16 cm, (b) 15.24 cm, (c) 20.32 cm, and (d) 25.4 cm asphalt layer.
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(e compressive strains on top of subgrade at different
speeds are plotted in Figure 16. Although compressive strain
decreased with the increase of speed, the decreasing trend
was not as significant as the strains in the asphalt layer. For
example, the compressive strain at 40m/s was 3.8% smaller
than the one at 10m/s, while the tensile strains in the asphalt
layer at 40m/s were 15.3% smaller than the one at 10m/s.
(is is because the frequency dependency of asphalt layer
modulus has more significant effect on pavement responses
in the asphalt layer.

5. Conclusions

(is study analyzed pavement responses under moving tire
loading using 2.5-D FEM, which can significantly reduce
computation time than 3-D FEM but maintain the proper
accuracy for pavement applications. (e 2.5-D approach is
suitable for the situation that the speed of moving load and
the pavement structure do not change along the travel di-
rection. (e accuracy of 2.5-D FEM was verified with two
analytical solutions for elastic and viscoelastic pavement
responses, respectively. (e effects of loading pattern and
speed on pavement surface deflection and strain responses
were analyzed. (e analyzed pavement responses included
surface deflections, maximum tensile strains in the asphalt
layer, andmaximum compressive strains on top of subgrade.

It was found that the point loading caused much greater
pavement responses than the area-based loading, and thus it
should not be used in pavement analysis and design. When
the tire loading was simplified as uniform contact stress in
rectangular area, the maximum tensile strains in the asphalt
layer varied with the width/length ratio of contact area. As
the width/length ratio was taken as 1.3, the uniform loading
pattern produced closer results with the ones calculated
using the realistic nonuniform contact stresses. On the other
hand, the sinusoid-shape contact stresses resulted in similar
pavement responses as the realistic nonuniform contact
stresses as the asphalt layer thickness was relatively thick.
(e pavement strain responses decreased as the speed in-
creased, and this effect was not affected by asphalt layer
thickness.

(e analysis results indicate that viscoelastic responses of
asphalt pavement under moving load and nonuniform
contact stress can be calculated using the proposed 2.5-D
FEM in a fast manner. (e 2.5-D FEM has major advantage
of time saving as compared to traditional 3-D FEM. (is
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provides an effective forward model for mechanistic-em-
pirical pavement design and analysis. More importantly, the
2.5-D FEM has the potential for backcalculation of pave-
ment layer modulus from surface measured deflections due
to the flexibility of algorithm.
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