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Curvic couplings are frequently used in aeroengine rotors. ,e stiffness of the curvic couplings is of guiding significance to the
engineering design of aeroengine rotors as it is significantly different from that of continuous structures. In this paper, definitions
and relations of the structure parameters for a curvic coupling are firstly introduced. Based on this proposed mechanical
framework, a novel mechanical model accounting for the stiffness weakening under shearing, compression, bending, and torsion
is developed for curvic couplings. In this model, a three-spring system, which consists of two types of springs, is adopted to
describe the equivalent stiffness of a pair of meshing teeth of curvic couplings. ,e spring stiffness is obtained by employing the
plane strain analysis of a discretized tooth with trapezoid pieces. Subsequently, the stiffness matrix of curvic couplings is deduced
based on the deformation compatibility of each tooth and the force balance of the whole structure. A series of analyses of curvic
couplings with various structure types are performed to demonstrate the mechanism behind the proposed model, and the results
are verified against those obtained from finite element analyses. It is shown in this study that the pressure angle is the major factor
affecting the stiffness of curvic couplings, while the compression stiffness and bending stiffness are more sensitive than other
stiffnesses. Furthermore, the stiffness of curvic couplings is considerably smaller compared to that of continuous structures,
indicating the importance of appropriate modelling of stiffness weakening in the design of aeroengine rotors.

1. Introduction

Rotors of modern aeroturbine engines are generally man-
ufactured by assembling components with various materials
[1]. Connection structures are introduced to connect all
parts of a rotor structure system, and rotors containing these
connection structures are usually defined as discontinuous
rotor systems [2]. Due to the discontinuity of materials at the
interface, the mechanical behavior of the connection
structure is different from that of the continuous structure.
In particular, an abrupt change of stiffness may exist and
cause a considerable influence on the dynamic character-
istics of the rotors [3–6]. ,erefore, in the design of a
discontinuous rotor system, the stiffness weakening of the
connection structures is required to be appropriately

accounted for so that both the strength and dynamic re-
quirements of the rotors under various complex working
conditions are fulfilled.

Connection structures of turbine engine rotors can be
classified as spline joints, bolted flange joints, and curvic
couplings [7]. Extensive studies of spline joints and bolted
flange joints have been carried out in the literature [8, 9].
Most of them were dedicated to estimate the stiffness of joint
regions [10]. Kim et al. [11] introduced four kinds of finite
element models to analyse the connection stiffness of a
structure with a bolted joint and made an experiment to
select the best matched model. Yuan et al. [12] considered
the contact interfaces of a rotor as elements with equivalent
stiffness, which was determined by the Hertz contact [13]
and GW model [14], and established a finite element model
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of a tie rod rotor. Liu et al. [15] defined two specific con-
nection structures, i.e., a spline joint with a rabbet and a
bolted flange joint with two mating cylindrical surfaces, and
studied their contact states and bending stiffness employing
the FEM. ,e stiffness with respect to geometric parameters
was given, and the critical point of stiffness was found.
Experimental studies were also undertaken to investigate the
influences of stiffness on rotors. Zhang et al. [16] studied the
effects of the bending stiffness of a splined shaft on the
performance of a high-speed axial piston pump. Karpta et al.
[17] proposed an experimental technique to investigate the
effects of drive side pressure angle on the stiffness and
measured the single-tooth stiffness of an involute spur gear
experimentally. Koten et al. [18, 19] conducted an experi-
ment to verify a numerical model in the study of a com-
bustion engine. However, due to the significant difference
between curvic couplings and another two joints, the
existing methods which help to determine the stiffness of the
latter two connection structures cannot be fully applied to
curvic couplings.

Curvic couplings, which are different from arc tooth face
gears [20, 21], are normally composed of convex teeth and
concave teeth. Gleason Corporation has been developing the
theory of the structural design of curvic couplings since 1945
[22]. With the application of Gleason Corporation grinding
machines for curvic couplings, this method has been widely
used in the turbomachinery industry. In this method, de-
termining the stiffness of curvic couplings is one of the key
problems for engineering design.Many researchers had been
investigating methods for calculating the stiffness of curvic
couplings. Bannister [23] presented design charts of the
equivalent bending stiffness of curvic couplings by com-
puting the center line slope of bending moment with the
FEM. Yuan et al. [24] proposed a method calculating the
position of the neutral layer of a rotor with curvic couplings.
With this method, the equivalent stiffness was obtained and
the influences of surface roughness, surface waviness, and
preload on the stiffness and dynamic characteristics of the
rotor were evaluated. Yin et al. [25] introduced a beam
element to model curvic couplings, and the coefficient of the
stiffness matrix was obtained by using the FEM. Gao et al.
[26] introduced spring elements to express stiffness weak-
ening of a connection structure, and the stiffness model was
modified by experimental data. Gao et al. [27, 28] simplified
a connection structure into a mass-free hinge-bending
spring to express stiffness weakening in the study of a tie rod
rotor. Despite the recent progress in the study of the stiffness
of curvic couplings, there are limited studies on the estab-
lishment of an analytical model, which is able to describe the
relationship between the stiffness and the structure pa-
rameters of curvic couplings and to reveal the influence
factors on the stiffness.

,emain purpose of this paper is to present an analytical
approach for determining the stiffness of curvic couplings
for the design of a discontinuous rotor system. Definitions
and relations of the mechanical parameters in a typical
curvic coupling system are firstly presented. Within this
framework, a new mechanical model for analyzing the
stiffness of curvic couplings is established, where a three-

spring system is introduced to describe the equivalent
stiffness of a pair of meshing teeth. ,e stiffness under
various loading conditions, such as shearing, compression,
bending, and torsion of curvic couplings, is derived based on
the deformation compatibility of each tooth and the force
equilibrium of the whole structure. Subsequently, the pro-
posed model is adopted to determine the stiffness of curvic
couplings with different structures, and the results are
verified against those from the equivalent finite element
analyses, showing a good match. Finally, a series of para-
metric studies are carried out, and the obtained results not
only reveal the mechanism behind the stiffness weakening
for a curvic coupling system but also demonstrate the be-
havior of key parameters in the design.

2. Definition of a Curvic Coupling System

In a typical curvic coupling of a shaft, the teeth are generally
located at the end faces of annular shafts, showing a hub-
and-spoke pattern, as shown in Figure 1(a). ,e shape of
tooth surfaces is part of a cone, and the cross section of a
tooth along the radius of the shaft is trapezoidal. Face-to-face
contacts are established when meshing the convex tooth and
concave tooth.

,e basic structure parameters of a curvic coupling are
shown in Figures 1(b) and 1(c) [29], while the relationships
of these parameters are listed in the last column of Table 1.
More specifically, curvic couplings consist of two parts: one
contains all convex teeth and the other contains all concave
teeth. Each part has the same tooth number, which is even
and expressed by symbol Z.,e outer diameter,D, and tooth
width, W, define the size of an annulus, where the teeth
locate on, as shown in Figure 1(c). A point with distance S
from O is defined to be the center of the pitch cone circle,
whose radius is RC. ,e tangent from O to the pitch cone
circle is defined to be the tangency radius RT, where the tooth
thickness equals the space width between adjacent teeth.,e
number of the tooth thickness and space width enveloped by
the pitch cone circle is denoted by N, which is odd. ,e
pressure angle α, tooth width hW, and clearance c are shown
in Figure 1(b). fh and fc are the user-defined coefficients for
determining hW and c, respectively. ,e influences of the
root fillet and tip chamfer of teeth are neglected here as they
vary within a narrow range and have limited influence on
these basic structure parameters.

3. A Three-Spring System-Based Model for
Curvic Couplings

In order to establish the analytical approach accounting for
the face-to-face contacts of curved surfaces of curvic cou-
plings, a novel mechanical model, as shown in Figure 2(a), is
employed. ,e model consists of an upper segment and a
lower segment, both of which are considered rigid bodies.
,e lower segment is fixed, while the upper segment has six
degrees of freedom (DOFs) in the coordinate system shown
in Figure 2(a). ,e following methods are based on the
condition that all the teeth are fully engaged under loads.,e
displacement of the upper segment can be expressed as
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x0 � x, y, z, αx, αy, αz􏽨 􏽩
T
, (1)

where the components are the coordinates of the DOF.
,e contact of each meshing teeth can be simplified as a

three-spring system, which is formed by two types of points
and two types of springs, as shown in Figure 2(b).

3.1. Contact Points. Contact points are defined by the
midpoints of the intersections of the pitch plane and tooth
surfaces, located at the circle of radius RT (see the hollow
points shown in Figure 2(b)). Assuming the compression
force on the Z-axis is large enough, the meshing teeth are
always in contact, and thus, a pair of meshing teeth shares
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Figure 1: A schematic for curvic couplings: (a) tooth pattern; (b) tooth profile; (c) layout in the pitch plane.

Table 1: Geometrical relationships of the structural parameters of curvic couplings.

Categories Definitions Symbols Operational relations

Independent design parameters

Tooth type None Convex or concave
Tooth number Z Even
Outer diameter D User defined
Tooth width W User defined

Tangency radius R T RT � (D − W)/2 or user defined
Enveloped half pitches N N � 2n + 1, n ∈ [0, Z − 1]

Pressure angle α User defined
Whole depth h W hW � fh/P, where fh is the user-defined coefficient
Clearance c c � fc/P, where fc is the user-defined coefficient

Associated design parameters

Addendum h T hT � (hW − c)/2
Dedendum h R hR � hW − hT

Enveloped angle β β � 90∘ × N/Z
Diameter pitch P P � Z/D

Pitch cone circle radius R C RC � RT tan β
Inner diameter d d � D − 2W

Machining parameters
Wheel distance S S � RT/cos β
Wheel radius R W RW � RC

Point width W P Subject to grinding conditions
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the same contact point. ,e angular position of the i-th
contact point can be defined as

θi �
iπ
Z

, i � 1, 2, L, . . . , 2Z. (2)

,e coordinate of the i-th contact point is therefore
expressed as

xc
i � RT cos θi( 􏼁, RT sin θi( 􏼁, 0􏼂 􏼃

T
, i � 1, 2, L, . . . , 2Z.

(3)

3.2. Fixed Points. Two points are fixed on nearby surfaces of
each tooth of both segments (see the solid point shown in
Figure 2(b)). Each fixed point corresponds to a contact point
nearby. ,e coordinates of the fixed points are denoted by
xf−

i and xf+
i , respectively, where the superscripts “− ” and “+”

denote the lower and upper segments, respectively.

3.3. Type I Springs. Two springs connect the fixed points and
their corresponding contact points of each tooth, as shown in
Figure 3(a), describing the stiffness between the meshing
teeth. When there is a displacement of the segments, the force
of the type I spring on the i-th contact point can be written as

f1−
i � E−

1 di · gΔxf−

i − di · gΔxc
i􏼐 􏼑di � − E−

1 di · gΔxc
i( 􏼁di,

f1+
i � E+

1 di · gΔxf+
i − di · gΔxc

i􏼐 􏼑,

⎧⎪⎨

⎪⎩

(4)

where Δxf−
i , Δxf+

i , and Δxc
i are the displacements of the fixed

points and their corresponding contact points, respectively,
E−
1 and E+

1 are the stiffness of type I springs on the lower and
upper segments, respectively, and di is the normal direction
of the i-th contact interface which can be written as

di �

(− 1)i+1 sin θi( 􏼁cos(α)

(− 1)i cos θi( 􏼁cos(α)

sin(α)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5)

Since small displacement of the upper segment occurs, it
has negligible effect on di. In addition, the lower segment is
fixed, and thus, Δxf−

i ≡ 0.

3.4. Type II Springs. A curved spring connects the two
contact points of a tooth, as shown in Figure 3(b), describing
the coupled stiffness of two surfaces of a single tooth.When i

is odd, the force of the type II spring on the i-th contact point
is defined as

Lower segment

Upper segment

O

Z

X

Y

(a)

Fixed points

Contact points

Type I spring

Type II spring

(b)

Figure 2: Mechanical model of curvic couplings: (a) global view; (b) details of the three-spring system.

xci–1 xci

xfi++1

xci+1

xfi+

xfi––1 xfi–

di–1
di di+1

(a)

xci–1 xci

xfi++1

xci+1

xfi+

xfi––1 xfi–

di–1
di di+1

(b)

Figure 3: Schematics of the two types of springs: (a) type I spring; (b) type II spring.
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f2−
i � E−

2 di · gΔxf−
i − di · gΔxc

i + di · gΔxf−
i+1 − di · gΔxc

i+1􏼐 􏼑di � − E−
2 di · gΔxc

i + di · gΔxc
i+1( 􏼁di,

f2+
i � E+

2 di · gΔxf+
i − di · gΔxc

i + di · gΔxf+
i− 1 − di · gΔxc

i− 1􏼐 􏼑di,

⎧⎪⎨

⎪⎩
(6)

where E−
2 and E+

2 are the stiffness of type II springs on the
lower and upper segments, respectively. When i is even, the
force can be written as

f2−
i � − E−

2 di · gΔxc
i + di · gΔxc

i− 1( 􏼁di,

f2+
i � E+

2 di · gΔxf+
i − di · gΔxc

i + di · gΔxf+
i+1 − di · gΔxc

i+1􏼐 􏼑di.

⎧⎪⎨

⎪⎩

(7)

Clearly, the stiffness of the springs is related to the
structure parameters of curvic couplings and the stiffness of
the corresponding tooth. ,e approach of obtaining the
stiffness of a tooth is introduced in Section 4, where the
specific equations of E−

1 , E+
1 , E−

2 , and E+
2 will be given. ,e

following deductions are based on the assumption that these
variables of the stiffness are available.

To solve equations (4), (6), and (7), the relationship
between Δxf+

i and Δxc
i needs to be established. Let the

distances between the fixed points and their corresponding
contact points tend to zeros before deformations occur, then
one can obtain

xf+
i � RT cos θi( 􏼁, RT sin θi( 􏼁, 0􏼂 􏼃

T
, i � 1, 2, . . . , 2Z.

(8)

With the consideration that the upper segment is rigid, when
an external load F is applied on the center of the upper
segment, the relationship between Δxf+

i and the displace-
ment of the upper segment, Δx0, satisfies

Δxf+
i � RiΔx0, i � 1, 2, . . . , 2Z, (9)

where [30]

Ri � I, RT

0 0 − sin θi( 􏼁

0 0 cos θi( 􏼁

sin θi( 􏼁 − cos θi( 􏼁 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (10)

and the external load F is defined as

F � Fx, Fy, Fz, Mx, My, Mz􏽨 􏽩
T
, (11)

where the components Fx, Fy, and Fz are forces and Mx, My,
and Mz are moments on the upper segment.

,ere are two groups of force balance equations [31]
based on which the mechanical model is derived. One is the
force balance equation for all contact points which can be
given as

f1−
i + f1+

i + f2−
i + f2+

i � 0, i � 1, 2, . . . , 2Z. (12)

,e other is the force balance equation for the upper
segment expressed as

􏽘

2Z

i�1
f1−

i + f2−
i􏼐 􏼑 +

Fx

Fy

Fz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � 0, (13)

􏽘

2Z

i�1
xc

i × f1−
i + f2−

i􏼐 􏼑 +

Mx

My

Mz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � 0. (14)

Substituting equations (4), (6), (7), and (9) into equa-
tions (12)∼(14), the relationship between Δx0 and F can be
deduced as

F � KΔx0, (15)

where K is the stiffness matrix of curve couplings. ,e
mathematical derivation process of the stiffness matrix K is
complex, which can be found in Appendix. ,e components
of the stiffness K can be finally expressed as follows.

Shearing component:

K1,1 � K2,2 � EZ cos (α)
2

e
+
v1 + e

−
v2 − cos

π
Z

􏼒 􏼓􏼒

· e
+
2v1 + e

−
2v2( 􏼁􏼓.

(16)

Axial component:

K3,3 � 2EZ sin (α)
2 e+ + e+

2( 􏼁 e− + e−
2( 􏼁

1 + e2
. (17)

Bending component:

K4,4 � EZR
2
T sin (α)

2
e

+
v1 + e

−
v2 + cos

π
Z

􏼒 􏼓 e
+
2v1 + e

−
2v2( 􏼁􏼒 􏼓.

(18)

Torsion component:

K6,6 � 2EZ cos (α)
2
R
2
T

e+
1e−

1
e1

. (19)

Here, the parameters are defined as
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E � E+
1 + E+

2 + E−
1 + E−

2 ,

e+ �
E+
1 + E+

2
E

,

e− �
E−
1 + E−

2
E

,

e+
1 �

E+
1

E
,

e−
1 �

E−
1

E
,

e+
2 �

E+
2

E
,

e−
2 �

E−
2

E
,

e1 �
E+
1 + E−

1
E

,

e2 �
E+
2 + E−

2
E

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v1 �
e−( )2 − e−

2( 􏼁
2

1 − e22 + 4e+
2 e−

2 sin (π/Z)2
,

v2 �
e+( )

2 − e+
2( 􏼁

2

1 − e22 + 4e+
2 e−

2 sin (π/Z)2
.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(20)

,e shearing, compression, and bending stiffnesses are
affected by both the type I and the type II spring stiffness, as
the forces generated by the corresponding external loads are
applied to the tooth surfaces on both sides. ,e torsion
stiffness is only affected by the type I spring stiffness because
there is no relative deformation between the tooth surfaces
on both sides under the forces generated by the torque and
the axial load due to the compatible deformation of the two
surfaces.

4. Determination of Stiffness of a Single Tooth

,e spring stiffness of a single tooth required in the model
described above can be defined by the relationship between
the displacements of the contact points and the distributed
force on the tooth surface. Adopting the force balance on
both sides of a tooth gives

uLE1 + uL + uR( 􏼁E2 � FL,

uRE1 + uL + uR( 􏼁E2 � FR,
􏼨 (21)

where E1 and E2 are the unknown stiffness of the two types of
springs, respectively, uL and uR are the displacements at the

two contact points of a tooth, respectively, and FL and FR

represent the resultant force on both sides of a tooth.
As the tooth stiffness serves as a bridge connecting the

structure parameters and the stiffness of curvic couplings,
the relational expression between the parameters and the
tooth stiffness should be obtained. In this section, the re-
lational expression is achieved based on the stiffness analysis
of a single tooth. Some basic assumptions are summarized as
follows.

Assumption 1. Each tooth is discretized to many trapezoid
pieces along the direction of the tooth width, as shown in
Figure 4. ,erefore, a three-dimensional problem is con-
verted to a two-dimensional problem.

Assumption 2. ,e shearing effect between two adjacent
trapezoid pieces is ignored. ,e deformation of each trap-
ezoid piece in the tooth width direction is ignored. In other
words, the mechanical analysis of a trapezoid piece is
considered to be plane strain analysis.

Assumption 3. Each tooth surface is subjected to distributed
force, which stays unchanged in tooth height but varies in
tooth width. It indicates that the force applied on each side of
a trapezoid piece is uniformly distributed.

Assumption 4. ,e displacement of the contact points (the
point at hT still named the contact point after discretization)
on the same side of trapezoid pieces of a tooth is the same.

4.1. Analysis of aDiscretizedToothPlane. Similar to equation
(21), the stiffness of a single trapezoid piece is also defined by
the relationship between the displacements of the contact
points and the force on the surface. According to As-
sumption 3, without loss of generality, the uniformly dis-
tributed forces with the sum equaling 1 are applied only on
the right side with clearance c, which means that FL � 0 and
FR � 1, as shown in Figure 5. ,en, the spring stiffness can
be obtained by solving the following equation:

uLEW
1 + uL + uR( 􏼁EW

2 � 0,

uREW
1 + uL + uR( 􏼁EW

2 � 1,

⎧⎨

⎩ (22)

where EW
1 and EW

2 are the stiffness of the two types of springs
in one single trapezoid piece.

,e purpose of this section is to obtain the expressions of
EW
1 and EW

2 with respect to the geometry parameters of a
trapezoid piece. ,ere are three DOFs in the geometry of an
isosceles trapezoid. However, with the same external load,
FR � 1, the displacements of uL and uR are only determined
by the geometry shape of the trapezoid piece, not by the
specific size. ,erefore, only two geometry parameters are
adopted in this work including the pressure angle, α, and the
ratio of thickness to height, w/hW, where w denotes the
thickness at the height of hT, as shown in Figure 5. ,e
expression of w/hW is as follows:
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w

hW

�
π
2fh

1 −
W

D
􏼒 􏼓, (23)

where fh is the coefficient of the whole depth hW.
In engineering design, the tooth width W is usually

chosen to be approximately 10% of the outer diameter D,
and fh is in the range of 0.6∼1.0, as an excessively large ratio
ofW/D can cause grinding difficulties.,e clearance c is also
a parameter affecting the location of FR � 1, and its coef-
ficient fc, which is a user-defined value, is set to be 0.12 here
for simplification based on the requirement in basic engi-
neering design.

It is difficult to determine equation (22) directly, and
therefore, the data-driven approach [32] is introduced:

(1) A grid sampling approach is adopted to generate
n� 100×100 samples with different geometry pa-
rameters in the two-dimensional space, where the
range of α is chosen as 20∘ ∼ 40∘ and the range of
w/hW is chosen as 1.2∼2.3 according to equation
(23). ,e samples are denoted by
SW � SW

1 , SW
2 , . . . , SW

n􏼈 􏼉.
(2) For each 1≤ i≤ n, a finite element model is estab-

lished based on the geometry parameters SW
i , and

the software COMSOL Toolkit in MATLAB is
adopted for the plane strain analysis to obtain the
displacements of uL and uR. ,e stainless steel is
adopted as the material in this work, whose
Young’s modulus is 2.06 ×1011 Pa and Poisson’s
ratio is 0.3.

(3) ,en by solving equation (22), the responses of the
spring stiffness are calculated based on the obtained
displacements, which are denoted as
EW
1 � EW

1,1, EW
1,2, . . . , EW

1,n􏽮 􏽯and
EW
2 � EW

2,1, EW
2,2, . . . , EW

2,n􏽮 􏽯, as shown in Figure 6.
(4) With the training data of SW, EW

1 , and EW
2 , the

mathematical expressions ofEW
1 andEW

2 with respect
to the geometry parameters are obtained by least-
squares interpolation. ,e basic interpolation
models are given as

E
W
1 �

w

hW

,
w

hW

􏼠 􏼡

2

, 1⎡⎣ ⎤⎦KW
1

cos(α)

sin(α)

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

E
W
2 �

w

hW

,
w

hW

􏼠 􏼡

2

, 1⎡⎣ ⎤⎦KW
2

cos(α)

sin(α)

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(24)

where KW
1 and KW

2 are both 3× 3 coefficient matrices. ,e
resulted coefficients are determined as follows:

KW
1 �

0.219 9.072 8.905

− 2.133 − 2.533 1.022

− 64.406 − 12.280 64.033

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦10
4 N/mm,

KW
2 �

− 20.184 − 17.924 − 4.094

8.234 5.484 − 3.797

2.844 13.102 34.921

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦10
4 N/mm.

(25)

,e maximum relative errors of EW
1 and EW

2 are 0.69%
and 3.43%, respectively, while the average relative errors are
0.18% and 0.71%, respectively.

,e sensitivities of the stiffness of shearing, compression,
bending, and torsion to the stiffness of thetwo types of spring
are analysed. With an increase of EW

1 by 5%, the stiffnesses
increase by 2.44%, 1.41%, 1.42%, and 2.44%, respectively.
However, the stiffnesses only increase by 0.002%, 1.05%,
1.05%, and 0%, respectively, when EW

2 increases by 5%,
showing weak sensitivities. An alternate interpolation model

A trapezoid piece

(a)

A trapezoid piece

(b)

Figure 4: Schematic of a (a) discretized concave tooth and a (b) discretized convex tooth.

FR = 1FL = 0

uL uR

w

hThW

c

α

Figure 5: Schematic of the trapezoid piece.
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can be adopted to represent EW
1 and EW

2 , as long as it has
enough accuracy.

4.2.EquivalentStiffness ofaTooth. According to Assumption
4 that all the trapezoid pieces have the same displacement on
the contact points, the resultant distributed force on the
tooth surface can be calculated as

FL � 􏽚
0.5W

− 0.5W
uLE

W
1 (ΔR) + uL + uR( 􏼁E

W
2 (ΔR)􏼐 􏼑dΔR � uL 􏽚

0.5W

− 0.5W
E

W
1 (ΔR)dΔR + uL + uR( 􏼁 􏽚

0.5W

− 0.5W
E

W
2 (ΔR)dΔR,

FR � 􏽚
0.5W

− 0.5W
uRE

W
1 (ΔR) + uL + uR( 􏼁E

W
2 (ΔR)􏼐 􏼑dΔR � uR 􏽚

0.5W

− 0.5W
E

W
1 (ΔR)dΔR + uL + uR( 􏼁 􏽚

0.5W

− 0.5W
E

W
2 (ΔR)dΔR,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(26)

where ΔR is the distance between the piece and the circle of
radius RT, as shown in Figure 7(a). All the trapezoid pieces
have the same values of α and hW, and the thickness on the
location ΔR can be written as

w(ΔR) �
π RT + ΔR( 􏼁

Z
± 2Δw ≈

π RT + ΔR( 􏼁

Z
±
ΔR2

RC

,

(27)

where “+” is for concave teeth and “− ” is for convex teeth,
and definitions of the two terms on the right-hand side of
equation (27) can be found in Figures 7(a) and 7(b),
respectively. Note that the exact expression of Δw is
complex which cannot be integrated easily, and thus, an
approximate form of Δw shown below is adopted, and the
relative error is less than 10− 5 compared to the exact
solution of Δw.

Δw ≈
ΔR2

2RC

. (28)

By integrating equation (22) along the direction of the tooth
width, the stiffness of a tooth can be determined. To achieve the
integral, the relationship between the tooth thickness w and its
corresponding radius of the circle should also be accounted for,
as the tooth thickness varies with the radius.

,e tooth thickness w in the radius direction is equal to
the arc length intercepted by the two surfaces of a tooth from
the circle of the same radius, which is equal to ΔR + RT,
where ΔR is the distance to the circle of radius RT. ,is arc
length consists of two parts: one is the arc length between the
two straight lines tangential to tooth surfaces through the
center of the circle and the other is the arc length between the
tangency line and the nearest tooth surface, as illustrated in
Figure 7. ,e lengths are expressed by π(ΔR + RT)/Z and
Δw, respectively.

E1
W × 105N/mm
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Figure 6: Response surfaces of the stiffness of the trapezoid piece. (a) Stiffness of the type I spring. (b) Stiffness of the type II spring.
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By comparing equations (26) and (21), the final ex-
pression of spring stiffness can be obtained as

E1 � 􏽚
0.5W

− 0.5W
E

W
1 (ΔR)dΔR � 􏽚

W/2

− W/2

w

hW

,
w

hW

􏼠 􏼡

2

, 1⎡⎣ ⎤⎦KW
1

cos(α)

sin(α)

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
dΔR � va

( 􏼁
TKW

1

cos(α)

sin(α)

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

E2 � 􏽚
0.5W

− 0.5W
E

W
2 (ΔR)dΔR � va

( 􏼁
TKW

2

cos(α)

sin(α)

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(29)

where va is a three-dimensional vector related to the
structural parameters of teeth, which can be expressed as

v
a
1 � 􏽚

W/2

− W/2

w

hW

dΔR �
1

hW

πWRT

Z
±

W3

12RC

􏼠 􏼡,

v
a
2 � 􏽚

W/2

− W/2

w

hW

􏼠 􏼡

2

dΔR �
1

h2
W

1
R2

C

􏼠 􏼡
W5

80
+􏼠

π
Z

􏼒 􏼓
2
± 2

πRT

ZRC

􏼠 􏼡
W3

12
+

πRT

Z
􏼒 􏼓

2
W􏼡,

v
a
3 � 􏽚

W/2

− W/2
dΔR � W.

(30)

Without loss of generality, let the lower segment consist
of concave teeth and the upper segment consist of convex
teeth, and the superscripts “− ” and “+” are used to distin-
guish them. ,erefore, the stiffness of the two springs in
concave teeth is E−

1 and E−
2 , and that in convex teeth is E+

1
and E+

2 , as mentioned in Section 3.

5. Stiffness Analysis of Example
Curvic Couplings

In this section, the proposed mechanical model is adopted to
predict the stiffness of curvic couplings following the ap-
proach shown above. 12 examples of curvic couplings with

π/Z

∆R

Tooth
thickness

π(RT + ∆R)/Z

∆w ≈ ∆R2/2RC

Figure 7: Schematic of the tooth thickness.

Mathematical Problems in Engineering 9



different structural types have been selected in this study.
For all examples, the outer diameter D is 41mm, the teeth
width W is 4.5 mm, and the tangency radius RT is
18.25mm. Other parameters of curvic couplings, as de-
fined in Section 2, are given in Table 2, where three levels
are selected for the enveloped half pitches N, the tooth
number Z, and the pressure angle α. ,e curvic couplings
are modeled as stainless steel, which is the same material
type as that included in the previous data-driven
approach.

5.1. Verification of Model Predictions against FEM Solutions.
,e stiffness of each example curvic coupling is obtained
based on the method proposed above, and the results are
listed in Table 3.

To verify the analytical solutions, 3D finite element
analyses of the adopted 12 curvic coupling samples have also
been performed using the commercial software ABAQUS.
,e material of the samples was assumed as stainless steel,
with the mechanical properties being density of 7850 kg/m3,
Young’s modulus of 2.06×1011 Pa, and Poisson’s ratio of 0.3.
,e mesh consisted of 14000∼25000 8-noded hexahedral
solid elements. ,e element size was chosen to be
0.15∼0.20mm which was small enough to ensure the ac-
curacy of the solutions. ,e DOFs of the elements below the
teeth in the lower segment were set to be fully fixed, while the
DOFs of the elements above the teeth in the upper segment
were constrained to the origin of the local coordinate of the
upper segment, as shown in Figure 8. Frictionless contacts
were assumed between the teeth of the upper and lower
segments for simplicity. Four finite element models have
been established based on the load types to account for
shearing, compression, bending, and torsion stiffnesses,
respectively. ,e external loads, i.e., shearing, compression,
bending, and torsion, were applied to the origin of the upper
segment by steps, the maximum magnitudes of which were
100N, 3000N, 30N·m, and 3N·m, respectively. In themodel
for compression stiffness, a preload of 2000N was applied to
eliminate the influence caused by the alignment error of the
elements on tooth surfaces and the stiffness was evaluated on
the basis of the axial force subaccumulated from 2000N. In
other models, an axial force of 3000N was applied to
maintain the steady state of the contact under the external
loads. ,e stiffness was determined by monitoring the
displacements of the upper segment under given loads at the
end of each step.

,e analytical solutions are compared to the FEM
solutions, as shown in Table 3. ,e relative errors are
defined by the ratios of their differences to FEM solutions.
,e trends of the analytical solutions are coincident with
those of the FEM solutions, as illustrated in Figure 9, and
the analytical solutions are less than the FEM solutions
with most of the errors within 10%. ,e reason for the
difference is that the assumptions in Section 4, such as the
neglect of shear force between two adjacent trapezoid
pieces and uniform distribution force on the tooth sur-
face, which is idealized, are inconsistent with the results of
the FEM.

5.2. Assessment of Stiffness Weakening. According to the
theory of material mechanics [33], the shearing, bending,
compression, and torsion stiffnesses of continuous struc-
tures can be approximated by the following equations,
respectively:

Ks �
GA

hW + c
,

Kb �
EIz

hW + c
,

Kc �
EA

hW + c
,

Kt �
GA

hW + c
.

(31)

,e stiffness weakening caused by the connection of
curvic couplings is evaluated by the ratio of the stiffness
difference between curvic couplings and continuous struc-
tures to the stiffness of continuous structures with the same
size. ,e results are shown in Table 4. ,e stiffness weak-
ening of shearing, compression, bending, and torsion of
curvic couplings is the ratio of 50.90%∼71.54%, 53.78%∼
93.72%, 69.74%∼93.93%, and 35.60%∼44.13% to the stiffness
of continuous segments, respectively. ,e weakening trend
of bending stiffness is consistent with that of compression
stiffness.

6. Parametric Studies

,is section studies the influence of structural parameters of
curvic couplings on the connection stiffness, in order to
provide an insight into the optimization of the stiffness in
engineering design.

6.1. Effects of the Structure Parameters on Tooth Stiffness.
According to the analysis in Section 4, the stiffness of a
trapezoid piece is only determined by the geometric shape of
the trapezoid piece, not by the specific size, which infers that
the tooth number of curvic couplings has no effect on the
stiffness of a single tooth. After eliminating the influence of
the tooth number, the results from Table 3 are used to plot
stiffness curves, as shown in Figure 10, where the enveloped
half pitches have little influence on the tooth stiffness.
Additional examples with pressure angles, i.e., 22.5°, 25°,
27.5°, 32.5°, 35°, and 37.5°, are designed according to the
design theory of curvic couplings [29]. As the influence of
enveloped half pitches on the stiffness of a single tooth could
be ignored, the tooth number and enveloped half pitches of
the examples, Z� 24 and N� 21, are selected. ,e results are
shown in Figure 11. ,e differences in stiffness between
convex and concave teeth are exceedingly small, while the
pressure angle has a significant influence on the tooth
stiffnesses E1 and E2 irrespective of other variations. ,e
bending and shearing deformations of a trapezoid piece,
which are caused by the transverse component of the applied
unit force, account for a high proportion in the total value of
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uR. It should be noted that uR is inversely proportional to E1.
With an increase in the pressure angle, the transverse
component of the applied unit force decreases, which
consequently decreases uR and then increases E1. ,e var-
iation of E2 is related to the relative deformation of the tooth
surfaces on both sides, which is less affected by the increase
in the pressure angle, as the compatible deformation of the
two tooth surfaces leads to less relative deformation under
the applied unit force on one side of the tooth. ,erefore, it
can be inferred that the pressure angle is the main factor
affecting the stiffness of a single tooth, and E1 is more
sensitive to the pressure angle than E2.

6.2.Effects of theStructureParameterson theStiffnessofCurvic
Couplings. According to the design theory of curvic cou-
plings, the size of the trapezoid pieces is inversely pro-
portional to the tooth number when other parameters stay
unchanged. ,e increase of tooth number implies the in-
crease of the spring number in the spring system, which
causes the increase of stiffness of curvic couplings for these
springs in parallel. ,e stiffness of a curvic coupling is
chosen to be the basic value, and the relative variation of

stiffness is obtained by calculating the ratio of other
stiffnesses to it. Adopting the same pressure angle and
choosing the stiffness of the curvic coupling with 12 teeth as
the basic value, the stiffness of curvic couplings increases
almost linearly with the increase of the tooth number, as
shown in Figure 12. According to the definition of curvic
couplings in Section 2, when the outer diameter, tangency
radius, and tooth width stay unchanged, increasing the
number of teeth results in a smaller tooth size. As stated in
Section 4.1, the displacements at the two contact points of a
tooth only depend on the geometry shape of the trapezoid
piece, not the specific size under the action of unit force.
,erefore, with an increasing tooth number, the stiffness of
curvic couplings also increases. Additional examples with
the same pressure angle as in Figure 11 are designed with
the tooth number Z � 16 and enveloped half pitches N � 13.
,e results are shown in Figure 13. Given the same tooth
number and choosing the stiffness of the curvic coupling
with pressure angle 20° as the basic value, the stiffness of
curvic couplings increases with the increase of pressure
angle, and the compression and bending stiffnesses are
more sensitive than the shearing and torsion stiffnesses, as
shown in Figure 13.

Table 2: Structural parameters of 12 examples of curvic couplings.

Serial number of samples — 1 2 3 4 5 6 7 8 9 10 11 12
Tooth number Z 12 12 12 16 16 16 20 20 20 24 24 24
Enveloped half pitches N 7 9 11 11 13 15 15 17 19 19 21 23
Pressure angle (o) α 20 30 40 30 40 20 40 20 30 20 30 40
Whole depth (mm) h W 2.733 2.733 2.733 2.05 2.05 2.05 1.64 1.64 1.64 1.367 1.367 1.367
Clearance (mm) c 0.41 0.41 0.41 0.308 0.308 0.308 0.246 0.246 0.246 0.205 0.205 0.205

Table 3: Comparison between model predictions and FEM solutions.

Serial number of samples 1 2 3 4 5 6 7 8 9 10 11 12
Stiffness of concave teeth
(103N/mm)

E−
1 , analytical 683 885 1170 888 1180 678 1180 680 882 682 884 1173

E−
2 , analytical 388 405 432 402 428 396 424 392 409 389 406 432

Stiffness of convex teeth
(103N/mm)

E+
1 , analytical 670 877 1170 874 1170 675 1160 673 880 670 877 1170

E+
2 , analytical 408 417 436 421 440 399 445 403 413 407 417 436

Shearing stiffness
(103N/mm)

Analytical
solutions 3620 4000 4160 5310 5520 4800 6890 5990 6626 7183 7943 8265

FEM solutions 3894 4425 4655 5931 6165 5180 7813 6536 7253 7656 8661 8852
Relative
errors (%) − 7.1 − 9.7 − 10.7 − 10.5 − 10.4 − 7.3 − 11.8 − 8.3 − 8.6 − 6.2 − 8.3 − 6.6

Compression stiffness
(103N/mm)

Analytical
solutions 2070 5110 10100 6810 13500 2750 16900 3440 8515 4132 10220 20230

FEM solutions 2170 5621 11371 7651 15244 2830 19750 3744 9211 4234 10988 22063
Relative
errors (%) − 4.8 − 9.1 − 11.1 − 10.9 − 11.5 − 2.8 − 14.6 − 8.0 − 7.6 − 2.4 − 7.0 − 8.3

Bending stiffness
(106N·mm/rad)

Analytical
solutions 337 838 1660 1120 2230 454 2790 569 1410 685 1695 3358

FEM solutions 357 912 1835 1237 2459 470 3187 607 1487 686 1772 3528
Relative
errors (%) − 5.5 − 8.1 − 9.4 − 9.1 − 9.3 − 3.5 − 12.3 − 6.3 − 5.2 − 0.17 − 4.3 − 4.8

Torsion stiffness
(106N·mm/rad)

Analytical
solutions 2390 2640 2750 3520 3660 3180 4580 3980 4401 4774 5280 5495

FEM solutions 2610 2947 3093 3943 4105 3460 5213 4370 4849 5127 5800 5950
Relative
errors (%) − 8.5 − 10.4 − 11.1 − 10.7 − 10.7 − 7.9 − 12.2 − 8.9 − 9.2 − 6.9 − 9.0 − 7.6
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(a) (b)

Figure 8: Constraints of the finite element analysis model. (a) Constraints of the lower segment. (b) Constraints of the upper segment.

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10 11 12

Analytical
FEM

Serial number

St
iff

ne
ss

 (1
06 N

/m
m

)

(a)

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12

Analytical
FEM

St
iff

ne
ss

 (1
06 N

/m
m

)

Serial number

(b)

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12

Analytical
FEM

St
iff

ne
ss

 (1
09 N

·m
m

/r
ad

)

Serial number

(c)

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12

Analytical
FEM

Serial number

St
iff

ne
ss

 (1
09 N

·m
m

/r
ad

)

(d)

Figure 9: Trends of the stiffness of the analytical and FEM solutions. (a) Shearing stiffness. (b) Compression stiffness. (c) Bending stiffness.
(d) Torsion stiffness.
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Table 4: Weakening ratio of the analytical solutions compared to continuous structures.

Serial number of samples 1 2 3 4 5 6 7 8 9 10 11 12

Shearing
Curvic couplings 3620 4000 4160 5310 5520 4800 6890 5990 6626 7183 7943 8265

Continuous segments 12629 16833 21046 16833
Stiffness-weakening ratio (%) 71.34 68.33 67.06 68.46 67.21 71.49 67.26 71.54 68.52 57.33 52.82 50.90

Compression
Curvic couplings 2070 5110 10100 6810 13500 2750 16900 3440 8515 4132 10220 20230

Continuous segments 32835 43766 54720 43766
Stiffness-weakening ratio (%) 93.70 84.44 69.24 84.44 69.15 93.72 69.12 93.71 84.44 90.56 76.65 53.78

Bending
Curvic couplings 337 838 1660 1120 2230 454 2790 569 1410 685 1695 3358

Continuous segments 5551 7399 9251 43766
Stiffness-weakening ratio (%) 93.93 84.90 70.10 84.86 69.86 93.86 69.84 93.85 84.76 93.83 84.73 69.74

Torsion
Curvic couplings 2390 2640 2750 3520 3660 3180 4580 3980 4401 4774 5280 5495

Continuous segments 4270 5692 7116 8538
Stiffness-weakening ratio (%) 44.03 38.18 35.60 38.16 35.70 44.13 35.64 44.07 38.16 44.09 38.16 35.63

Note. ,e unit for shearing and compression stiffnesses is 103N/mm, while that for bending and torsion stiffnesses is 106N·mm/rad.
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7. Conclusions

,is paper focuses on establishing the relationships between
the structure parameters and the stiffness of curvic couplings
and presents an analytical approach to simulating the
stiffness of curvic couplings in the design of an aeroturbine
engine rotor under complex loading conditions, e.g.,
shearing, compression, bending, and torsion. ,e key
conclusions can be summarized as follows:

(1) A three-spring system consisting of two types of
springs is proposed to describe the equivalent stiff-
ness of a pair of meshing teeth, which is determined
by the stiffness analysis of the discretized tooth plane.

(2) ,e stiffness of a single tooth increases with the
increase of the pressure angle, while the enveloped
half pitches and tooth number have little influence
on it, which means the influence of the latter two on
the stiffness of a single tooth could be ignored.

(3) ,e stiffness of curvic couplings is significantly
smaller compared to that of continuous structures,
and the pressure angle and tooth number are the
major factors affecting the stiffness of curvic cou-
plings, while the compression and bending

stiffnesses are more sensitive to the pressure angle
than other stiffnesses.

(4) ,e curvic couplings with more teeth could obtain
greater connection stiffness when keeping other
parameters unchanged, which provides a way of
optimizing the connection stiffness without chang-
ing the diameter of the shaft of an aeroengine rotor
provided the parameters changed still satisfy the
grinding conditions of curvic couplings.

(5) ,e stiffness weakening of curvic couplings is tre-
mendous, which may have enormous influence on
the dynamic characteristics of the rotors. ,e ana-
lytical method proposed is of guiding significance to
the structural design of the curvic couplings in en-
gineering design of aeroengine rotors.

Appendix

,e mathematical deduction process of the stiffness matrix
K in equation (15) is introduced in the following text.

By substituting equation (4), (6), (7), and (9) into
equation (12), one can obtain

dT
i Δxc

i + e−
2Δxc

i+1 + e+
2Δxc

i− 1( 􏼁 � dT
i e+Ri + e+

2Ri− 1( 􏼁Δx0, i � 2j − 1,

dT
i Δxc

i + e−
2Δxc

i− 1 + e+
2Δxc

i+1( 􏼁 � dT
i e+Ri + e+

2Ri+1( 􏼁Δx0, i � 2j,

⎧⎨

⎩ j � 1, 2, . . . , Z. (A.1)

DefineC as the displacements of all the contact points on
di:

C � d1 · gΔxc
1,d2 · gΔxc

2, . . . , d2Z · gΔxc
2Z􏼂 􏼃

T
, (A.2)

and define matrix D as

D � D1,D2, . . . ,D2Z􏼂 􏼃
T
, (A.3)

where

Di � RT
i di �

(− 1)i+1 sin θi( 􏼁cos(α)

(− 1)i cos θi( 􏼁cos(α)

sin(α)

RT sin θi( 􏼁sin(α)

− RT cos θi( 􏼁sin(α)

(− 1)iRT cos(α)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, i � 1, 2, . . . , 2Z.

(A.4)

Equation (A.1) can be rewritten in the vector form as

I + e
−
2 I

M
1􏼐 + e

+
2 I

M
2 􏼑C � e

+
1 + e

+
2( 􏼁I + e

+
2 I

M
2􏼐 􏼑DΔx0, (A.5)

where IM
1 and IM

2 are column transformationmatrices of two
adjacent columns beginning with the first and second col-
umns, respectively. For example, the 6-order column
transformation matrices are written as

IM
1􏼐 􏼑6×6 �

0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

IM
2􏼐 􏼑6×6 �

0 0 0 0 0 1

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

1 0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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.

(A.6)

Define matrix

W+ � e+I + e+
2 I

M
2 ,

W− � e− I + e−
2 I

M
1 ,

M � W+ + W− � I + e−
2 I

M
1 + e+

2 I
M
2 .

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(A.7)

Based on equation (A.24), one can obtain

C � M− 1W+DΔx0. (A.8)
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According to the definition of the matrices D and W− ,
the balance equations of equations (13) and (14) can be
rewritten in the vector form as

F − EDTW− C � 0. (A.9)

By substituting equation (A.8) into (A.9), one can obtain

F � EDTW− M− 1W+DΔx0 � EDTW− M− 1W+DΔx0,
(A.10)

where

K � EDTW− M− 1W+D. (A.11)

To express K, the matrix V is defined as

V � V1,V2, . . . , V2Z􏼂 􏼃
T
, (A.12)

where

Vi � RT
i di �

(− 1)i+1 sin θi( 􏼁

cos θi( 􏼁

(− 1)i cos θi( 􏼁

sin θi( 􏼁

1/
�
2

√

(− 1)i/
�
2

√

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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, i � 1, 2, . . . , 2Z.

(A.13)

Several properties ofV are given as follows.,e columns
of V are orthogonal vectors, and the following equation
holds:

VTV � ZI. (A.14)

,e relationship between V and D is

D � VT0
, (A.15)

where T0 is defined as

T0
�

cos(α)

− RT sin(α)

cos(α)

RT sin(α)
�
2

√
sin(α)

�
2

√
RT cos(α)
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.

(A.16)

In addition, W+V and W− V can be calculated as

W+V � VT+,

W− V � VT− ,
􏼨 (A.17)

where

T+
�

k+

k+

k0+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

T−
�

k−

k−

k0−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(A.18)

where k+, k− , k0+, and k0− are all 2× 2 matrices given by

k+
�

e+ − e+
2 cos(π/Z) e+

2 sin(π/Z)

e+
2 sin(π/Z) e+ + e+

2 cos(π/Z)
􏼢 􏼣,

k−
�

e− − e−
2 cos(π/Z) − e−

2 sin(π/Z)

− e−
2 sin(π/Z) e− + e−

2 cos(π/Z)
􏼢 􏼣,

k0+
�

e+ + e+
2

e+ − e+
2

􏼢 􏼣,

k0−
�

e− + e−
2

e− − e−
2

􏼢 􏼣.

(A.19)

Based on equation (A.17), it can be deduced that

MV � W+
+ W−

( 􏼁V � V T−
+ T+

( 􏼁, (A.20)

and then

M− 1V � V T−
+ T+

( 􏼁
− 1

. (A.21)

By substituting equations (A.15) and (A.17)∼(A.18) into
equation (A.11), the stiffness matrix can be deduced as

K � EDTW− M− 1W+D

� E T0
􏼐 􏼑

T
VTW− M− 1W+VT0

� E T0
􏼐 􏼑

T
T−

( )
TVTM− 1VT+T0

� E T0
􏼐 􏼑

T
T− VTV T−

+ T+
( 􏼁

− 1T+T0

� EZ T0
􏼐 􏼑

T
T− T−

+ T+
( 􏼁

− 1T+T0
.

(A.22)

According to the definition of T− and T+, it can be
calculated that

T− T−
+ T+

( 􏼁
− 1T+

�

k∗

k∗

k0∗

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (A.23)
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where

k∗ � k− k+
+ k−

( 􏼁
− 1k+

�
e+v1 + e− v2 − cos(π/Z) e+

2v1 + e−
2v2( 􏼁 sin(π/Z) e+

2v1 − e−
2v2( 􏼁

sin(π/Z) e+
2v1 − e−

2v2( 􏼁 e+v1 + e− v2 + cos(π/Z) e+
2v1 + e−

2v2( 􏼁

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦, (A.24)

k0∗ � k0− k0+
+ k0−

􏼐 􏼑
− 1
k0+

�

e+ + e+
2( 􏼁 e− + e−

2( 􏼁

1 + e2

e+
1 e−

1
e1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (A.25)

By substituting equations (A.23) and (A.16) into equa-
tion (A.22), the expression of the stiffness matrix K can be
obtained, as expressed in equations (16)∼(19).
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