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In this paper, a lattice hydrodynamic model of two-dimensional bidirectional pedestrian traffic is proposed with consideration of
altering path under the cumulative effect of delay time. ,e stability condition is acquired by linear analysis, and the mKdV
equation to describe congestion evolution is derived by reductive perturbation technique. According to the result from the
stability analysis, the stability region of pedestrian flow can be divided into stable region, unstable region, and metastable region.
On the basis of stable condition, the unstable region is narrowed with the increase of delay time td and the path changing rate c. It
indicates that changing path can effectively improve the stability of the pedestrian flow under the cumulative effect of delay time td.
For numerical simulation and analysis of density wave, it is found that the increase of path changing rate c and the cumulative
effect of delay time td are conducive to alleviate pedestrian congestion.

1. Introduction

With the increase of urbanization process, the study of city
traffic system has become the hot spot which the scientific
and social pays attention. As an important part of the city
traffic system, pedestrian transportation system brings great
convenience for people to travel. But in recent years, the
pedestrian stampedes events happened frequently, which
has brought serious disasters to the society and brought pain
to the victims’ families. On December 31, 2014, 36 people
were killed and 49 injured in a stampede at Chen Yi Square
on the Bund in Shanghai [1]. Saudi authorities issue the Hajj
stampede in Mecca on September 26, 2015, have killed 769
people, and wounded 934 others who are from different
countries [2]. ,e stampede caused 22 deaths and 27 injured
in Mumbai, India, on September 29, 2017 [3]. How to keep
evacuate people safely and effectively in limited space has
attracted major concern.

In order to better solve the problem of pedestrian traffic
congestion, researchers have made a lot of efforts. From
about 1980 onwards, research on pedestrian traffic was often
divided into two branches: pedestrian simulation and

pedestrian model. Pedestrian simulation focuses on repro-
ducing the natural behavior of pedestrian flow. And with the
development of computer graphics, virtual pedestrians can
be realized.

,ere are many similar behaviors and different char-
acteristics between the vehicular traffic and the pedestrian
traffic. First of all, on the macro level, pedestrian traffic
presents the same flow characteristics as vehicle traffic.
Similarly, the average velocity and flux can be introduced to
describe flow characteristics. However, pedestrian traffic
composed of the different individuals shows stochastic
properties and multidirection movement due to fewer
constraints. ,us, pedestrian traffic is more complex and
flexible than vehicular traffic. Henderson firstly put forward
the macroscopic model of pedestrian flow in 1971 by ap-
plying gas dynamics model and fluid dynamics model to the
crowd experience data. He argued that the crowd’s behavior
is similar to gas under the freely moving phase with low
density and similar to fluids under congested phase with
high density. However, the energy conservation in the in-
teraction of pedestrians cannot be satisfied in case of pe-
destrian conflict [4]. In 1992, Helbing proposed a better fluid

Hindawi
Mathematical Problems in Engineering
Volume 2020, Article ID 1054393, 11 pages
https://doi.org/10.1155/2020/1054393

mailto:yuxuegxu@gxu.edu.cn
https://orcid.org/0000-0002-4676-7448
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/1054393


dynamics model on the basis of Henderson’s model by
taking into account the intention, the desired velocity, and
interaction between pedestrians [5]. Hughes’ model of
crowd gives the following three assumptions: (1) pedestrian
velocity is only determined by the pedestrian density; (2)
pedestrian has about the destination of the common sense;
and (3) pedestrians seek the shortest travel time [6]. Existing
pedestrian models mainly include cellular automata model,
lattice gas model, agent-basedmodel, social force model, and
hydrodynamic model [4, 7–20]. Helbing and Molnár pre-
sented the social force model to describe pedestrian dy-
namics in 1995 and assumed that the interaction between
pedestrians and pedestrians and between pedestrians and
environment is expressed by social forces [21]. But it will
cause unexpected effects when the superposition principle of
force is satisfied under high density. Cellular automata
model (CAmodel) of pedestrian traffic flow is a micromodel
which discretizes time and space. Introducing the cellular
automata model of traffic flow into pedestrian flow, it is
necessary to refine the discrete space. Each pedestrian to
occupy the multiple cells selects the moving direction and
speed according to the simple rules [22]. At present, these
models have been used for pedestrian facility design, cal-
culation of channel capacity, and emergency evacuation.
And many characteristics of pedestrian traffic can be ex-
tensively applied to many occasions such as bidirection
pedestrian, fire evacuation, aircraft evacuation, T-shaped
intersection, bottleneck road section, and slope evacuation
[23–27].

Comparing with micro-CA model, the macroscopic
model is suitable to real-time online simulate pedestrian flow
and carry out prediction due to the neglect of pedestrian
movement details resulting in rapid calculation. ,e first
microlattice hydrodynamic model was put forward by
Nagatani in 1998. He simplified Kerner and Konhäuser’s
high-order continuous model and referenced to the idea of
the car-followingmodel obtained by flow dynamics equation
and conservation equation [28]. And for simulating more
actual status of traffic flow, Nagatani proposed a two-lane
traffic model to consider the problem of vehicle lane change
in 1999 [29]. When the motion of a crowd is seen as fluid
flow at a macrolevel, the lattice dynamic equations de-
scribing the flow can be applied to pedestrian traffic. Based
on Nagatani’s lattice hydrodynamic model, Tian et al. ex-
tended the two-lane lattice hydrodynamic model of traffic
flow to the two-dimensional lattice hydrodynamic model
considering path change in bidirectional pedestrian traffic
flow and studied the impact of path changing rate on the
stability of pedestrian traffic flow through discussing the
value of critical point ac [30, 31]. Kuang et al. presented a
new lattice hydrodynamic model for two-way pedestrian
flow considering pedestrian visual field effect. ,e phase
transitions between the freely moving phase, the coexistence
phase, and the jamming phase below which the critical point
ac has been found [32]. Zhou et al. studied the effect of
memory effect on pedestrian flow and assumed pedestrians
may walk by his memory when it is difficult for pedestrians
to accurately capture the position [33]. Li et al. extended the
original hydrodynamic model of traffic flow to single row

pedestrian movement with medium and high density and
considered asymmetric interaction [34]. Yu et al. solve the
general solution of themKdV (modified Korteweg–de Vries)
equation [35]. In 2015, Redhu and Gupta present a new
lattice hydrodynamic model based on delayed feedback
control considering the flow difference effect [36]. In 2016,
Redhu and Gupta propose a multiphase lattice hydrody-
namic model by considering the forward looking effect and
discuss the impact of forward leading lattices on multiphase
traffic dynamics [37]. Peng et al. consider the lateral effects
and extended the lattice hydrodynamic model to the non-
lane-based lattice hydrodynamic model [38]. Wang et al.
study the impact of the multiple density difference effect on
the stability of traffic [39].

Until now, the lattice hydrodynamic model of pedestrian
flow with consideration of path change has been little de-
veloped. Also, the cumulative effect of delay time is im-
portant to adjust current pedestrian flow reaching the
optimal status. ,e movement of pedestrians will be affected
by the transverse effect and the longitudinal effect between
them. Assumed that if there is more space to allocate pe-
destrian in the transverse direction based on the optimal
effect and comfort level, one can select to continue along the
way forward or also select to change path with a faster rate.
In the longitudinal direction, Tian et al. have studied that the
current grid point flow is adjusted by the optimized flow of
the grid point ahead.,e pedestrian flow reaches the optimal
flow within the delay time td, while the downstream optimal
flow can continuously adjust the current flow under the
cumulative action of the delay time. Considering both the
transverse and longitudinal effects of pedestrian traffic, the
analysis of pedestrian traffic evolution characteristics will be
more real.

In this paper, a lattice hydrodynamic model of change
path pedestrian traffic under the cumulative action of delay
time is presented in Section 2. Section 3 carries out the linear
stability analysis to obtain the stability condition. In Section
4, the mKdV equation of congestion evolution is derived by
applying perturbation theory to perform nonlinear analysis.
Section 5 executes the numerical simulation to analyze the
evolution of the density wave to discuss the impact of the
cumulative effect of delay time. Finally, the main conclusion
is simply summarized.

2. Models

In 1999, Nagatani extended the one-lane lattice model to
two-lane traffic lattice model and assumed the changing lane
happens when the density ρ2,j− 1(t) at site j − 1 on the second
lane is greater than the density ρ1,j(t) at site j on the first
lane, and the changing lane rate is c|ρ20V′(ρ0)|
(ρ2,j− 1(t) − ρ1,j(t)), where ρ2,j(t) and ρ1,j(t), respectively,
denote the local density at site j on the second lane and the
local density at site j on the first lane. ,e changing path
frequency is denoted as c, which reflects the strength of the
changing path. ,e total average density is ρ0 and the
corresponding first derivative is V′(ρ0) � dV(ρ)/dρ|ρ�ρ0.
,e velocity V(ρ0) is called the optimal velocity function of
the density ρ0, which is defined as follows [28]:

2 Mathematical Problems in Engineering



V(ρ) �
vmax
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  + tanh
1
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  , (1)

where vmax denotes the maximal velocity of traffic flow
and ρc represents the critical density which is the inflection
point of the function of optimization velocity V(ρ). Simi-
larly, if the density at site j on the first lane is greater than that
at site j + 1 on the second lane, the changing lane rate from
the first lane to the second lane is c|ρ20V′(ρ0)
|(ρ1,j(t) − ρ2,j+1(t)).

,e conservation equation of one-dimensional lattice
hydrodynamic model is expressed as follows:

ztρj + ρ0 ρjvj − ρj− 1vj− 1  � c ρ20V′ ρ0( 


 ρj+1 − 2ρj + ρj− 1 ,

(2)

where ρj � (1/2)(ρ1,j + ρ2,j), ρjvj � (1/2)(ρ1,jv1,j + ρ2,jv2,j).
We will extend equation (2) to two-dimensional pe-

destrian flow with consideration of pedestrian changing
path. Pedestrians usually change travelling path along the
transverse direction in Public Square and so on. As shown in
Figure 1, four-way pedestrian traffic is considered: east-
bound, westbound, northbound, and southbound pedes-
trian. Assumed the fraction of pedestrians moving along
each direction is different. ,e ratio of eastbound and
westbound pedestrians to total pedestrians is C, in which the
ratio of westbound pedestrians to eastbound is C1 and the
westbound pedestrians correspond to (1 − C1). ,e ratio of
northbound and southbound pedestrians to total pedes-
trians is (1 − C). ,e ratio of southbound pedestrians to
southbound is C2 and the northbound pedestrian is
(1 − C2). ,e eastbound, westbound, northbound, and
southbound pedestrian local densities at site (j, m) at time t
are represented by ρx+(j, m, t), ρx− (j, m, t), ρy+(j, m, t)

and ρy− (j, m, t), respectively. ,e average density can be
obtained as follows:

ρ0x+(j, m, t) � CC1ρ0,

ρ0x− (j, m, t) � C 1 − C1( ρ0,

ρ0y+(j, m, t) � (1 − C)C2ρ0,

ρ0y− (j, m, t) � (1 − C) 1 − C2( ρ0.

(3)

,e conservation equation of the two-dimensional
bidirectional pedestrian traffic flow can be written as
follows:

ztρ(j, m, t) + cc1ρ0 qx+(j, m, t) − qx+(j − 1, m, t) 

+ c 1 − c1( ρ0 qx− (j, m, t) − qx− (j + 1, m, t)( 

+(1 − c)c2ρ0 qy+(j, m, t) − qy+(j, m − 1, t) 

+(1 − c) 1 − c2( ρ0 qy− (j, m, t) − qy− (j, m + 1, t) 

� c ρ20V′ ρ0( 


[ρ(j − 1, m − 1, t) + ρ(j + 1, m − 1, t)

+ ρ(j − 1, m + 1, t) + ρ(j + 1, m + 1, t) − 4ρ(j, m, t)],

(4)

where zt � z/zt. ,e eastbound, westbound, northbound,
and southbound pedestrian flows are denoted as
qx+(j, m, t), qx− (j, m, t), qy+(j, m, t) and qy− (j, m, t),
respectively.

To simulate more realistic pedestrian traffic conditions
with consideration of the impact of downstream pedestrian
flow on current pedestrians, the evolution equation of one-
dimensional pedestrian traffic flow is obtained as follows:

zt(q(j, t)) � aρ0V(ρ(j + 1, t)) − aρ(j, t)v(j, t)

+ aλ
t

t− td

ρ0V(ρ(j + 1, s)) − ρ(j, s)v(j, s)( ds,

(5)

where qj is the pedestrian flow at site j at time t and a is the
sensitivity coefficient of pedestrian flow (the inverse of the
response time τ). In effect, the response time is a relaxation
time when the pedestrian flow reaches a steady state from a
nonequilibrium state, which corresponds to the time interval
in response to a stimulus. λ denotes the strength coefficient,
and the integral term represents the cumulative effect of
downstream optimization flow and current pedestrian flow
differences within delay time td. ,e delay time td is the time
pedestrian needs to make decisions about what to travel next
and its value is larger than the response time. We employ the
following trapezoidal integral formula to approximately
estimate integral in equation (5) and extend to four-way
pedestrian flow:


t

t− td

ρ0V(ρ(j + 1, s)) − ρ(j, s)v(j, s)ds( 

�
td

2
ρ0V(ρ(j + 1, t)) − ρ(j, t)v(j, t)

+ ρ0V ρ j + 1, t − td( (  − ρ j, t − td( v j, t − td( .

(6)

,e evolution equation of four-way pedestrians flow can
be written as follows:
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ztqx+(j, m, t) � acc1ρ0V(ρ(j + 1, m, t)) − aqx+(j, m, t) +
1
2

aλtd cc1ρ0V(ρ(j + 1, m, t)) + cc1ρ0V ρ j + 1, m, t − td( ( 

− qx+(j, m, t) − qx+ j, m, t − td( 

ztqx− (j, m, t) � ac 1 − c1( ρ0V(ρ(j − 1, m, t)) − aqx− (j, m, t) +
1
2

aλtd c 1 − c1( ρ0V(ρ(j − 1, m, t))

+ c 1 − c1( ρ0V ρ j − 1, m, t − td( (  − qx− (j, m, t) − q− j, m, t − td( 

ztqy+(j, m, t) � a(1 − c)c2ρ0V(ρ(j, m + 1, t)) − aqy+(j, m, t) +
1
2

aλtd (1 − c)c2ρ0V(ρ(j, m + 1, t))

+(1 − c)c2ρ0V ρ j, m + 1, t − td( (  − qy+(j, m, t) − qy+ j, m, t − td( 

ztqy− (j, m, t) � a(1 − c) 1 − c2( ρ0V(ρ(j, m − 1, t)) − aqy− (j, m, t) +
1
2

aλtd (1 − c) 1 − c2( ρ0V(ρ(j, m − 1, t))

+(1 − c) 1 − c2( ρ0V ρ j, m − 1, t − td( (  − qy− (j, m, t) − qy− j, m, t − td( .

(7)

By eliminating velocity in equations (4) and (7), the
density evolution equation of four-way pedestrian flow is
derived as follows:

z
2
t ρ(j, m, t) + aztρ(j, m, t) + a cc1( 

2ρ20[V(ρ(j + 1, m, t)) − V(ρ(j, m, t))]

+ ac
2 1 − c1( 

2ρ20[V(ρ(j − 1, m, t)) − V(ρ(j, m, t))] + a(1 − c)
2
c
2
2ρ

2
0[V(ρ(j, m + 1, t)) − V(ρ(j, m, t))]

+ a(1 − c)
2 1 − c2( 

2ρ20[V(ρ(j, m − 1, t)) − V(ρ(j, m, t))]

− ac ρ20V′ ρ0( 


[ρ(j − 1, m − 1, t) + ρ(j + 1, m − 1, t) + ρ(j − 1, m + 1, t) + ρ(j + 1, m + 1, t) − 4ρ(j, m, t)]

+
1
2

aλtd cc1( 
2ρ20 V(ρ(j + 1, m, t)) + V ρ j + 1, m, t − td( (  − V(ρ(j, m, t)) − V ρ j, m, t − td( (  

+
1
2

aλtdc
2 1 − c1( 

2ρ20 V(ρ(j − 1, m, t)) + V ρ j − 1, m, t − td( (  − V(ρ(j, m, t)) − V ρ j, m, t − td( (  

+
1
2

aλtd(1 − c)
2
c
2
2ρ

2
0 V(ρ(j, m + 1, t)) + V ρ j, m + 1, t − td( (  − V(ρ(j, m, t)) − V ρ j, m, t − td( (  

+
1
2

aλtd(1 − c)
2 1 − c2( 

2ρ20 V(ρ(j, m − 1, t)) + V ρ j, m − 1, t − td(( (  − V(ρ(j, m, t)) − V ρ j, m, t − td( (  

+
1
2

aλtd ztρ(j, m, t) − c ρ20V′ ρ0( 


[ρ(j − 1, m − 1, t) + ρ(j + 1, m − 1, t) + ρ(j − 1, m + 1, t)

+ ρ(j + 1, m + 1, t) − 4ρ(j, m, t)]

+
1
2

aλtd ztρ j, m, t − td(  − c ρ20V′ ρ0( 


 ρ j − 1, m − 1, t − td(  + ρ j + 1, m − 1, t − td(  + ρ j + 1, m + 1, t − td( 

+ ρ j + 1, m + 1, t − td(  − 4ρ j, m, t − td( 

� c ρ20V′ ρ0( 


 ztρ(j − 1, m − 1, t) + ztρ(j + 1, m − 1, t) + ztρ(j − 1, m + 1, t) + ztρ(j + 1, m + 1, t) − 4ztρ(j, m, t) .

(8)
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3. Linear Stability Analysis

To obtain the stability condition of equation (8), the linear
stability analysis of the lattice hydrodynamic model is
performed as follows. At first, we consider the uniform
pedestrian flow which has constant density ρ0 and

optimization velocity V(ρ0). ,e solution of the uniform
steady state is obtained as ρj,m(t) � ρ0, vj,m(t) � V(ρ0).
Under disturbance y(j, m, t), the density of pedestrian flow
is expressed as ρj,m(t) � ρ0 + yj,m(t). Substituting it into
equation (8), the linearized equation is derived as follows:

z
2
t y(j, m, t) + azty(j, m, t) + a cc1( 

2ρ20V′ ρ0( [y(j + 1, m, t) − y(j, m, t)]

+ ac
2 1 − c1( 

2ρ20V′ ρ0( [y(j − 1, m, t) − y(j, m, t)] + a(1 − c)
2
c
2
2ρ

2
0V′ ρ0( (y(j, m + 1, t) − y(j, m, t))

+ a(1 − c)
2 1 − c2( 

2ρ20V′ ρ0( (y(j, m − 1, t) − y(j, m, t))

− ac ρ20V′ ρ0( 


[y(j − 1, m − 1, t) + y(j + 1, m − 1, t) + y(j − 1, m + 1, t) + y(j + 1, m + 1, t) − 4y(j, m, t)]

+
1
2

aλtd cc1( 
2ρ20V′ ρ0(  y(j + 1, m, t) + y j + 1, m, t − td(  − y(j, m, t) − y j, m, t − td(  

+
1
2

aλtdc
2 1 − c1( 

2ρ20V′ ρ0(  y(j − 1, m, t) + y j − 1, m, t − td(  − y(j, m, t) − y j, m, t − td(  

+
1
2

aλtd(1 − c)
2
c
2
2ρ

2
0V′ ρ0(  y(j, m + 1, t) + y j, m + 1, t − td(  − y(j, m, t) − y j, m, t − td(  

+
1
2

aλtd(1 − c)
2 1 − c2( 

2ρ20V′ ρ0(  y(j, m − 1, t) + y j, m − 1, t − td(  − y(j, m, t) − y j, m, t − td(  

+
1
2

aλtd zty(j, m, t) − c ρ20V′ ρ0( 


[y(j − 1, m − 1, t) + y(j + 1, m − 1, t) + y(j − 1, m + 1, t)

+ y(j + 1, m + 1, t) − 4y(j, m, t)] +
1
2

aλtd ztyx+ j, m, t − td(  − c ρ20V′ ρ0( 


 y j − 1, m − 1, t − td( 

+ y j + 1, m − 1, t − td(  + y j − 1, m + 1, t − td(  + y j + 1, m + 1, t − td(  − 4y j, m, t − td( 

� c ρ20V′ ρ0( 


 zty(j − 1, m − 1, t) + zty(j + 1, m − 1, t) + zty(j − 1, m + 1, t) + zty(j + 1, m + 1, t) − 4zty(j, m, t) .

(9)

Letting the disturbance y(j, m, t) be expressed as a
Fourier series y(j, m, t) ∼ exp(ik(j + m) + zt) and

substituting it into equation (9), we can gain the following
equation:

z
2

+ az + a cc1( 
2ρ20V′ ρ0(  e

ik
− 1  + ac

2 1 − c1( 
2ρ20V′ ρ0(  e

− ik
− 1  + a(1 − c)

2
c
2
2ρ

2
0V′ ρ0(  e

ik
− 1 

+ a(1 − c)
2 1 − c2( 

2ρ20V′ ρ0(  e
− ik

− 1  − ac ρ20V′ ρ0( 


 e
− 2ik

+ 1 + 1 + e
2ik

− 4 

+
1
2

aλtd cc1( 
2ρ20V′ ρ0(  e

ik
+ e

ik− ztd − 1 − e
− ztd  +

1
2

aλtdc
2 1 − c1( 

2ρ20V′ ρ0(  e
− ik

+ e
− ik− ztd − 1 − e

− ztd 

+
1
2

aλtd(1 − c)
2
c
2
2ρ

2
0V′ ρ0(  e

ik
+ e

ik− ztd − 1 − e
− ztd  +

1
2

aλtd(1 − c)
2 1 − c2( 

2ρ20V′ ρ0(  e
− ik

+ e
− ik− ztd − 1 − e

− ztd 

+
1
2

aλtd z − c ρ20V′ ρ0( 


 e
− 2ik

+ e
2ik

− 2   +
1
2

aλtd ze
− ztd − c ρ20V′ ρ0( 



 e
− 2ik− ztd + e

− ztd + e
− ztd + e

2ik− ztd − 4e
− ztd  

� c ρ20V′ ρ0( 


 ze
− 2ik

+ z + z + ze
2ik

− 4z .

(10)
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By performing Taylor expansion z � z1ik + z2(ik)2 + · · ·

for z and keeping the first- and second-order terms of (ik),
we can abstract the following equation from equation (10):

z1 � − gρ20V′ ρ0( 

z2 �
− 2 gρ20V′ ρ0(  

2
− afρ20V′ ρ0(  1 + λtd(  + 8ac ρ20V′ ρ0( 



 1 + λtd( 

2a 1 + λtd( 
,

(11)

where g � (cc1)
2 + ((1 − c)c2)

2 − ((1 − c)(1 − c2))
2 − (c(1

− c1))
2,f � (cc1)

2 + ((1 − c)c2)
2 + ((1 − c)(1 − c2))

2 + (c(1−

c1))
2. ,e uniform steady-state flow becomes unstable pe-

destrian flow for long-wavelength modes in the condition if
z2 is a negative value. When z2 is a positive value, the state of
the steady flowmaintains.,e neutral stability condition can
be obtained as follows:

a> −
2g2ρ20V′ ρ0( 

f 1 + λtd(  + 8c 1 + λtd( 
. (12a)

When c � 0.0, the following stability condition is
obtained:

a>
− 2g2ρ20V′ ρ0( 

f + λtdf
. (12b)

,e stability condition is identical with the solution of
the lattice hydrodynamic model of bidirectional pedestrian
traffic presented by Cen et al. [40]. By comparing the stability
condition, we discovered that the critical value of the sen-
sitivity coefficient without changing path frequency is larger
than the critical value of the sensitivity coefficient consid-
ering changing path frequency. It shows the importance of
considering changing lane to alleviate traffic congestion.
Moreover, if the cumulative effect of delay time td is not
taken into account, the stability condition equation (12a)
become as follows:

a> −
2g2ρ20V′ ρ0( 

f + 8c
. (12c)

It is the same as the research results in [31]. ,us, it
indicates the cumulative effect of delay time td is conducive
to suppress traffic jamming.

4. Nonlinear Analysis

Using the reductive perturbation technique to equation
(8), we carry out nonlinear analysis by considering long-
wave patterns in pedestrian flow on coarse-grained scales.
In order to describe the long-wave modes, the slowly
varying behavior of long wavelengths near the critical
point (ρc, ac) is studied. Introducing a small parameter ε
(0< ε≪ 1), we defined the slow space variables X and slow
time variable T:

X � ε(j + m + bt),

T � ε3t,
(13)

where b is an undetermined constant. ,e instantaneous
density is obtained as follows:

ρ(j, m, t) � ρc + εR(X, T), (14)

using equations (13) and (14) and expanding each term of
equation (8) to the fifth-order of ε, we gain

E

N

W

S

m + 1

m

m – 1

jj – 1 j + 1

Figure 1: ,e schematic of the pedestrian change of path. ,e circles denote a pedestrian in the lattice.
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ε2a 1 + λtd(  b + gρ20V′ ρc(  zxR

ε3 b
2

+
1
2

afρ20V′ ρc(  1 + λtd(  + 4acρ20V′ ρ0(  1 + λtd(  −
1
2

aλgρ20V′ ρc( bt
2
d −
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(15)

where the first derivative and third derivative of the optimal
velocity V(ρ) at the critical point (ρc, ac) are
V′(ρc) � dV(ρ)/dρ|ρ�ρc

, V‴(ρc) � d3V(ρ)/dρ3|ρ�ρc
. By tak-

ing b � − gρ20V′(ρc) and introducing a � ac(1 − ε2), the
second-order term and the third-order term of ε are elim-
inated. We derived the following equation:

ε4 zTR − g1z
3
xR + g2zxR

3
  + ε5 g3z

2
xR + g4z

4
xR + g5z

2
xR

3
  � 0

(16)
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For obtaining the high-order regularized equation, the
transformations are introduced:

T′ � −
1
6
ρ20V′ ρc( g −

λbt2d
12 1 + λtd( 

3btdρ
2
0V′ ρc( g − 3ρ20V′ ρc( f + 2b

2
td  T,

R �

����������������������������������������������������������

− ρ20V′ ρc( g − λbt2d/2 1 + λtd( (  3btdρ20V′ ρc( g − 3ρ20V′ ρc( f + 2b2td 

ρ20V‴ ρc( g




R′.

(18)

Consequently, the mKdV equation with O(ε) term is
obtained as follows:

zT′
R′ − z

3
XR′ + zXR′

3
+ εM[R′] � 0, (19)

where M[R′] � (1/g1) g3z
2
XR′ + (g1g5/g2)z

2
XR′

3
+ g4z

4
X

R′}. ,e solution of the mKdV equation (19) is given by

R0′ (X, T′) �
�
c

√
tanh

�
c

2



(X − cT′) , (20)

where R0′(X, T′) � R′(X, T′) − εR1′(X, T′) and c � 5g2g3/
(2g2g4 − 3g1g5).

,us, the solution of kink-antikink wave of the mKdV
equation is yielded as follows:

ρj,m � ρc + ε
���
g1c

g2



tanh
�
c

2



X − cg1T(  . (21)

where ε2 � ac/a − 1, and the amplitude A of kink-antikink
wave is expressed as follows:

A �

�����������

c
g1

g2

ac

a
− 1 



. (22)

,e solution of kink-antikink wave indicates the coex-
isting phase which is composed of the free flow phase (low
density) and the congested phase (high density). ,e density
of the free flow phase isρj,m � ρc − A, and the density of the
congested phase is ρj,m � ρc + A. ,ereafter, the coexisting
curve can be shown as the dotted curve in Figure 2.

Figure 2 reveals the neutral stability lines with solid lines
and the coexisting curves with dotted curves for a fixed value
of the ratio C1, C2, and C, the delay time td, the cumulative
coefficient λ, and the changing path rate c. ,e phase dia-
gram can be divided into three regions: the stable region
above the neutral line, the metastable region between the
neutral stability line and the coexisting curve, and the un-
stable region below the neutral line. In themetastable region,
if the disturbance strength exceeds its critical amplitude, the
disturbance will become larger with the time.,e pedestrian
flow is in the unsteady state, which causes pedestrian
congestion. When the disturbance is less than the critical
amplitude, pedestrian flow is still in the steady state. In the
stable region, pedestrian flow remains the steady state due to
the attenuation of disturbance. On the contrary, the dis-
turbance in the unstable region gradually increases with time
and eventually develops into kink-antikink wave.

Figure 2(a) plots that the neutral stability lines obviously
reduce with increasing value of the ratio C. It is shown that
the distribution of pedestrian density impacts the stability of
the pedestrian traffic system, and reasonable distribution of
pedestrian density can improve the stability of the traffic
system. By comparison of Figures 2(a) and 2(b), the increase
of delay time td leads to the contraction of the unstable
region. It indicates that the delay time td can significantly
enhance the pedestrian traffic stability. Moreover, the stable
region is accordingly expanded with the increase of the
changing path frequency c. It means the increase of the
changing path frequency c has a favorable influence on
suppressing pedestrian traffic congestion.

5. Simulation and Analysis

In order to verify the results in the stability analysis and
nonlinear analysis, we carry out simulation and comparison
with the consequence of the theoretic analysis. ,e periodic
boundary condition is adopted in the process of the nu-
merical simulation. ,e initial density and the critical
density are chosen as ρ(j, m, 0) � ρc � 0.25 and the sensi-
tivity of driver a= 1.8. ,e four-way traffic on square is
divided into L× L lattice with L= 100. ,e small perturba-
tions are added to a two-dimensional four-way pedestrian
traffic: ρ((L/2), (L/2),1) � 0.1 and ρ(L/2 − 1, L/2 − 1,1) �

0.3. ,e unit time step is equal to the inverse of the
sensitivity a.

,e evolution pattern of density wave is depicted in
Figure 3 at 2000 time steps for C1 =C2 = 0.1 without delay
time td. As we can see that the fluctuation of density wave in
Figure 3(a) is great without changing path frequency. It is
easy to cause congestion and is not conducive to evacuation.
In Figures 3(b) and 3(c), the fluctuation of density wave is
gradually weakened under the increase of path change
frequency c, it indicates that changing path can improve the
stability of the traffic system on certain level, and it is
consistent with the stability condition equation (12c). When
the ratio C is less than or equal to 0.5, Figures 3(b) and 3(d)
exhibit that there is no congestion of pedestrian traffic with
the increase of the ratio C, which is consistent with the
theoretical analysis of system stability.

Figure 4 shows the spatial distribution of density at 2000
time steps for C1 �C2 �C� 0.1. It is clearly observed that the
cumulative effect of delay time td can significantly improve
the pedestrian traffic stability and eliminate jams of
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Figure 2: Phase diagrams in the (ρ, a) plane for C1 �C2 � 0.1. ,e solid curve and dotted curve denote the neutral stability lines and the
coexisting curve, respectively. (a) λ� 0.1, td � 0.1, and c � 0.001. (b) λ� 0.1, td � 0.5, and c � 0.001. (c) λ� 0.3, td � 0.3, and C� 0.3.
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Figure 3: ,e plot of density ρ against space (j, m) for t� 2000, C1 �C2 � 0.1, and td � 0. (a) c � 0.0 and C� 0.1. (b) c � 0.005 and C� 0.1.
(c) c � 0.01 and C� 0.1. (d) c � 0.005 and C� 0.3.
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pedestrian traffic from the fluctuation of density wave in
Figures 3 and 4. If pedestrians do not think about changing
path (c � 0), Figure 4(a) shows the great changes in crowd
density. When the cumulative effect of delay time td en-
hances, the density change in Figure 4(b) is very small. It
indicates the more impact of the greater strength coefficient
λ on suppression of traffic congestion. ,e cumulative term
of delay time in equation (5) is suitable to use as a feedback
control one.

6. Conclusions

In this paper, a two-dimensional lattice hydrodynamic
model of pedestrian traffic flow is proposed considering
path change under the cumulative effect of delay time.
Using the linear stability analysis, the neutral stability
condition is obtained. By performing the nonlinear
analysis, the mKdV equation describing the density wave
of pedestrian flow is derived and the coexistence curve is
gained. ,e phase diagram is divided into three regions:
stable region, unstable region, and metastable region. ,e
theoretical analysis shows that changing path c and the
cumulative effect of delay time td can reduce the value of
critical point ac and significantly improve the stability of
pedestrian flow. ,e unstable region can be shrunken by
the increase of path change frequency, which may be
conducive to crowd evacuation. Numerical simulations
further illustrate the improvement of changing path rate
and delay time td on pedestrian traffic flow. Moreover,
increasing ratio C (C < 0.5) of eastbound pedestrians and
westbound pedestrians to total pedestrians can also im-
prove the stability of pedestrian traffic flow. It indicates
pedestrian density must be properly distributed in order
to improve the stability of the traffic system.
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