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Quantile regression estimates are robust for outliers in y direction but are sensitive to leverage points. The least trimmed quantile
regression (LTQReg) method is put forward to overcome the effect of leverage points. The LTQReg method trims higher residuals
based on trimming percentage specified by the data. However, leverage points do not always produce high residuals, and hence,
the trimming percentage should be specified based on the ratio of contamination, not determined by a researcher. In this paper, we
propose a modified least trimmed quantile regression method based on reweighted least trimmed squares. Robust Mahalanobis’
distance and GM6 weights based on Gervini and Yohai’s (2003) cutoff points are employed to determine the trimming percentage
and to detect leverage points. A simulation study and real data are considered to investigate the performance of our

proposed methods.

1. Introduction

Quantile regression (QReg) has received much attention
since the seminal work of Koenker and Bassett [1]. It can be
considered as one of the important statistical breakthroughs
in recent decades. The desirable advantages of quantile re-
gression led to its application in wide areas of sciences such
as in medicine, financial, economics, agriculture, environ-
ment, and others [2, 3]. QReg is an extension of the mean
regression model to conditional of the different quantiles of
the response variable distribution. Therefore, QReg is able to
provide much more detailed stochastic relationship among
random variables.
Consider the following regression model:

yi=x;B+e; (D

where y; is an (nx 1) vector of a response variable, x; is a
(k x 1) vector of covariates variables, f8 is a vector of un-
known parameters, and ¢; is an (n x 1) vector of error terms.
For any 7-quantiles in the interval (0, 1), the parameter f3,

can be estimated consistently as the solution to the following
optimization problem:

rn/),inzpr(yi _x;ﬁr)’ (2)
i=1

where p_(.) is the check function, defined as
po () = u(r—1(u<0), 3)

where I(.) denotes the indicator function.

One of the important advantages of quantile regression
is the insensitivity for outliers and heavy tailed distribution
for error term. This robustness of QReg for outliers arises
because of the nature of the check function which is shown
in (3) (see [3-5]). Similar to M-estimator regression, QReg is
not robust when the predictor variables contain outliers
which are called high leverage points (HLPs) [6]. There are
some attempts to overcome the effect of HLPs and maximize
the breakdown point of QReg. Giloni et al. [7] proposed a
weighting method to increase the breakdown point and cope
with HLP, based on the blocked adaptive computationally
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efficient outlier nominators (BACON) method that is pro-
posed by Billor et al. (2000), in which a clean subset is chosen
via their algorithm. The limitation of the weighting method
is that it can be used with small numbers of regressers (often,
one or two regresser variables). Rousseeuw and Hubert [8]
proposed the regression depth as an extended version for
regression quantile. They pointed out that the depth
quantiles is robust to HLPs. Adrover et al. [9] presented a
robust estimation method that is unaffected by leverage
points and, at the same time, maximizes the breakdown
point. The disadvantages of the weighting method and depth
quantiles are computational complexity and nonstandard
asymptotic distributions Neykov et al. [10].

Recently, least trimmed QReg is proposed by Neykov
et al. [10] to reduce the effects of HLPs. This method is a
generalization of the location estimator that was proposed by
Tableman [11] and least trimmed absolute deviation pro-
posed by Hawkins and Olive [12]. Neykov et al. [10] proved
the consistency of the least trimmed quantile regression
method and discussed the breakdown point of the estima-
tors. The limitation of this method is that the trimming
percentage is a constant whereby the trimmed data may be
lower or higher than the actual contamination percentage of
the data. The least trimmed quantile method minimizes the
quantile residuals in (2) for the subset (h) out of the sample
size (n). However, it is important to mention that the le-
verage point is not affected by residuals. Therefore, this
method does not correctly detect the high leverage points.

In this paper, we proposed a new algorithm to develop
the least trimmed quantile regression method and to
overcome these disadvantages in the existing methods. The
new proposed algorithm integrates the reweighted least
trimmed method that proposed by Cizek [13] with QReg to
determine the trimming percentage and robust Mahala-
nobis’ distance to identify the HLPs. In addition, we employ
the Gervini and Yohai [14] technique to compute the cutoff
point and new weights for the QReg. Besides that, RMD is
used to detect the leverage points.

2. Least Trimmed Quantile
Regression (LTQReg)

Least trimmed squares (LTS) method is a robust estimation
technique proposed by Rousseeuw [15] by minimizing the
following objective function:

h
min Y ety (B, (4)
i=1

where 7, () is the i-th order statistic squares residuals,
&P, & (), ..., &(p), and (h) is a subset out of (n). The
trimming constant & = n(1 — a) + 1, where « is a ratio of
trimming. When h = (n+ p + 1)/2, the highest breakdown
point of the LTS estimator will be achieved (0.50) [16].
Roozbeh and Hamzah [17] developed the LTS method for
restricted semiparametric regression models. Based on the
least trimmed squares (LTS) method, robust ridge and
nonridge type estimators were developed by Roozbeh [18] in
semiparametric model regression when the errors are
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dependent. Roozbeh et al. [19] introduced some alternative
robust estimators based on a penalization scheme, whereas a
nonlinear integer programming was used.

Neykov et al. [10] proposed the least trimmed quantile
regression (LTQReg) as an efficient and robust method to
overcome the effect of HLPs on QReg. LTQReg is defined as
follows:

h
BT = argmﬁianT(ei(/S)), (5)
i=1

where p_ (¢; () is defined as in (2) and (3). Neykov et al. [10]
proved  that when  the  trimming  constant
h= (n+N(X)+1)/2, the breakdown point of LTQReg
estimator is asymptotically equal to 0.50, where N (X) is the
maximum number of explanatory variables. Miiller [20] and
Neykov et al. [10] pointed out that N(X) = p— 1.

The LTQReg method is based on the smallest quantile
errors to reduce the influence of leverage points. In this
situation, we would like to ask the following question: is the
error values of the QReg and LS will be high for all leverage
points? We most answer to this question by the following
example. Let us consider the simple linear regression model
y; = Po + Pi1x; + &, with a sample size of n=50, and the
independent variable x; is uniformly distributed [-1, 1]. Let
Bo=pP =1and ¢ ~ N(0,1).

In order to illustrate the effect of leverage points and
outliers on the error term, 20% of the observations are
contaminated by replacing the first 10 observations with
contaminated observations. We consider three cases of
contaminations: outliers, HLPs, and both outliers and HLPs
simultaneously. The first 10 observations of the explanatory
variable and dependent variable are contaminated as follows:
x; ~U (=50, 50) and y; ~ U (50, 100). Least squares (LS) and
QReg at three quantiles (0.25, 0.50, and 0.75) were then
applied to the data. In this example, we want to investigate if
the LS and QReg produced high errors in all contamination
scenarios which are suitable for LTQReg.

For all the three cases of contaminations, the fitted re-
siduals are plotted as shown in Figures 1-3.

Figures 1-3 clarify influences of outliers, HLPs, and both
on LS and QReg in different quantiles. In Figures 1 and 3, we
can see clearly that when the data are contaminated by
outliers, the first 10 observations have highest residuals for
both LS and QReg in different quantiles. On the contrary, in
Figure 2, when the data are contaminated by HLPs, the
residuals of LS and QReg are not affected by HLPs. From
Figures 1-3, we can conclude that the outlier observations
have a direct effect on the residuals, whereas the leverage
points have no effect on the residuals. Hence, we can say that
the LTQReg method is not an effective method to reduce the
effect of leverage points because it is based on trimming the
highest (n - h) residuals.

3. Modified Least Trimmed Quantile
Regression (MLTQReg)

In this section, we will discuss the modified LTQReg method
to determine the rate of contamination data and the best
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FiGure 1: The fitted residuals for LS and QReg at three quantiles (0.25, 0.50, and 0.75) for contaminated data with outliers.
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FIGURE 2: The fitted residuals for LS and QReg at three quantiles (0.25, 0.50, and 0.75) for contaminated data with HLPs.

trimming percentage. Three modified methods will be dis-
cussed in this section based on the reweighted least trimmed
squares (RWLTS) method which was proposed by Cizk [13]
depending on hard rejection weights [16] and combined to
the LTQReg method to robustify the weighted least squares
method. The hard rejection weights in the RWLTS method
are defined as

3
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where us are the standardized of regression residuals and
t,>0 is the cutoff point that was adapted by Gervini and
Yohai [14]. The cutoft point value is computed by comparing
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FIGURE 3: The fitted residuals for LS and QReg at three quantiles (0.25, 0.50, and 0.75) for contaminated data with both outliers and HLPs.

the empirical distribution function G}, of standardized ab-
solute residuals with the distribution function G{ of absolute
residuals under the assumed model. The friction of unusual
observation in the sample (d,,) can be measured as

Step 1. Consider the LTQReg estimator as an initial
estimate with high breakdown point and compute the
standardized residual u; fori=1,...,n.

Step 2. Calculate hard rejection weights for the stan-
. s dardized residuals as
dn = sup {Gn (t) - G() (t)} > (7) Res

t>k i

= Hu; <t,}, (10)

where k=2.5 [16]. Therefore, the t, value is set to the (1 -
d,)th quantile of G (t) as follows:

where t,, is the cutoff point of Gervini and Yohai [14]
that is shown in (8).

Step 3. Calculate the trimming constant (h,) based on
the weights in equation (10), from the formula
hy =Y szeS'

Step 4. Applying the LTQReg based on the algorithm
that proposed by Neykov et al. [10] for the subset of the
size h,,, this procedure can be described as follows:

t, =min{t: G, (t)>1-4d,}. (8)

The procedure of the reweighted least trimmed square
method [13] can be described in two steps. The first step is
determining the trimming constant i based on the weights
that are given in (6), defined as

(i) Set r =0, select a subset with the size h, from the
sample.

(i) For the subset h,, use the QReg to estimate the
coeflicients ([3:).

(iii) For all observations in the sample, compute the
residggls and Arthen order },he residuals as
ugy (B Supy (B s Supy(B)i=1...,n

(iv) Then, set r = r + 1 and the new subset is consid-
ered the first h,,.

(v) For the new subset, Steps (ii), (iii), and (iv) were
repeated. This procedure is repeated until
convergence.

h=) w,. 9)

™=

I
—

1

The second step is applying the LTS method depending
on the trimming constant h that is computed in the first step.

To increase breakdown points of the proposed method, a
high breakdown estimator LTS, LMS, or S are used as initial
(see [13, 14]) and the robust weights are used to improve the
efficiency.

Next, we will describe three algorithms based on the
RWLTS to improve the LTQReg [10].

3.1. Reweighted Least Trimmed Quantile Regression
(RWLTQReg). In this method, we combine the RWLTS with
LTQReg to determine the trimming constant, and the al-
gorithm for this method can be describe as follows:

3.2. Modified Least Trimmed Quantile Regression Based on
RMD (RMD-LTQReg). In this algorithm, we used the
modified least trimmed quantile regression (MLTQReg) and
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FIGURE 4: The spread shape of the generated data in the first experiment at the three levels of contamination (0.10, 0.20, and 0.30) when the
sample size n =100 and 200.
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RMD to detect the leverage points. The algorithm is pre- where T (X) and C (X) are the location and the shape
sented as follows: estimates of MVE.
Step 1. Compute the RMD as follows: Step 2. Compute w;™? = I{RMD (x;) < K}, where K is

the cutoff point computed as follows:
RMD (x;) = \/(xi -T(X)'CX)™ (x; - T(X)), (11) K = median (RMD(x;)) + ¢ * mad (RMD(x;)),  (12)
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FIGURE 6: SE values for the estimated parameters at each quantile and contamination level for all methods (M1 =QReg, M2 =LTQReg
(20%), M3 =LTQReg (30%), M4 = RWLTQReg, M5=RMD-LTQReg, and M6 = GM6-LTQReg) in the first experiment when n=100.

where mad(y;) = med{lyi - medyjl} and c is a con-
stant, 2 or 3.

Step 3. As in Step 1 and 2 of the RWLTQReg algorithm,
we compute wi® weights.
Step 4. Find the final weights by combining wiP with

wi as follows:

— w}{es ,

WRMD, i 1y RMD
(13)

0, if wiMP £ hes,

Step 5. Hence, the trimming constant ...

Step 6. We will apply Step 4 in the RWLTQReg al-
gorithm for the subset of the size h, from the sample
and set probability zero for the leverage points to
ensure that we will not start with the bad subset
(contains leverage points), Rousseeuw and Van
Driessen [21], which means the condition of wiMP #0
is satisfied (clean of leverage points).

3.3.

Modified Least Trimmed Quantile Regression Based on

GM6 Method (GM6-LTQReg). The GM-estimator is pro-
posed by Schweppe (see [22]) to reduce the influence of
leverage points. Adrover et al. [9] showed that the break-
down of the GM-estimator was never higher than 1/(p + 1).
Coakley and Hettmansperger [23] proposed the GM6-es-
timator to increase the breakdown point of the GM-esti-
mator by using the least trimmed squares (LTS) as initial and
RMD based on MVE to downweight leverage points. In this
paper, we suggest using the GM6 weights to modify the
LTQReg, and the procedure of this modification can be
determined by following algorithm:

Step 1. For i = 1,...,n, compute an initial estimate for
the coefficients and the corresponding residuals (g;),
the high breakdown estimators (LTQReg), Neykov
et al. [10].

Step 2. Compute the scale of the residuals (se), as
follows:

se = 1.4826(median of largest (n — p) of the |si|). (14)
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FIGURE 7: SE values for the estimate parameters at each quantile and contamination level for all methods (M1 = QReg, M2 = LTQReg (20%),
M3 =LTQReg (30%), M4 =RWLTQReg, M5=RMD-LTQReg, and M6 = GM6-LTQReg) in the first experiment when n =200.

residuals
is an initial weight

standardized
0

i

Step 3. Determine the
u; = [/ (W) x se)], where w
computed as follows:

P
w?:min 1, 7(0'95’1”21) .
RMD

Step 4. Hard rejection weights for the standardized
residuals can be computed as follows:

(15)

w; = Hu; <t,}, (16)

where t,, is a Gervini and Yohai [14] cutoft point that is
shown in (8).

Step 5. Hence, the trimming parameter will be com-
puted as h, = Y| w;.

Step 6. Step 4 in the RWLTQReg algorithm for the
subset of the size h,,.

4. Simulation Study

In this section, the Monte Carlo simulation study is pre-
sented to compare the performances of some existing
methods such as LTQReg [10] and QR [1] with our proposed
methods RWLTQReg, RMD-LTQReg, and GM6-LTQReg.

Following Neykov et al. [10], two explanatory variables
(x;; and x;,) are generated with large sample size (n =100
and 200) from the following classical heteroscedastic mul-
tiple linear regression model:

Vi = by +byx; +byx; + 0y

(17)
a; = [exp (0.1 (x;, + x,5))]"%,

where we assume that the coeflicients b, = b, = b, = 1, and
the error term (¢;) is distributed as N (0, 1). Also, two ex-
periments are considered with different distribution for
explanatory and response variables with three levels of
contamination (& = 10%,20%, and 30%). The trimming
percentage for the LTQReg will be considered as (0.20, 0.30).
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F1GURE 8: The SE values for the estimated parameters at each quantile and contamination level for all methods (M1 = QReg, M2 = LTQReg
(20%), M3 =LTQReg (30%), M4 =RWLTQReg, M5=RMD-LTQReg, and M6 = GM6-LTQReg) in the second experiment when n =100.

4.1. The First Experiment. In this experiment, a distribution
of the variables in the model is the uniform distribution
(Unif) with parameters [-10,10]. The variables are con-
taminated with different percentages, where the explanatory
variables are contaminated as Xij ~ Unif (-30,-20), j=1, 2,
and the response variable is contaminated as
y; ~ Unif (40, 80).

4.2. The Second Experiment. In this experiment, a distri-
bution of explanatory variables is set as normal distribution
N (0,1). The variables are contaminated with different
percentages, where the explanatory variables are contami-
nated as x;; ~ N (=10, 3), j =1, 2, and the response variable is
contaminated as y; ~ N (20, 3).

The contamination is done by replacement of clean data
by outlying data in both explanatory and response variables.
Let m = {§ xn}, and the explanatory variables are con-
taminated by replacing i = intger (m/3),...,m clean ob-

servations with outlying observations, whereas the
response variable y; is contaminated by replacing
i=1,...,intger(2m/3) clean observations with outlying
observations.

Figures 4 and 5 show the spread shape of generating data.
It can be seen clearly that these data contain leverage points

(outlying in the x direction) and outliers (outlying in the y
direction) and influence observations (outlying in both x and
y directions in the same time).

At the three quantiles 0.25, 0.50, and 0.75, the generated
data in different contamination percentages (10%, 20%, and
30%) are fitting via the proposed methods (RWLTQReg,
RMD-LTQReg, and GM6-LTQReg) and the existing
methods (QReg and LTQReg). Root of mean squares errors

(RMSE = \/(I/n) Yo (- j/i)z) and mean absolute errors
(MAE = (1/n) Y2, ly; —

;1) for the model and standard

V10051 B - )
are computed to evaluate our proposed methods.

In Tables 1 and 2, we reported the RMSE and MAE
values for the first and second experiments. In these tables,
we can see that RMSE and MAE values for all the methods at
three quantiles are shown in the rows and three levels of
contamination are shown in the columns. LTQReg (20%)
and LTQReg (30%) show the least trimmed quantile method
with 20% and 30% trim, respectively. The results in these
tables are the average of 100 replications for the two ex-
periments of the simulation study.

Table 1 and 2 show that the RMSE and MAE values for
the QReg method at the different quantiles and different

error for the parameters (SE =
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F1GURE 9: The SE values for the estimated parameters at each quantile and contamination levels for all methods (M1 = QReg, M2 = LTQReg
(20%), M3 =LTQReg (30%), M4 = RWLTQReg, M5=RMD-LTQReg and M6 = GM6-LTQReg) in the second experiment when 7 =200.

TaBLE 3: RMSE and MAE values for QReg, LTQReg (20%), LTQReg (30%), RWLTQReg, RMD-LTQReg, and GM6-LTQReg at the three
quantiles 0.25, 0.50, and 0.75 for the Star Cluster CYG OBI1 dataset.

Tau 0.25 0.50 0.75

Methods RMSE MAE RMSE MAE RMSE MAE
QReg 0.9329833 0.6158796 0.5779843 0.46691973 0.7019406 0.5386939
LTQReg (20%) 0.3657860 0.2983784 0.3587201 0.29214575 0.4894114 0.3793147
LTQReg (30%) 0.3319383 0.2686921 0.2974692 0.24057749 0.3701667 0.2945234
RWLTQReg 0.2230726 0.1754545 0.1675843 0.13943182 0.2453746 0.2111627
RMD-LTQReg 0.1913885 0.1509400 0.1200552 0.09658939 0.1835636 0.1476853
GM6-LTQReg 0.4200258 0.3388333 0.3868742 0.31637312 0.3510218 0.2818068

levels of contamination are the highest. That is, this method
is more affected than the other methods by outlying data that
fall in both x and y directions. On the contrary, we can see
that the proposed method RMD-LTQReg has the lowest
values of RMSE and MAE in most cases. This indicates that
the performance of RMD-LTQReg is better than the others.
On the other hand, the RWLTQReg has better performance
than the other methods except the RMD-LTQReg. In ad-
dition, we can see when the contamination levels are 20%
and 30%, the GM6-LTQReg performance is better than

LTQReg (20%) in most cases and LTQReg (30%) in the 30%
contamination level.

In Figures 6-9, we can see that the SE values for the
parameters that estimated by the RMD-LTQReg method are
the smallest in almost all cases, which indicates the per-
formance of the RMD-LTQReg method is the best among all
studied methods. Also, these figures show clearly that the
QReg method has high SE leads to worse performance. In
addition, the rest of the methods used showed close results in
most cases and were varying in some other cases. Therefore,
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FIGURE 10: Regression quantile for QReg, LTQReg (20%), LTQReg (30%), RWLTQReg, RMD-LTQReg, and GM6-LTQReg for the Star

Cluster CYG OBI1 dataset.

it could be argued that it is difficult to determine which one is
better than others.

5. Real Data Applications

In this section, the “Star Cluster CYG OB1” dataset is con-
sidered to verify the performance of our proposed methods.

5.1. Star Cluster CYG OBI. The Star Cluster CYG OBI1
dataset was used by many researchers such as Rousseeuw
and Leroy [24], Adrover et al. [9], and Neykov et al. [10].
This dataset contains 47 observations with one explanatory
variable which is the logarithm of the effective temperature
at the surface of stars. The independent variable is the
logarithm of its light intensity. Rousseeuw and Leroy [24]
presented that the scatterplot of this dataset shows two
groups of observations. The first group includes the ma-
jority of data that contain 43 stars, whereas the second
group includes the remaining four stars (the observations
are 11, 20, 30, and 34). The observations 11, 20, 30 and 34
are classified as leverage points [24].

In this example, we consider three quantiles (0.25, 0.50,
and 0.75) to examine robustness of our proposed methods.

Table 3 presents the RMSE and MAE values for all
proposed and existing estimation methods at each quantiles.
It is clear to see that the QReg method has the highest RMSE
and MAE values, whereas, the RMD-LTQReg method fol-
lowing by the RWLTQReg method has the better perfor-
mance due to they have the smallest RMSE and MAE values,
whereas the RMD-LTQReg method have detected the HLPs
correctly. Also, we can see that the LTQReg (30%) is better
than both of GM6-LTQReg and LTQReg (20%).

Figure 10 shows the fitted residuals of regression
quantiles for the existing and proposed methods. We can see
that the QReg method is dramatically affected by the le-
verage points. Even though the RWLTQReg has lowest
RMSE and MAE values in some cases, it is also affected by
leverage points evident by trimming the observations that
have high residuals, but it failed to trim leverage points.
However, LTQReg (20%), LTQReg (30%), and GM6-
LTQReg methods showed convergence in the chart and
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illustrated that these methods were also affected by the HLPs
but better than QReg. The proposed method RMD-LTQReg
shows a good performance due to its ability to trim the
leverage points.

6. Conclusions

In this paper, we proposed a new estimation method to
overcome the impacts of leverage points in data. The new
estimation method is called modified least trimmed quantile
regression. In addition, we proposed three methods based on
hard rejection weights that are used in reweighted least
trimmed squares (Cizek [13]) to determine the trimming
constant and to reduce the leverage point influence. In our
proposed methods, the cutoff point of Gervini and Yohai
[14] is employed for QReg. Moreover, Reweighted least
trimmed, GM6 weights and robust Mahalanobis’ distance
are developed for quantile regression.

To investigate the performances of our proposed
methods, a simulation study and real data are considered.
The results indicate that the LTQReg has bad performance
with data having leverage points due to it trims observations
that have high residuals, whereas leverage points do not
always have high residuals. Although, the RWLTQReg has
good performance, evident by small RMSE, MAE and SE
values, but it is not able to get rid of the leverage points. It is
the same for the GM6-LTQReg that even though it is able to
determine the trimming parameters, it is also affected by
leverage points. From the results, it is clear to see that the
RMD-LTQReg method is the best estimation method which
can avoid the effect of leverage points.

Data Availability

The “Star Cluster CYG OB1” dataset is considered to verify
the performance of our proposed method. This dataset is
obtained form the basis for the main sequence in a
Hertzsprung-Russell diagram of the Star Cluster CYG OB,
and it has been used by many researchers such as Rousseeuw
and Leroy [24], Adrover et al. [9], and Neykov et al. [10]. It is
available at package “robustbase” in R.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

References

[1] R. Koenker and G. Bassett, “Regression quantiles,” Econo-
metrica, vol. 46, no. 1, pp. 33-50, 1978.

[2] K. Yu, Z. Lu, and J. Stander, “Quantile regression: applications
and current research areas,” Journal of the Royal Statistical So-
ciety: Series D (The Statistician), vol. 52, no. 3, pp. 331-350, 2003.

[3] R. Koenker, “Quantile regression (no. 38),” Econometric So-
ciety Monographs, Cambridge University Press, Cambridge,
UK, 2005.

[4] L.Hao and D. Q. Naiman, “Quantile regression,” Quantitative
Applications in the Social Sciences, Elsevier, Amsterdam,
Netherlands, 2007.

13

[5] C. Davino, M. Furno, and D. Vistocco, Quantile Regression:
Theory and Applications, John Wiley & Sons, Hoboken, NJ,
USA, 2013.

[6] X.He,].Jureckova, R. Koenker, and S. Portnoy, “Tail behavior
of regression estimators and their breakdown points,”
Econometrica, vol. 58, no. 5, pp. 1195-1214, 1990.

[7] A. Giloni, J. S. Simonoff, and B. Sengupta, “Robust weighted
LAD regression,” Computational Statistics & Data Analysis,
vol. 50, no. 11, pp. 3124-3140, 2006.

[8] P.J. Rousseeuw and M. Hubert, “Regression depth,” Journal of
the American Statistical Association, vol. 94, no. 446, pp. 388-402,
1999.

[9] J. Adrover, R. A. Maronna, and V. J. Yohai, “Robust re-
gression quantiles,” Journal of Statistical Planning and In-
ference, vol. 122, no. 1-2, pp. 187-202, 2004.

[10] N. M. Neykov, P. Cizek, P. Filzmoser, and P. N. Neytchev,
“The least trimmed quantile regression,” Computational
Statistics & Data Analysis, vol. 56, no. 6, pp. 1757-1770,
2012.

[11] M. Tableman, “The asymptotics of the least trimmed absolute
deviations (LTAD) estimator,” Statistics & Probability Letters,
vol. 19, no. 5, pp. 387-398, 1994.

[12] D. M. Hawkins and D. Olive, “Applications and algorithms
for least trimmed sum of absolute deviations regression,”
Computational Statistics & Data Analysis, vol. 32, no. 2,
pp. 119-134, 1999

[13] P. Cizek, “Reweighted least trimmed squares: an alternative to
one-step estimators,” Test, vol. 22, no. 3, pp. 514-533, 2013.

[14] D. Gerviniand V.]. Yohai, “A class of robust and fully efficient
regression estimators,” The Annals of Statistics, vol. 30, no. 2,
pp. 583-616, 2002.

[15] P.].Rousseeuw, “Least median of squares regression,” Journal
of the American Statistical Association, vol. 79, no. 388,
pp. 871-880, 1984.

[16] P. Rousseeuw, “Multivariate estimation with high breakdown
point,” Mathematical Statistics and Applications, Springer,
vol. 8, pp. 283-297, Berlin, Germany, 1985.

[17] M. Roozbeh and N. A. Hamzah, “Feasible robust estimator in
restricted semiparametric regression models based on the LTS
approach,” Communications in Statistics—Simulation and
Computation, vol. 46, no. 9, pp. 7332-7350, 2017.

[18] M. Roozbeh, “Robust ridge estimator in restricted semi-
parametric regression models,” Journal of Multivariate
Analysis, vol. 147, pp. 127-144, 2016.

[19] M. Roozbeh, S. Babaie-Kafaki, and A. Naeimi Sadigh, “A
heuristic approach to combat multicollinearity in least
trimmed squares regression analysis,” Applied Mathematical
Modelling, vol. 57, pp. 105-120, 2018.

[20] C. H. Miiller, “Breakdown points for designed experiments,”
Journal of Statistical Planning and Inference, vol. 45, no. 3,
pp. 413-427, 1995.

[21] P. J. Rousseeuw and K. Van Driessen, “Computing LTS re-
gression for large data sets,” Data Mining and Knowledge
Discovery, vol. 12, no. 1, pp. 29-45, 2006.

[22] R. W. Hill, “Robust regression when there are outliers in the
carriers: the univariate case,” Communication in Statistics—
Theory and Methods, vol. 11, no. 8, pp. 849-868, 1982.

[23] C. W. Coakley and T. P. Hettmansperger, “A bounded in-
fluence, high breakdown, efficient regression estimator,”
Journal of the American Statistical Association, vol. 88,
no. 423, pp. 872-880, 1993.

[24] P. J. Rousseeuw and A. M. Leroy, Robust Regression and
Outlier Detection vol. 589, John Wiley & Sons, Hoboken, N7,
USA.



