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Due to the complexity of financial markets, there exist situations where security returns and background factor returns are
available mainly based on experts’ subjective beliefs, such as in the case of lack of historical data. To deal with such indeterminate
quantities, uncertain variables are introduced. Based on uncertainty theory, this paper discusses the distribution function of the
optimal portfolio return. Two types of new uncertain programming models, namely, the chance-mean model and the measure-
mean model, are proposed to make an optimal portfolio selection decision in an uncertain environment. It is proved that there
exists an equivalent relation between the chance-mean model and a deterministic linear programming model, which leads to an
approach to obtain the optimal solutions of the proposed models. Finally, some numerical examples are illustrated to show the
modelling ideas and the effectiveness of the models.

1. Introduction

Portfolio selection involves creating a combination of se-
curities to maximize portfolio return and spread risk.
Markowitz [1] first introduced the mean-variance model,
which was the beginning of the modern portfolio selection
theory. In the mean-variance model, expected return was
deemed to be investment return, and the variance was
considered as the risk. ,ough variance has been accepted as
a well-known method to measure risk in portfolio selection,
application of the mean-variance model was limited to some
extent. One limitation is that analysis based on variance
suggests high returns are just as undesirable as low returns
because high returns will also lead to the extreme of variance
(Markowitz [2], Grootveld and Hallerbach [3], and Huang
[4]). As a result, the single-factor model was proposed by
Sharpe [5]. Moreover, different scholars had various views
on risk, and they amplified modern portfolio selection
theory by improving themeasurement of risk. Some believed
that investors paid more attention to excess return exceeding
expected return and that a return lower than the expected

return should be regarded as risk. Based on this kind of view,
Markowitz [2] and Mao [6] proposed the mean-semi-
variance model, which was more suitable if the distribution
of portfolio return is asymmetric. Konno and Yamazaki [7]
employed absolute deviation to measure risk and then
proposed an expected absolute-deviation portfolio model.
Others preferred to use investors’ loss to measure risk, and
then VaR (Berkowitz et al. [8], Castellacci and Siclari [9])
and CVaR (Lim et al. [10]) were introduced to the portfolio
selection problems. In addition, some scholars introduced
higher moments to the portfolio selection models. For in-
stance, Samuelson [11] proved that if the first and second
moments are the same, investors would tend to make a
decision with a larger third-order moment (for good re-
sources on the portfolio selection problem, see Stone [12],
Konno and Suzuki [13], Pindoriya et al. [14], and Yu and Lee
[15]).

All the studies above assumed that investors only face
financial risk; however, in real financial markets, there exist
background factors, such as health, labour income, and real
estate, that have a considerable effect on the portfolio
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decision and cannot be hedged. Viceira [16] showed that if
labour income risk exists, the optimal allocation to stocks of
employed investors is larger than that of retired investors.
Rosen and Wu [17] pointed out that health risk and health
expenditure both have a considerable effect on investors’
optimal portfolio. Baptista [18] made an explanation of
optimal delegate portfolio management based on the effect
of background risk on the optimal portfolio decision. Jiang
et al. [19] studied the influence of background risk on
portfolio selection bymeans of mean-variance and discussed
the location of the efficient frontier affected by background
risk factors. Huang and Wang [20] further presented the
portfolio frontier characteristic with a dependent back-
ground risk in the framework of mean-variance.

In the studies mentioned above, returns of securities and
background factors are all regarded as random variables,
meaning that we have enough historical data to estimate
their future values. However, we frequently lack the required
observational data, especially for newly listed securities.
Even though there exist enough historical data, in many
cases, it is impossible to accurately predict security returns
since the security market is so complex. In this case, we have
no choice but to invite experts to evaluate the values of
security returns. ,en, security returns may be expressed by
belief degrees, which depend heavily on the experience and
knowledge of experts. How do we deal with belief degree?
Kahneman and Tversky [21] showed that human beings
usually give too much weight to unlikely events, which
means that belief degree usually contains a much wider
range of values than the indeterminate quantity may actually
take. In this case, it is not appropriate to employ probability
theory to handle belief degrees since it usually deviates far
from the actual frequency. Liu [22] introduced a counter-
example showing that dealing with the belief degree by
probability theory may lead to counterintuitive results. Also,
some fuzziologists believe that belief degree can be inter-
preted as fuzziness and try to employ fuzzy set theory (Zadeh
[23]) to manage portfolios. A fuzzy set (Zadeh [23]) is
defined by a membership function μ which assigns to each
element x a real number μ(x) ranging between zero and one.
,e value of μ(x) denotes the grade of membership of x in
the fuzzy set. Within the framework of fuzzy set theory, the
portfolio selection decision problem has been widely stud-
ied. For instance, Gupta et al. [24] applied fuzzy multicriteria
decision-making to develop asset portfolio optimization
models. Bhattacharyya et al. [25] proposed a fuzzy mean-
variance-skewness model by considering transaction cost.
Wang et al. [26] investigated a portfolio selection problem
with random fuzzy variables by defining a new equilibrium
risk value. Kar et al. [27] considered the Sharpe ratio and the
value-at-risk ratio and then proposed a biobjective fuzzy
portfolio selection model. In addition, papers by Xia et al.
[28], Huang [29], Deng and Li [30], Li et al. [31], Guo et al.
[32], Liu and Li [33], and Zhou et al. [34] have also de-
veloped the theory of fuzzy portfolio selection. However,
further studies show that paradoxes appear when fuzzy set
theory is employed to address belief degree (Liu [22]).

To deal with belief degree, an axiomatic uncertainty
theory was founded by Liu [35] and then further refined by

Liu [36]. Liu [22] also showed that belief degree follows the
laws of uncertainty theory, which means that it is suitable to
employ uncertainty theory to address belief degree. After
that, uncertain programming was proposed by Liu [37] to
deal with mathematical programming problems that contain
uncertain variables. Uncertainty theory has been widely
applied in various decision-making systems, such as
transportation problem (Gao et al. [38] and Zhang et al.
[39]), optimal assignment problem (Zhang and Peng [40]
and Ding and Zeng [41]), and contract design problem (Wu
et al. [42], Yang et al. [43]). Specifically, Huang [44] first
introduced uncertainty theory to portfolio selection. Since
then, many topics in the field of uncertain portfolio selection
have attracted the attention of relevant scholars. For ex-
ample, Huang and Qiao [45] discussed the multiperiod
portfolio selection problem and proposed a risk index
model. Li et al. [46] further discussed uncertain multiperiod
portfolio selection with a bankruptcy constraint. Zhang et al.
[47] proposed two innovative uncertain portfolio selection
models, the expected-variance-chance model and chance-
expected-variance model and designed a hybrid intelligent
algorithm to solve the models. Moreover, Li and Qin [48]
investigated an interval portfolio selection problem with
uncertain information and proposed a mean-semiabsolute
deviation model. Huang and Di [49] and Zhai and Bai [50]
discussed uncertain portfolio selection problems with
background risk. Qin et al. [51] presented mean-semi-
absolute deviation adjusting models for an uncertain
portfolio optimization problem. Chen et al. [52] proposed
two types of mean-semivariance models for optimal port-
folio decision-making and designed a hybrid intelligent
algorithm to solve the models. Recently, Xue et al. [53]
employed mental accounts to reflect different attitudes to-
wards risk and proposed a new uncertain model in which
security returns are estimated by experts. Kar et al. [54]
introduced a multiobjective uncertain portfolio selection
model based on cross-entropy (for more recent research on
uncertain portfolio decision-making, see Huang [55]).

,e above discussion makes clear that a variety of studies
have been proposed to address portfolio selection within the
framework of uncertainty theory. ,ey all assume that an
enterprise invests with its own capital. However, in reality,
enterprises’ investment funds are not always owned by the
enterprises themselves. Enterprises often borrow money
from banks to raise funds for investment. With sufficient
investment funds, enterprises may havemore choices among
more potential projects. In this vein, this paper will consider
a portfolio selection problem within the framework of
uncertainty theory with a borrowing constraint. In addition,
we discuss the effect of background factors on investment
decisions.

,e paper proceeds as follows. Section 2 introduces some
basic concepts and results of uncertainty theory. Section 3
describes the problem of uncertain portfolio selection with
the borrowing constraint and background risk and intro-
duces two new types of uncertain portfolio selection models.
Section 4 discusses the crisp equivalents of the proposed
models and provides the approaches to solve them. Section 5
illustrates the innovations of the paper by comparing it with
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the existing articles. Section 6 gives some numerical ex-
periments to illustrate our models and shows the impact of
borrowing and background risk on the optimal portfolio
decision. Finally, Section 7 concludes this paper with a brief
summary.

2. Preliminaries

Based on normality, duality, subadditivity, and product
axioms, uncertainty theory has now become an axiomatic
branch of mathematics. In this section, we will introduce
some key concepts of uncertainty theory, such as an un-
certain measure, an uncertain variable, and the uncertainty
distribution.

Definition 1 (Liu [35]). Suppose L is a σ-algebra over a
nonempty set Γ. Each element Λ ∈L is called an event. A
real-valued set function M Λ{ } is said to be an uncertain
measure if it satisfies the normality, duality, subadditivity,
and product axioms.

Definition 2 (Liu [35]). An uncertain variable ξ is a mea-
surable function from an uncertainty space (Γ,L,M) to the
set of real numbers. ,at is, the set

ξ ∈ B{ } � c ∈ Γ | ξ(c) ∈ B􏼈 􏼉 (1)

is an event for any Borel set B of real numbers.

Definition 3 (Liu [35]). ,e uncertainty distribution
Φ: R⟶ [0, 1] of an uncertain variable ξ is defined as
follows:

Φ(x) � M ξ ≤ x{ }, (2)

for any real number x.

Definition 4 (Liu [36]). An uncertainty distributionΦ is said
to be regular if it is a continuous and strictly increasing
function with respect to x at which 0<Φ(x)< 1 and

lim
x⟶− ∞
Φ(x) � 0,

lim
x⟶+∞
Φ(x) � 1.

(3)

An uncertain variable ξ is called linear if it has the
following linear uncertainty distribution (Liu [35]):

Φ(x) �

0, if x≤ a,

x − a

b − a
, if a≤x≤ b,

1, if x≥ b.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(4)

It is usually denoted by ξ ∼ L(a, b), where a and b are
real numbers with a< b. In addition, it is easy to verify that
the inverse uncertainty distribution of ξ is as follows:

Φ− 1
(α) � (1 − α)a + αb. (5)

Theorem 1 (Liu [36]). Let ξ1, ξ2, . . . , ξn be independent
uncertain variables with regular uncertainty distributions
Φ1,Φ2, . . . ,Φn, respectively. If f(x1, x2, . . . , xn) is strictly
increasing with respect to x1, x2, . . . , xm and strictly de-
creasing with respect to xm+1, xm+2, . . . , xn, then
ξ � f(ξ1, ξ2, . . . , ξn) is an uncertain variable with an inverse
uncertainty distribution as follows:

Ψ− 1
(α) � f Φ− 1

1 (α), . . . ,Φ− 1
m (α),Φ− 1

m+1(1 − α), . . . ,Φ− 1
n (1 − α)􏼐 􏼑.

(6)

Definition 5 (Liu [35]). Let ξ be an uncertain variable. ,en,
the expected value of ξ is defined as follows:

E[ξ] � 􏽚
+∞

0
M ξ ≥ x{ }dx − 􏽚

0

− ∞
M ξ ≤x{ }dx, (7)

provided that at least one of the two integrals is finite.
For a linear uncertain variable ξ ∼ L(a, b), it is easy to

compute its expected value as follows:

E[ξ] �
a + b

2
. (8)

Theorem 2 (Liu [36]). Let ξ and η be independent uncertain
variables with finite expected values. 9en, for any real
numbers a and b, we have

E[aξ + bη] � aE[ξ] + bE[η]. (9)

3. Problem Description

As introduced in Section 1, there exist situations in which
security returns are indeterminate quantities. In reality,
there are background factors, such as health, labour income,
and real estate, that influence investors’ decisions on
portfolio selection and cannot be hedged by diversifying
their portfolios. In addition, investors may want to apply for
loans and invest them in risky assets such as securities. If the
background factor return and securities’ return rate are
given by experts’ belief degree based on their experience
rather than historical data, then it is better to consider them
as uncertain variables.

Here, let us first introduce the following notations and
parameters, which will be used to describe the portfolio
selection problem by the mathematical models.

n: number of securities
xi: the wealth invested in security i, i � 1, 2, . . . , n

r: the borrowing interest rate
w: the wealth of an existing portfolio
v: the upper bound of borrowing
ti: the lower bound of the wealth invested in security i,
i � 1, 2, . . . , n

Ti: the upper bound of the wealth invested in security i,
i � 1, 2, . . . , n
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ξi: return rate of security i, with regular uncertainty
distribution Φi, i � 1, 2, . . . , n

η: background factor return, with regular uncertainty
distribution Ψ

Assume the wealth of an existing portfolio held by an
investor is w; in order to pursue more return, the investor
plans to reallocate his wealth among n securities by bor-
rowing from bank. Suppose the upper bound of borrowing is
v, and the borrowing interest rate is r.,en, the upper bound
of possible holding wealth is w + v. If the wealth invested in
security i is xi, then the budget constraint can be described as
follows:

w≤ 􏽘
n

i�1
xi ≤w + v. (10)

,en, the portfolio return can be expressed as follows:

f(x; ξ, η) � 􏽘

n

i�1
xiξi − r 􏽘

n

i�1
xi − w⎛⎝ ⎞⎠ + η, (11)

where x � (x1, x2, . . . , xn) and ξ � (ξ1, ξ2, . . . , ξn).
It is clear that the portfolio return f(x; ξ, η) is an un-

certain variable. In uncertain financial markets, investors
may require that the expected portfolio return be greater
than or equal to a given value u; we then have the following
expected return constraint:

E[f(x; ξ, η)]≥ u, (12)

where u is a predetermined minimal expected return which
investors feel satisfactory. ,e expected return constraint
shows that the average value of return is greater than or
equal to u. In practical applications, the value of u can be
determined by investors or financial experts. It is necessary
to point out that the value of this lower bound is dependent
on the decision-making conditions and the knowledge of
investors or experts.

To control other risk factors, investors can control se-
curities’ investment wealth by imposing upper and lower
bounds on each security. For each security i, this constraint
can be expressed as follows:

ti ≤xi ≤Ti. (13)

,en, x � (x1, x2, . . . , xn) is called a feasible portfolio if
it satisfies the following constraints:

E 􏽘
n

i�1
xiξi − r 􏽘

n

i�1
xi − w⎛⎝ ⎞⎠ + η⎡⎢⎢⎣ ⎤⎥⎥⎦≥ u,

w≤ 􏽘
n

i�1
xi ≤w + v,

ti ≤xi ≤Ti, i � 1, 2, . . . , n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

,e set of feasible portfolios x is denoted as S.
,e goal of this paper is to make a portfolio decision so

that the total return is maximized. However, because the
portfolio returnf(x; ξ, η) is an uncertain variable, we cannot
directly obtain the optimal decision by traditional methods.

In the following, we will first discuss the uncertainty of the
portfolio return and then introduce some optimization
decision models based on different points of view.

3.1. Uncertainty of Portfolio Return. Given a feasible port-
folio x, the uncertainty distribution of the total portfolio
return f(x; ξ, η) is denoted as Υx, i.e., for any real number p,
we have

Υx(p) � M f(x; ξ, η)≤p􏼈 􏼉. (15)

According to ,eorem 1, Υx is a regular function, since
ξi and η are regular uncertain variables with uncertainty
distributions Φi and Ψ, respectively. ,at is, for any
α ∈ (0, 1), we have the following inverse uncertainty
distribution:

Υ− 1
x (α) � 􏽘

n

i�1
xiΦ

− 1
i (α) − r 􏽘

n

i�1
xi − w⎛⎝ ⎞⎠ + Ψ− 1

(α). (16)

In addition, the following maximum portfolio return:

f(ξ, η) � max
x∈S

f(x; ξ, η), (17)

is also an uncertain variable. Denote Υmax as the uncertainty
distribution of f(ξ, η). Additionally, Υmax is a regular
function. For any real number p, we have

Υmax(p) � M f(ξ, η)≤p􏼈 􏼉. (18)

According to equations (16)–(18), for any real number p,
we have

M f(ξ, η)≤p􏼈 􏼉≤M f(x; ξ, η)≤p􏼈 􏼉, (19)

or, equivalently,

Υmax(p)≤Υx(p). (20)

In other words, for any α ∈ (0, 1), we have

Υ− 1
max(α)≥Υ− 1

x (α), (21)

since Υmax and Υx are both regular distribution functions.
If the returns are deterministic values, i.e., ξ � (ξi) and η

are replaced with constants h � (hi) and t, respectively, then
the maximum portfolio return f(ξ, η) can be rewritten as
f(h, t). It is easy to verify that f(h, t) is a strictly increasing
function with respect to h1, h2, . . . , hn and t. ,at is, for a
given (h, t) and (h′, t′), f(h, t) satisfies the following
conditions:

(i) f(h, t)≤f(h′, t′) when hi ≤ hi
′ for i � 1, 2, . . . , n and

t≤ t′.
(ii) f(h, t)<f(h′, t′) when hi < hi

′ for i � 1, 2, . . . , n and
t< t′.

According to ,eorem 1, for any α ∈ (0, 1), the inverse
uncertainty distribution Υ− 1

max(α) of f(ξ, η) is
f(Φ− 1(α),Ψ− 1(α)), where Φ− 1(α) � (Φ− 1

i (α)), i � 1, 2,

. . . , n. More precisely, f(Φ− 1(α),Ψ− 1(α)) is just the optimal
objective of the following deterministic model:
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max 􏽘

n

i�1
xiΦ

− 1
i (α) − r 􏽘

n

i�1
xi − w⎛⎝ ⎞⎠ + Ψ− 1

(α)

s.t. 􏽘
n

i�1
xiE ξi􏼂 􏼃 − r 􏽘

n

i�1
xi − w⎛⎝ ⎞⎠ + E[η]≥ u

w≤ 􏽘
n

i�1
xi ≤w + v

ti ≤xi ≤Ti, i � 1, 2, . . . , n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(22)

Obviously, model (22) corresponds to the linear pro-
gramming model. To obtain the value of Υ− 1

max(α), we should
first solve model (22). Repeating this process, we can get the
uncertainty distribution Υmax by interpolation
approximation.

How to get the optimal portfolio plan under an uncertain
environment? Some addition criteria should be considered.

3.2.UncertainPortfolioModels. Investors may first present a
satisfying confidence level α ∈ (0, 1) and hope to obtain a
largest value f such that the total portfolio return f(x; ξ, η)

is greater than or equal to f with confidence level α. ,is
leads us to propose the following critical value criterion.

Definition 6. A feasible portfolio x∗ is called α-optimal
portfolio if

max f |M f x∗; ξ, η( 􏼁≥f􏽮 􏽯≥ α􏽮 􏽯

≥max f |M f(x; ξ, η)≥f􏽮 􏽯≥ α􏽮 􏽯,
(23)

holds for any feasible portfolio x, where α is a predetermined
confidence level.

According to Definition 6, the α-optimal portfolio is
essentially the optimal solution of the following chance-
mean model:

max f

s.t. M 􏽘
n

i�1
xiξi − r 􏽘

n

i�1
xi − w⎛⎝ ⎞⎠ + η≥f

⎧⎨

⎩

⎫⎬

⎭ ≥ α

E 􏽘
n

i�1
xiξi − r 􏽘

n

i�1
xi − w⎛⎝ ⎞⎠ + η⎡⎢⎢⎣ ⎤⎥⎥⎦≥ u

w≤ 􏽘
n

i�1
xi ≤w + v

ti ≤xi ≤Ti, i � 1, 2, . . . , n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(24)

Remark 1. If loans are ignored, then model (24) becomes as
follows:

max f

s.t. M 􏽘

n

i�1
xiξi + η≥f

⎧⎨

⎩

⎫⎬

⎭ ≥ α

E 􏽘
n

i�1
xiξi + η⎡⎣ ⎤⎦≥ u

􏽘

n

i�1
xi � w

ti ≤xi ≤Ti, i � 1, 2, . . . , n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(25)

Remark 2. If background risk is not taken into account, then
model (24) can be rewritten as follows:

max f

s.t. M 􏽘
n

i�1
xiξi − r 􏽘

n

i�1
xi − w⎛⎝ ⎞⎠≥f

⎧⎨

⎩

⎫⎬

⎭ ≥ α

E 􏽘
n

i�1
xiξi − r 􏽘

n

i�1
xi − w⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦≥ u

w≤ 􏽘
n

i�1
xi ≤w + v

ti ≤ xi ≤Ti, i � 1, 2, . . . , n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(26)

Remark 3. If the loans and background risk are not con-
sidered, then model (24) degenerates to the following:

max f

s.t. M 􏽘
n

i�1
xiξi ≥f

⎧⎨

⎩

⎫⎬

⎭ ≥ α

E 􏽘
n

i�1
xiξi

⎡⎣ ⎤⎦≥ u

􏽘

n

i�1
xi � w

ti ≤xi ≤Ti, i � 1, 2, . . . , n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(27)

From a different perspective, investors may present an
appropriate threshold profit f and hope to maximize the
chance of total return preponderating the given profit level.
,is modelling idea can be called chance criterion. Based on
this criterion, the chance optimal portfolio is defined as
follows.

Definition 7. A feasible portfolio x∗ is called the chance
optimal portfolio if

M f x∗; ξ, η( 􏼁≥f􏽮 􏽯≥M f(x; ξ, η)≥f􏽮 􏽯, (28)

holds for any feasible portfolio x, where f is a predetermined
profit level.
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According to Definition 7, the chance optimal portfolio
x∗ is simply the optimal solution of the following measure-
mean model:

max M 􏽘
n

i�1
xiξi − r 􏽘

n

i�1
xi − w⎛⎝ ⎞⎠ + η≥f

⎧⎨

⎩

⎫⎬

⎭

s.t. E 􏽘
n

i�1
xiξi − r 􏽘

n

i�1
xi − w⎛⎝ ⎞⎠ + η⎡⎢⎢⎣ ⎤⎥⎥⎦≥ u

w≤ 􏽘
n

i�1
xi ≤w + v

ti ≤xi ≤Ti, i � 1, 2, . . . , n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(29)

Remark 4. If there is no borrowing, then model (29) can be
expressed as follows:

max M 􏽘
n

i�1
xiξi + η≥f

⎧⎨

⎩

⎫⎬

⎭

s.t. E 􏽘
n

i�1
xiξi + η⎡⎣ ⎤⎦≥ u

􏽘

n

i�1
xi � w

ti ≤ xi ≤Ti, i � 1, 2, . . . , n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(30)

Remark 5. If there is no background risk, then model (29)
can be expressed as follows:

max M 􏽘
n

i�1
xiξi − r 􏽘

n

i�1
xi − w⎛⎝ ⎞⎠≥f

⎧⎨

⎩

⎫⎬

⎭

s.t. E 􏽘
n

i�1
xiξi − r 􏽘

n

i�1
xi − w⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦≥ u

w≤ 􏽘
n

i�1
xi ≤w + v

ti ≤ xi ≤Ti, i � 1, 2, . . . , n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(31)

Remark 6. If there are no borrowing and background risk,
then model (29) can be rewritten as follows:

max M 􏽘
n

i�1
xiξi ≥f

⎧⎨

⎩

⎫⎬

⎭

s.t. E 􏽘
n

i�1
xiξi

⎡⎣ ⎤⎦≥ u

􏽘

n

i�1
xi � w

ti ≤ xi ≤Ti, i � 1, 2, . . . , n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(32)

4. Equivalents of the Models

Note that there are many uncertain variables in model (24)
and model (29). To solve the models, it is necessary for us to
discuss the crisp equivalents of them.

Theorem 3. If ξi and η are independent uncertain variables
with regular uncertainty distributions Φi and Ψ,
i � 1, 2, . . . , n, respectively, then the α-optimal portfolio is
simply the optimal solution of the following model:

max 􏽘
n

i�1
xiΦ

− 1
i (1 − α) − r 􏽘

n

i�1
xi − w⎛⎝ ⎞⎠ + Ψ− 1

(1 − α)

s.t. 􏽘
n

i�1
xiE ξi􏼂 􏼃 − r 􏽘

n

i�1
xi − w⎛⎝ ⎞⎠ + E[η]≥ u

w≤ 􏽘
n

i�1
xi ≤w + v

ti ≤xi ≤Ti, i � 1, 2, . . . , n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(33)

Proof. Since f(x; ξ, η) is strictly increasing with respect to
ξ1, ξ2, . . . , ξn and η, then for any α ∈ (0, 1), the inverse
uncertainty distribution of f(x; ξ, η) is as follows:

Υ− 1
x (α) � 􏽘

n

i�1
xiΦ

− 1
i (α) − r 􏽘

n

i�1
xi − w⎛⎝ ⎞⎠ + Ψ− 1

(α). (34)

Owing to the fact that ξi and η are regular uncertain
variables, by using the duality of an uncertain measure, the
first constraint of model (24) is equivalent to

M 􏽘
n

i�1
xiξi − r 􏽘

n

i�1
xi − w⎛⎝ ⎞⎠ + η≤f

⎧⎨

⎩

⎫⎬

⎭ � M f(x; ξ, η)≤f􏽮 􏽯

≤ 1 − α.

(35)

In detail, we have

Υ− 1
x (1 − α)≥f. (36)

It follows from equation (34) that we have

􏽘

n

i�1
xiΦ

− 1
i (1 − α) − r 􏽘

n

i�1
xi − w⎛⎝ ⎞⎠ + Ψ− 1

(1 − α)≥f. (37)

In addition, by means of the linearity of the expected
value operator of the uncertain variable, we have

E 􏽘

n

i�1
xiξi − r 􏽘

n

i�1
xi − w⎛⎝ ⎞⎠ + η⎡⎢⎢⎣ ⎤⎥⎥⎦ � 􏽘

n

i�1
xiE ξi􏼂 􏼃 − r 􏽘

n

i�1
xi − w⎛⎝ ⎞⎠

+ E[η].

(38)
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,us, model (24) can be equivalently transformed to the
following deterministic model:

max f

s.t. 􏽘

n

i�1
xiΦ

− 1
i (1 − α) − r 􏽘

n

i�1
xi − w⎛⎝ ⎞⎠ + Ψ− 1

(1 − α)≥f

􏽘

n

i�1
xiE ξi􏼂 􏼃 − r 􏽘

n

i�1
xi − w⎛⎝ ⎞⎠ + E[η]≥ u

w≤ 􏽘

n

i�1
xi ≤w + v

ti ≤xi ≤Ti, i � 1, 2, . . . , n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(39)
Obviously, model (39) is equivalent to model (33). As we

know, the α-optimal portfolio is simply the optimal solution
of model (24). ,us, the theorem is proved.

Comparing model (22) with model (33), the value of the
objective function corresponding to the α-optimal portfolio
is just the value of Υ− 1

max(1 − α). □

Theorem 4. Given a profit level f, if ξi and η are inde-
pendent uncertain variables with regular uncertainty distri-
butionsΦi andΨ, i � 1, 2, . . . , n, respectively, then the chance
optimal portfolio is simply the α-optimal portfolio, where
Υmax(f) � 1 − α.

Proof. From the above discussion, we can see that the
chance optimal portfolio is just the optimal solution of
model (29). Apparently, model (29) is equivalent to the
following model:

max α

s.t. M 􏽘
n

i�1
xiξi − r 􏽘

n

i�1
xi − w⎛⎝ ⎞⎠ + η≥f

⎧⎨

⎩

⎫⎬

⎭ ≥ α

E 􏽘
n

i�1
xiξi − r 􏽘

n

i�1
xi − w⎛⎝ ⎞⎠ + η⎡⎢⎢⎣ ⎤⎥⎥⎦≥ u

w≤ 􏽘
n

i�1
xi ≤w + v

ti ≤xi ≤Ti, i � 1, 2, . . . , n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(40)

As in the proof of ,eorem 3, model (40) can be
transformed into the following model:

max α

s.t. 􏽘

n

i�1
xiΦ

− 1
i (1 − α) − r 􏽘

n

i�1
xi − w⎛⎝ ⎞⎠ + Ψ− 1

(1 − α)≥f

􏽘

n

i�1
xiE ξi􏼂 􏼃 − r 􏽘

n

i�1
xi − w⎛⎝ ⎞⎠ + E[η]≥ u

w≤ 􏽘

n

i�1
xi ≤w + v

ti ≤xi ≤Ti, i � 1, 2, . . . , n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(41)
Denote (x, α) as the feasible solution of model (41). Set

1 − β � Υmax(f) � M f(ξ, η)≤f􏽮 􏽯. ,en, Υ− 1
max(1 − β) � f

since Υmax is a regular distribution function. For the given
confidence level β, there is a β-optimal portfolio x′, which
can be obtained by ,eorem 3. In other words, x′ is the
optimal solution of model (39), i.e., x′ and β satisfy the
following constraints:

􏽘

n

i�1
xiΦ

− 1
i (1 − β) − r 􏽘

n

i�1
xi − w⎛⎝ ⎞⎠ + Ψ− 1

(1 − β)≥f,

􏽘

n

i�1
xiE ξi􏼂 􏼃 − r 􏽘

n

i�1
xi − w⎛⎝ ⎞⎠ + E[η]≥ u,

w≤ 􏽘
n

i�1
xi ≤w + v,

ti ≤xi ≤Ti, i � 1, 2, . . . , n,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(42)

which shows that (x′, β) is a feasible solution of model (41)
and β is the corresponding objective value. In the following,
we will prove that β is also the optimal value of the objective
function. We account for it as follows.

Set c> β and (􏽢x, c) is a feasible solution of model (41).
We know that Υmax is a regular distribution function, which
means that Υ− 1

max(α) is strictly increasing, i.e.,

Υ− 1
max(1 − c)<Υ− 1

max(1 − β) � f. (43)

According to equation (21), for any 􏽢x, we have

Υ− 1
􏽢x (1 − c)≤Υ− 1

max(1 − c)<f. (44)

,at is,

􏽘

n

i�1
􏽢xiΦ

− 1
i (1 − c) − r 􏽘

n

i�1
􏽢xi − w⎛⎝ ⎞⎠ + Ψ− 1

(1 − c)<f, (45)

which contradicts the first constraint of model (41). ,is
shows that β is the optimal objective value, and the feasible
solution x′, i.e., the β-optimal portfolio, is the optimal so-
lution of model (41). ,us, the theorem is proved.

According to ,eorem 4, we can first obtain the un-
certainty distribution Υmax. For the given profit level f, if
Υmax(f) � 1 − α, then we can obtain the α-optimal portfolio
by ,eorem 3, which is simply the chance optimal portfolio,
and α is the corresponding optimal objective value. □

5. Comparisons and Innovations

To highlight the innovations of the paper, we compare it
with the existing articles in two main aspects. On the one
hand, we compare the paper with stochastic portfolio se-
lection models. On the other hand, we compare the paper
with the existing articles within the framework of uncer-
tainty theory.

Probability theory has been widely employed to deal with
indeterminate factors for a long time. As is well known, a
fundamental premise of applying probability theory is that
we should obtain a probability distribution that is close
enough to the real frequency. ,at is, a large amount of
historical data is required. In the stochastic portfolio
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selection models, the indeterminate factors are regarded as
stochastic factors and are described as random variables.

However, without sufficient data, it is impossible for us
to accurately predict the values of the indeterminate
quantities. In financial markets, we often lack sufficient
sample data for the returns of securities, especially for newly
listed securities. In this case, we have no choice but to invite
financial experts to evaluate the belief degrees about the
returns of securities. Uncertainty theory is a powerful
technique to deal with belief degrees. ,erefore, this paper
introduces two novel portfolio selection models based on
uncertainty theory. In the proposed uncertain models, the
indeterminate quantities come from experts’ empirical es-
timation and are described as uncertain variables.

,us, compared to stochastic portfolio selection models,
the main difference between the existing works and the
proposed paper is summarized in Table 1.

As addressed above, some researchers have studied
portfolio selection problems within the framework of un-
certainty theory. For better readability, we list the charac-
teristics of some closely related works in Table 2, including
the main modelling ideas and the main constraints. Clearly,
the related studies usually employ variance, semivariance, or
semiabsolute deviation to measure risk. Additionally, the
considered constraint in the existing literature is usually
related to the transaction cost, risk constraint, or return
constraint, with the borrowing constraint not taken into
account. Meanwhile, many studies ignore the effect of
background factors on investment decisions. With this
concern in mind, this paper aims to study a portfolio se-
lection with realistic constraints, including the borrowing
constraint and background risk, to enhance the practica-
bility of the models.

Stated thus, the main innovations of this paper are
summarized as follows. (1) In contrast with the use of
probability theory for portfolio selection in extant literature,
this paper employs uncertainty theory to handle belief de-
gree. ,e advantage of uncertainty theory is that belief
degree follows the laws of uncertainty theory. (2) In contrast
with the existing uncertain portfolio selection models, this
paper proposes two novel uncertain portfolio selection
models, in which the borrowing constraint and background
risk are considered simultaneously.

6. Numerical Experiments

In this section, we will provide some numerical experiments
to illustrate the models mentioned above for uncertain
portfolio selection problems. We select twenty stocks from
the Shanghai Stock Exchange, namely, S1 (code: 600004), S2
(code: 600016), S3 (code: 600018), S4 (code: 600028), S5
(code: 600029), S6 (code: 600048), S7 (code: 600066), S8
(code: 600115), S9 (code: 600177), S10 (code: 600340), S11
(code: 600377), S12 (code: 600383), S13 (code: 600398), S14
(code: 600463), S15 (code: 600496), S16 (code: 600499), S17
(code: 600519), S18 (code: 600522), S19 (code: 600601), and
S20 (code: 600606). According to the experts’ estimations,
the return rates of the stocks are assumed to be independent
linear uncertain variables, which are shown in Table 3. ,e

background factor return η ∼ L(− 2, 9). ,e way to obtain
the distribution functions of returns based on experts’ es-
timations can be referred to Liu [22].

Suppose the wealth of an existing portfolio held by the
investor is w � 300 (thousand yuan). We also assume that
the upper bound of borrowing v � 50 (thousand yuan), the
borrowing interest rate r � 0.01, the threshold expected
return u � 45 (thousand yuan), the lower bound ti � 0
(thousand yuan), and the upper bound Ti � 50 (thousand
yuan).

If the decision-maker wants to maximize the portfolio
return at a chance of not less than 0.9 (i.e., α � 0.9),
according to ,eorem 3, he can make an optimum portfolio
decision via the following model:

max 􏽘
20

i�1
xiΦ

− 1
i (0.1) − 0.01 􏽘

20

i�1
xi − 300⎛⎝ ⎞⎠ + Ψ− 1

(0.1)

s.t. 􏽘

20

i�1
xiE ξi􏼂 􏼃 − 0.01 􏽘

20

i�1
xi − 300⎛⎝ ⎞⎠ + E[η]≥ 45

300≤ 􏽘
20

i�1
xi ≤ 350

0≤ xi ≤ 50, i � 1, 2, . . . , 20.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(46)

First, we can easily obtain that E[η] � 3.5 and
Ψ− 1(0.1) � − 0.9. ,e expected values and the inverse un-
certainty distributions of ξi at 0.1 are calculated and listed in
Table 3. By using MATLAB 2017, we obtain the optimal
portfolio after a computation time of approximately 0.06 s
and present it in Table 4. ,e corresponding objective value
is 11.06. Specifically, the decision-maker should borrow 50
thousand yuan from the bank and invest all 350 thousand
yuan in the holding wealth in stocks 1, 5, 8, 9, 14, 15, 18, and
20, respectively.

,at is, if the decision-maker allocates his wealth
according to Table 4, the total return will be greater than or
equal to 11.06 thousand yuan with possibility 90%. More
precisely, 11.06 thousand yuan is the minimum return that
can be obtained under the chance constraint α � 0.9.

For different levels of α ∈ (0, 1), different objective
values are shown in Table 5. Table 5 shows that the optimal
objective value is nonincreasing with respect to α. As dis-
cussed in Section 3.1, the value of the objective function
corresponding to the α-optimal portfolio is just the value of
Υ− 1
max(1 − α). ,us, we can obtain the uncertainty distribu-

tion Υmax of f(ξ, η) in a numerical sense, which is drawn
using MATLAB 2017 in Figure 1. According to Figure 1, we
know the distribution of portfolio returns f(ξ, η). For ex-
ample, Υmax(115) � M f(ξ, η)≤ 115􏼈 􏼉 � 0.8, i.e.,
M f(ξ, η)≥ 115􏼈 􏼉 � 0.2. ,is means that 115 thousand yuan
is the minimum return that can be obtained under the
chance constraint α � 0.2.

Given a threshold return f � 29 (thousand yuan), if the
decision-maker wants to maximize the chance of total return
preponderating the given threshold return f, ,eorem 4
shows that the optimal portfolio selection is simply the
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α-optimal portfolio such that Υmax(29) � 1 − α. Figure 1
shows that Υmax(29) ≈ 0.3, i.e., α ≈ 0.7. ,en, the corre-
sponding objective value is 0.7.

Remark 7. ,e chance-mean model and measure-mean
model are proposed on different modelling ideas. ,e
chance-mean model provides a powerful means of
modelling uncertain portfolio decision-making systems

under the assumption that the uncertain constraints will
hold with expected value and a confidence level, which is
predetermined as a safety margin by the decision-maker.
,e underlying philosophy of the measure-mean model is
based on selecting the stocks with the maximal chance to
meet the threshold expected return. ,e chance-mean
model can be transformed to a deterministic linear pro-
gramming model and then it can be easily solved by

Table 2: Comparison with uncertain portfolio selection models.

,e main modelling ideas ,e main constraints
Huang and Qiao
[45] An expected model is provided based on an uncertain risk index Self-financing and risk constraint

Li et al. [46] A multiperiod portfolio selection is formulated in three steps with two single
objective models

Transaction cost and bankruptcy
constraint

Zhang et al. [47] Two uncertain models are provided in the trade-off between risk and return Return constraint

Qin et al. [51] A bi-objective mean-semiabsolute deviation linear programming model is
provided Transaction cost

Huang and Di [49] A mean-chance model is formulated with background risk Return constraint with background
risk

Zhai and Bai [50] A mean-risk model is provided with background risk and transaction costs Liquidity constraint
Chen et al. [52] Two new mean-semivariance models are proposed Entropy constraint

Kar et al. [54] Defining risk as variance and divergence among security returns as cross-
entropy Investment proportion constraint

Xue et al. [53] A mean-chance model is proposed with mental accounts Return risk and liquidity risk
constraint

,is paper A chance-mean model and a measure-mean model are proposed Borrowing constraint and
background risk

Table 3: Uncertain return rate ξi of each stock i.

Stock(Si) ξi E[ξi] Φ− 1
i (0.1)

S1 L(0.00, 0.22) 0.11 0.022
S2 L(− 0.05, 0.25) 0.1 − 0.02
S3 L(− 0.06, 0.36) 0.15 − 0.018
S4 L(− 0.10, 0.30) 0.1 − 0.06
S5 L(0.02, 0.12) 0.07 0.03
S6 L(− 0.02, 0.24) 0.11 0.006
S7 L(− 0.15, 0.40) 0.125 -0.095
S8 L(0.00, 0.30) 0.15 0.03
S9 L(0.01, 0.37) 0.19 0.046
S10 L(− 0.08, 0.36) 0.14 − 0.036
S11 L(− 0.02, 0.25) 0.115 0.007
S12 L(− 0.20, 0.40) 0.1 − 0.14
S13 L(− 0.25, 0.55) 0.15 − 0.17
S14 L(0.03, 0.19) 0.11 0.046
S15 L(− 0.02, 0.32) 0.15 0.014
S16 L(− 0.08, 0.40) 0.16 − 0.032
S17 L(− 0.16, 0.38) 0.11 − 0.106
S18 L(0.05, 0.12) 0.085 0.057
S19 L(− 0.14, 0.46) 0.16 − 0.08
S20 L(0.01, 0.16) 0.085 0.025

Table 4: Optimal solution of model (46).

Stock(Si) Wealth(xi)

S1 50
S2 0
S3 0
S4 0
S5 50
S6 0
S7 0
S8 50
S9 50
S10 0
S11 0
S12 0
S13 0
S14 50
S15 30.77
S16 0
S17 0
S18 50
S19 0
S20 19.23

Table 1: Comparison with stochastic portfolio selection models.

Stochastic models ,e proposed uncertain models
Sample size ,e sample size is large enough ,e sample size is too small (or even no sample)
Indeterminate factors Stochastic factors Experts’ empirical estimation
,eoretical tool Probability theory Uncertainty theory
Indeterminate quantities Random variable Uncertain variable
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optimization software. However, the measure-mean
model cannot be solved directly. Fortunately, we
have proved that the optimal solution of the measure-
mean model can be obtained by solving the chance-mean
model.

6.1. Validity of the Models. To further discuss the validity of
the proposed models, we conduct more experiments on the
chance-mean model by ignoring background risks and
borrowing. ,e discussion of the measure-mean model can
be done in a similar way, so we omit it.

We also set w � 300 (thousand yuan), u � 45 (thousand
yuan), and α � 0.9. If the decision-maker does not apply for
loans, then the optimal portfolio selection model takes the
following form:

max 􏽘
20

i�1
xiΦ

− 1
i (0.1) + Ψ− 1

(0.1)

s.t. 􏽘
20

i�1
xiE ξi􏼂 􏼃 + E[η]≥ 45

􏽘

20

i�1
xi � 300

0≤xi ≤ 50, i � 1, 2, . . . , 20.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(47)

MATLAB 2017 shows the optimal objective value is 8.10
after a computation time of approximately 0.06 s.

For different confidence levels α, the objective values
are listed in Table 6. To further show the influence of loans
on portfolio selection, the portfolio returns of the chance-
mean model with loans and without loans are presented in
Figure 2. According to Figure 2, for the same confidence
level α, the portfolio return with loans is greater than
without loans.

Table 5: Objective values for different levels of α.

α Objective value (Υ− 1
max(1 − α))

0.10 135.75
0.20 115.2
0.30 95.45
0.40 76.30
0.50 58.50
0.60 42.20
0.70 29.35
0.80 19.70
0.90 11.06
0.95 6.82
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Figure 1: Uncertainty distribution function Υmax of f(ξ, η).

Table 6: Objective values for different levels of α without loans.

α Objective value
0.10 119.95
0.20 101.90
0.30 84.55
0.40 67.60
0.50 51.50
0.60 37.90
0.70 26.55
0.80 17.33
0.90 8.10
0.95 3.49
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Figure 2: Objective values with loans and without loans.

Table 7: Objective values for different levels of α without back-
ground risk.

α Objective value
0.10 127.85
0.20 108.4
0.30 89.75
0.40 71.7
0.50 55.00
0.60 39.8
0.70 28.05
0.80 19.2
0.90 10.6
0.95 6.3
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Next, we will illustrate the impact of background risk on
investment decision-making. Set v � 50 (thousand yuan). If
we ignore background risk, then the chance-mean model
can be rewritten as follows:

max 􏽘
20

i�1
xiΦ

− 1
i (0.1) − 0.01 􏽘

20

i�1
xi − 300⎛⎝ ⎞⎠

s.t. 􏽘

20

i�1
xiE ξi􏼂 􏼃 − 0.01 􏽘

20

i�1
xi − 300⎛⎝ ⎞⎠≥ 45

300≤ 􏽘
20

i�1
xi ≤ 350

0≤ xi ≤ 50, i � 1, 2, . . . , 20.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(48)

MATLAB 2017 shows the objective value is 10.6 after a
computation time of approximately 0.06 s.

Table 7 illustrates the objective values for different
confidence levels α in the chance-mean model without
background risk. To compare the optimal portfolio with
background risk and without background risk more con-
veniently, the results are shown in Figure 3, which is drawn
by MATLAB 2017. Figure 3 shows that the acceptable
threshold portfolio return to an investor without back-
ground risk is less than that with background risk.

6.2. Large-Scale Experiments. In the previous section, the
experiments were made on problems with a small scale, i.e.,
n � 20. In this section, we do experiments on the chance-
mean model with different scales to discuss the impact of
borrowing and background risk on investment decisions
and results in the general case. In these experiments, the
following background factor return:

η ∼ L(a, b), (49)

is assumed to be a linear uncertain variable, where a is
generated randomly from the uniform distribution U(− 5, − 1)

and b is generated randomly from the uniform distribution
U(10, 30). ,e following return rate of the stock i:

ξ ∼ L ai, bi( 􏼁, (50)

is assumed to be a linear uncertain variable, where
bi � ai + ri, ai is generated randomly from the uniform
distribution U(− 0.5, 0.5) and ri is generated randomly from
the uniform distribution U(0.1, 0.3).

According to models (24)–(26) and ,eorem 3, we can
solve the problems by using MATLAB 2017.,e experiment
results are listed in Table 8, where “objective value 1” rep-
resents the objective value of the initial chance-mean model,
“objective value 2” represents the objective value of the
chance-mean model without loans, and “objective value 3”
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Figure 3: Objective values with background risk and without background risk.

Table 8: Computation results with different n.

n w v u α Objective value 1 Objective value 2 Objective value 3 CPU (s)
50 500 100 100 0.2 368.03 324.55 350.78 0.06
50 500 100 100 0.6 287.46 252.51 279.93 0.06
50 500 100 100 0.9 225.48 197.71 224.11 0.06
100 800 300 200 0.2 741.71 577.42 720.36 0.06
100 800 300 200 0.6 534.46 416.44 531.29 0.06
100 800 300 200 0.9 424.74 336.41 425.39 0.06
500 1000 500 300 0.2 1.18 × 103 826.40 1.16 × 103 0.07
500 1000 500 300 0.6 918.77 634.81 914.77 0.07
500 1000 500 300 0.9 752.01 513.38 751.60 0.07
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represents the objective value of the chance-mean model
without background risk.

For each (w, v, u, α), Table 8 shows that the portfolio
return with loans is greater than that without loans. Table 8
also shows that the portfolio return with background risk is
greater than that without background risk. ,at is, it is
necessary for us to consider portfolio selection problems
with loans and background risks.

According to ,eorem 3, the proposed chance-mean
model can be equivalent transformed to a deterministic
linear programming model, which can be efficiently solved
by MATLAB. For large-scale experiments, the computation
times are listed in the last column of Table 8, which indicates
that MATLAB obtains the optimal solutions quickly.

7. Conclusion

Portfolio selection decisions are usually made in the state of
indeterminacy since the security market is so complex. ,is
paper deals with portfolio selection problems with a bor-
rowing constraint and background risk, in which security
returns and background factor return are indeterminate
quantities and are estimated by experts’ evaluations rather
than historical data. To rationally deal with such indeter-
minacy, this paper introduces uncertain variables to describe
security returns and background factor return in portfolio
selection models.

Within the framework of uncertainty theory, the dis-
tribution function of the maximum portfolio return is
discussed, and an approximate method to calculate the
distribution function is obtained. To obtain the optimal
portfolio selection by a mathematical model, two decision
criteria are proposed: critical value criterion and chance
criterion. Based on the critical value criterion, the chance-
mean model is proposed. Based on the chance criterion, the
measure-mean model is proposed. It is worth pointing out
that two new models are proposed from different points of
view. We cannot conclude which model is the best for the
portfolio selection decision in an uncertain environment. In
fact, which model is applied in the real world is heavily
dependent on the decision-making conditions and the
preferences of investors. Generally, if we want to obtain a
largest value f such that the portfolio return is greater than
or equal to f with a predetermined confidence level, then we
can use the chance-mean model. On the contrary, if we want
to maximize the chance of the return preponderating the
given profit level, then we can use the measure-mean model.

We believe that the proposed models can further be able
to address the portfolio selection problem in uncertain
environments. ,e main contributions can be summarized
as the following three aspects: (1) two novel uncertain
portfolio models are proposed based on different modelling
methodologies: the chance-mean model and the measure-
mean model. (2) ,e optimal solution to the chance-mean
model is proved to be equivalent to a deterministic model,
which is essentially a linear programming model. (3) ,e
relationship between the chance-mean model and the
measure-mean model is studied, and an approach to solve
the measure-mean model is obtained.
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