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Cloud computing is a new computing paradigm to deliver computing resources as services over the Internet. Under such a
paradigm, cloud users can rent computing resources from cloud providers to provide their services. 'e goal of cloud users is to
minimize the resource rental cost while meeting the service requirements. In reality, cloud providers often offer multiple pricing
models for virtual machine (VM) instances, including on-demand and reserved pricing models. Moreover, the workload of cloud
users varies with time and is not known a priori. 'erefore, it is challenging for cloud users to determine the optimal cloud
resource provisioning. In this paper, we propose a two-phase cloud resource provisioning algorithm. In the first phase, we
formulate the resource reservation problem as a two-stage stochastic programming problem, and solve it by the sample average
approximation method and the dual decomposition method. In the second phase, we propose a hybrid ARIMA-Kalman model to
predict the workload, and determine the number of on-demand instances based on the predicted workload. 'e effectiveness of
the proposed two-phase algorithm is evaluated using a real-world workload trace and Amazon EC2’s pricing models. 'e
simulation results show that the proposed algorithm can significantly reduce the operational cost while guaranteeing the service
level agreement (SLA).

1. Introduction

Cloud computing [1] is a new computing paradigm to
deliver computing resources as services over the Internet.
'ese services are provided at three different levels: Infra-
structure as a Service (IaaS) [2], Platform as a Service (PaaS)
[3], and Software as a Service (SaaS) [4]. In this paper, we
focus on IaaS. IaaS providers such as Amazon EC2 [5] and
Microsoft Azure [6] provide their computing resources to
cloud users in the form of VMs. Cloud users can rent VMs
from cloud providers on a pay-per-use basis.

Cloud providers usually have different billing cycles and
offer different pricing models. Take Amazon EC2 as an
example. Amazon EC2 has two billing cycles: per hour
billing and per second billing. In this paper, we adopt per
hour billing. Amazon EC2 offers three pricing models: (1)
On-demand pricing model. On-demand instances let users

pay for compute capacity by the hour with no long-term
commitments. (2) Reserved pricing model. Users pay an
upfront fee (all upfront, partial upfront, and no upfront) to
reserve an instance for a 1-year or 3-year term and is then
charged a discounted hourly rate for the instance during the
reservation period. (3) Spot pricing model. Spot instances
allow users to bid on unused EC2 instances and run those
instances for as long as their bid exceeds the spot price. Spot
instances are charged the spot price which is set by Amazon
EC2 and adjusted gradually based on the supply and demand
for spot instances. Such diverse pricing models make it
challenging for cloud users to determine the optimal cloud
resource provisioning.

'ere have been a lot of studies on cloud resource
provisioning, which aim to minimize the resource provi-
sioning cost while satisfying the service requirements.
However, most existing studies [7–11] do not consider the
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pricing models or only consider the on-demand pricing
model. Some recent studies [12–16] consider both on-de-
mand and reserved pricing models to reduce the resource
provisioning cost. 'ese studies typically use reserved in-
stances to meet the minimum service requirements and use
on-demand instances to meet the sudden workload demand.

In this paper, we study the cloud resource provisioning
problem. To reduce the resource rental cost, we use both on-
demand and reserved instances and propose a two-phase
cloud resource provisioning algorithm. In the resource
reservation phase, we determine the optimal number of
reserved instances to minimize the resource rental cost. In
the on-demand resource provisioning phase, on-demand
instances are purchased based on the predicted workload to
guarantee the SLA. 'e main contributions of this paper are
summarized as follows:

(i) We use both on-demand and reserved instances for
cloud resource provisioning and propose a two-
phase cloud resource provisioning algorithm to
reduce the resource rental cost.

(ii) In the first phase, we formulate the resource res-
ervation problem as a two-stage stochastic pro-
gramming problem, and solve it by the sample
average approximation method and the dual de-
composition method.

(iii) In the second phase, we propose a hybrid ARIMA-
Kalman model for workload prediction and de-
termine the number of on-demand instances based
on the predicted workload.

(iv) We conduct extensive experiments to evaluate the
effectiveness of the proposed two-phase algorithm
using a real-world workload trace and Amazon
EC2’s pricing models. 'e experimental results
show that the proposed algorithm can significantly
reduce the operational cost while guaranteeing the
SLA.

'e rest of this paper is organized as follows. Related
works are reviewed in Section 2. 'e problem formulation is
given in Section 3. 'e two-phase cloud resource provi-
sioning algorithm is presented in Section 4 and Section 5.
Experimental results are presented in Section 6. Finally, we
conclude this paper in Section 7.

2. Related Work

In cloud computing, cloud users can reduce the cost and
guarantee the QoS requirements through adaptive resource
provisioning. Adaptive resource provisioning has been
widely studied [7–11]. In [7], the autoscaling techniques
were classified into five categories: static threshold-based
rules, reinforcement learning, queuing theory, control
theory, and time series analysis. Calheiros et al. [8] proposed
a workload prediction model using the ARIMA model and
evaluated its impact on cloud applications’ QoS. Islam et al.
[9] developed prediction-based resource measurement and
provisioning strategies using neural network and linear
regression to satisfy upcoming resource demands. To train

the neural network, Shah et al. [17] presented a quick Gbest-
guided artificial bee colony learning algorithm. Chen et al.
[10] proposed an iterative QoS prediction model and a PSO-
based runtime decision algorithm to derive a self-adaptive
approach for resource allocation in cloud-based software
services. Liu et al. [11] presented SPRNT, a reinforcement
learning-based aggressive virtualized resource management
system for IaaS clouds.

'e above works mainly focus on adaptive resource
provisioning. However, cloud providers usually offer mul-
tiple pricing models: on-demand, reserved, and spot. Cloud
users can significantly reduce the cost based on these pricing
models. Chaisiri et al. [12] proposed an optimal cloud re-
source provisioning algorithm by formulating a stochastic
programming model in which the demand and price un-
certainty is considered. In [13], a two-phase resource pro-
visioning algorithm was presented. In the first phase, the
optimal amount of long-term reserved resources was
computed by a mathematical formulae. In the second phase,
the authors used the Kalman filter to predict resource de-
mand and adaptively changed the subscribed on-demand
resources. Niu et al. [14] proposed a semielastic cluster
computing model for organizations to reserve and dy-
namically resize a virtual cloud-based cluster. In [15], a
dynamic instance provisioning strategy based on the large
deviation principle was proposed to minimize the number of
active instances subject to a QoS requirement in terms of the
overload probability. Mireslami et al. [16] proposed a two-
phase cloud resource allocation algorithm. In the first phase,
reserved resources were allocated to meet the minimumQoS
requirements. In the second phase, a stochastic optimization
approach was proposed to allocate on-demand resources
under demand uncertainty.

In this paper, the cloud resource provisioning problem is
formulated as a two-stage stochastic programming problem.
It can be transformed into a deterministic integer program
and solved by exact methods such as branch and bound and
cutting plane methods, or heuristic methods such as genetic
algorithm, particle swarm optimization, and hybrid algo-
rithms [18–20]. Grey [18] presented a hybrid PSO-GA al-
gorithm for solving the various constrained optimization
problems. In this approach, PSO is used to explore the
solution while GA is being used for updating the solution.

3. Problem Formulation

In this section, we present the model assumptions, including
the VM configurations and the pricing models. Based on
these assumptions, we present the formulation of the cloud
resource provisioning problem. 'e notations used in this
paper are listed in Table 1.

3.1. Cloud Computing Environment. Cloud providers offer
multiple types of VMs to cloud users. Let
V � V1, V2, . . . , VM  denote the set of VM types, whereM
is the total number of VM types. Each VM type has its own
resource configuration and processing capacity. Let Ci de-
note the processing capacity of a VM instance of type Vi,

2 Mathematical Problems in Engineering



which is the maximum number of concurrent users or the
maximum service request rate that can be handled by a VM
instance of type Vi without violating the QoS requirements.

We adopt per hour billing and consider two pricing
models: on-demand instance and reserved instances (1-year
term, partial upfront). Let po

i denote the hourly usage fee of an
on-demand instance of typeVi. Let pR

i and pr
i denote the one-

time upfront payment and the hourly usage fee of a reserved
instance of typeVi, respectively. Let T be the number of hours
in a reservation period. 'en, the effective hourly price of a
reserved instance of type Vi can be computed as pR

i /T + pr
i ,

which is charged for every hour during the reservation period.
It is usually assumed that pR

i /T + pr
i <po

i .

3.2. Cloud Resource Provisioning Problem. We consider the
cloud resource provisioning problem over a reservation
period. Let t � 1, 2, . . . , T be the hour index of the reser-
vation period. Let dt be the workload at time t. Let R �

(nr
1, nr

2, . . . , nr
M) be the reservation decision and nr

i be the
number of reserved instances of type Vi. 'en, the reserved
processing capacity is 

M
i�1 nr

i Ci, and the total cost of re-
served instances for the reservation period is


M
i�1 nr

i (pR
i + pr

i T). For each time t, if the workload does not
exceed the reserved processing capacity, there will be no
need to purchase on-demand instances; otherwise, on-de-
mand instances will be purchased, and the usage cost of on-
demand instances can be written as

U R, dt(  � min
M

i�1
n

o
tip

o
i ,

s.t. 
M

i�1
n

o
tiCi + 

M

i�1
n

r
i Ci ≥ dt, n

o
ti ∈ N0, i ∈ 1, 2, . . . , M{ },

(1)

where no
ti is the number of on-demand instances of type Vi at

time t.
'e resource reservation problem can be formulated as

min
M

i�1
n

r
i p

R
i + p

r
i T  + 

T

t�1
U R, dt( ,

s.t. n
r
i ∈ N0, i ∈ 1, 2, . . . , M{ },

(2)

where the objective is to minimize the total cost for the
reservation period, including the upfront fee and the usage
cost of reserved instances, and the usage cost of on-demand
instances. 'is problem depends on the workload over the
reservation period, which is not known a priori. We can
estimate the probability distribution of the workload pD(d)

based on historical data. 'en, the resource reservation
problem can be rewritten as

min
M

i�1
n

r
i

p
R
i

T
+ p

r
i  + 

d

pD(d)U(R, d),

s.t. n
r
i ∈ N0, i ∈ 1, 2, . . . , M{ }.

(3)

'is problem is a two-stage stochastic programming
problem, where the objective function is the average cost per
hour, and the possible realizations of the workload are called
scenarios. 'e first-stage problem corresponds to the re-
source reservation problem, where the first-stage decision is
the reservation decision. 'e second-stage problem corre-
sponds to the on-demand resource provisioning problem,
where the second-stage decision depends on the realization
of the workload.

4. Resource Reservation

In this section, we use the sample average approximation
method and the dual decomposition method to solve the
resource reservation problem.

4.1. Sample Average Approximation (SAA). If the number of
scenarios is very large, it is difficult to solve (3) directly. 'e
sample average approximation method can be used to re-
duce the number of scenarios [21]. Since the workload is a
one-dimensional random variable, a uniform discretization
grid is used to generate a set of scenarios d1,

d2, . . . , dN ,
where N is the sample size. 'en, problem (3) can be ap-
proximated as

min
M

i�1
n

r
i

p
R
i

T
+ p

r
i  +

1
N



N

j�1
U R, dj ,

s.t. n
r
i ∈ N0, i ∈ 1, 2, . . . , M{ }.

(4)

Table 1: 'e key notations.

Notation Description
V Set of VM types offered by cloud providers, V � V1, V2, . . . , VM 

Ci Processing capacity of a VM instance of type Vi

po
i Usage fee of an on-demand instance of type Vi per hour

pR
i Upfront payment of a reserved instance of type Vi

pr
i Usage fee of a reserved instance of type Vi per hour

T Number of hours in a reservation period
t Hour index of the reservation period, t � 1, 2, . . . , T

R Reservation decision, R � (nr
1, nr

2, . . . , nr
M)

nr
i Number of reserved instances of type Vi

no
ti Number of on-demand instances of type Vi at time t

U(R, dt) Usage cost of on-demand instances at time t

pD(d) Probability distribution of the workload
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Problem (4) is the SAA of problem (3). Problem (4) is
also a two-stage stochastic programming problem, which
can be transformed into the following deterministic
equivalent formulation:

min 

M

i�1
n

r
i

p
R
i

T
+ p

r
i  +

1
N



N

j�1


M

i�1
n

o
jip

o
i ,

s.t. 
M

i�1
n

r
i Ci + 

M

i�1
n

o
jiCi ≥ dj, j ∈ 1, 2, . . . , N{ },

n
r
i ∈ N0, i ∈ 1, 2, . . . , N{ },

n
o
ji ∈ N0, j ∈ 1, 2, . . . , N{ }, i ∈ 1, 2, . . . , M{ }.

(5)

Problem (5) is an integer linear program, which can be
solved using a standard branch and bound algorithm.

4.2. Dual Decomposition-Based Branch and Bound (DDBnB).
'e standard branch and bound algorithm uses the linear
programming relaxation for bounding. In this paper, we use
the Lagrangian relaxation obtained by scenario decompo-
sition to improve the bounds [22].

'e idea of scenario decomposition is to introduce a
copy Rj of the first-stage decision R for each scenario. 'en,
problem (5) can be reformulated as

min
N

j�1

1
N



M

i�1
n

r
ji

p
R
i

T
+ p

r
i  + 

M

i�1
n

o
jip

o
i

⎛⎝ ⎞⎠,

s.t. 
M

i�1
n

r
jiCi + 

M

i�1
n

o
jiCi ≥ dj, j ∈ 1, 2, . . . , N{ },

n
r
ji, n

o
ji ∈ N0, j ∈ 1, 2, . . . , N{ }, i ∈ 1, 2, . . . , M{ },

R1 � R2 � · · · � RN,

(6)

where the constraints R1 � · · · � RN are called the non-
anticipativity constraints. 'e nonanticipativity constraints
have several equivalent expressions. Here, we represent the
nonanticipativity constraints by 

N
j�1 HjRj � 0, where Hj is

a suitable M(N − 1) × M matrix. By dualizing the non-
anticipativity constraints, the Lagrange dual function of
problem (6) is defined as

D(λ) � min 
N

j�1

1
N



M

i�1
n

r
ji

p
R
i

T
+ p

r
i  + 

M

i�1
n

o
jip

o
i

⎛⎝ ⎞⎠ + λT


N

j�1
HjRj,

s.t. 
M

i�1
n

r
jiCi + 

M

i�1
n

o
jiCi ≥ dj, j ∈ 1, 2, . . . , N{ },

n
r
ji, n

o
ji ∈ N0, j ∈ 1, 2, . . . , N{ }, i ∈ 1, 2, . . . , M{ },

(7)
where λ ∈ RM(N− 1) is the Lagrange multiplier vector asso-
ciated with the nonanticipativity constraints. Problem (7)
can be decomposed into multiple subproblems according to
the scenarios:

Dj(λ) � min
1
N


M

i�1
n

r
ji

p
R
i

T
+ p

r
i  + 

M

i�1
n

o
jip

o
i

⎛⎝ ⎞⎠ + λTHjRj,

s.t. 
M

i�1
n

r
jiCi + 

M

i�1
n

o
jiCi ≥ djn

r
ji, n

o
ji ∈ N0, i ∈ 1, 2, . . . , M{ }.

(8)

Problem (8) is called the scenario subproblem, which is a
small integer linear program. 'e dual problem of problem
(6) can be formulated as

zL D � max
λ∈RM(N−1)

D(λ) � 
N

j�1
Dj(λ). (9)

Dual problem (9) can be solved by the subgradient
method. From the definition of the subgradient, the sub-
gradient of D(λ) is 

N
j�1 HjRj(λ), where Rj(λ) is the first-

stage component of the optimal solution of (8) for a given λ.
'e iterative formula of the subgradient method is as
follows:

λ(k+1)
� λ(k)

+ c
(k)



N

j�1
HjRj λ(k)

 , (10)

where k is the iteration index and c(k) is a positive step
size.

Dual problem (9) provides a lower bound for original
problem (6). In general, the scenario solutions Rj, j �

1, 2, . . . , N will not satisfy the nonanticipativity constraints
unless the duality gap is zero. In this paper, we present a
branch and bound algorithm that uses the Lagrangian re-
laxation of the nonanticipativity constraints for bounding.
To obtain a feasible first-stage solution, we compute the
average R � 

N
i�1 Rj/N and round it by some heuristic to

obtain an integer solution. 'e feasible first-stage solution
provides an upper bound for problem (6). 'e branch and
bound algorithm is described as follows, where P denotes
the set of current problems and z(P) is a lower bound
ofP ∈ P:

Step 1. Initialization: set z � +∞ and let P consist of
problem (6).
Step 2. Termination: if P � ∅, then the solution that
yielded z is optimal.
Step 3. Node selection: select and delete a problem P

from P, and solve its Lagrangian dual.
Step 4. Bounding: if zL D(P)≥ z, go to Step 2 (this step
can be carried out as soon as the value of the Lagrangian
dual rises above z).

(i) 'e scenario solutions Rj, j � 1, 2, . . . , N, are
identical: let z � zL D(P) and delete from P all
problems P′ with z(P′)≥ z. Go to Step 2.

(ii) 'e scenario solutions Rj, j � 1, 2, . . . , N, differ:
compute the average R � 

N
i�1 Rj/N and round it

by some heuristic to obtain R. If


M
i�1 nr

i (pR
i /T + pr

i ) + 
N
j�1 U(R, tdj)/N< z, then
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let z � 
M
i�1 nr

i (pR
i /T + pr

i ) + 
N
j�1 U(R, tdj)/N and

delete from P all problems P′ with z(P′)≥ z.

Step 5. Branching: select a component nr
i of R and add

two new problems toP obtained from P by adding the
constraints nr

i ≤ nr
i  and nr

i ≥ nr
i  + 1, respectively. Go

to Step 2.

5. On-Demand Resource Provisioning

On-demand resource provisioning problem (1) is an integer
linear program, which can be solved using any standard
integer linear programming solver. However, the workload
is not known a priori. In this paper, we propose a hybrid
ARIMA-Kalman model for workload prediction.

It has been shown in the literature that the workload
exhibits strong autocorrelation. 'en, the workload can be
modeled by an ARIMA model [8, 23]:

dt � ϕ1dt−1 + ϕ2dt−2 + · · · + ϕpdt−p + εt + θ1εt−1

+ · · · + θqεt−q,
(11)

where dt � ∇ddt, εt ∼ WN(0, σ2), Φ � (ϕ1, . . . , ϕp) are the
AR coefficients, and Θ � (θ1, . . . , θq) are the MA coeffi-
cients. Let r � max(p, q + 1), and model (11) can be re-
written as

dt � ϕ1dt−1 + ϕ2dt−2 + · · · + ϕrdt−r + εt + θ1εt−1

+ · · · + θr−1εt−r+1,
(12)

where ϕi � 0 for i>p and θj � 0 for j> q. 'en, the state-
space representation of model (12) can be obtained as
[24]

dt � Gxt + Wt, (13)

xt � Fxt−1 + Vt, (14)

where (13) and (14) are the measurement and state
equations, dt is the measurement variable, xt ∈ Rr is the
state vector, Wt � 0 is the measurement noise with var-
iance R � 0, and Vt � (εt, 0, . . . , 0)T is the state noise with
covariance matrix Q � diag(σ2, 0, . . . , 0). 'e measure-
ment matrix G and the state transition matrix F are
given as

G � 1, θ1, . . . , θr−1( ,

F �

ϕ1 ϕ2 · · · ϕr−1 ϕr

1 0 · · · 0 0

0 1 · · · 0 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 · · · 1 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
(15)

From state-space models (13) and (14), the Kalman
prediction equations is obtained as follows [25]:

xt/t−1 � Fxt−1/t−1,

Pt/t−1 � FPt−1/t−1F
T

+ Q,

dt/t−1 � Gxt/t−1,

Zt/t−1 � GPt/t−1G
T
,

(16)

xt/t � xt/t−1 + Kt dt − Gxt/t−1 ,

Pt/t � I − KtG( Pt/t−1,

Kt � Pt/t−1G
T GPt/t− 1G

T
 

− 1
,

(17)

where (16) and (17) are the time and measurement update
equations, xt/s and dt/s are the estimates of xt and dt given the
observations up to time s, Pt/s is the error covariance matrix
of xt/s, Zt/s is the error variance of dt/s, and Kt is the Kalman
gain.

Let ψ � x0/0,P0/0,Φ,Θ, σ2  denote the set of parameters
in the Kalman prediction equations, which can be estimated
by the maximum likelihood method. In this paper, we use
the EM algorithm [26] to obtain the maximum likelihood
estimates of the parameters. If we could observe the states
Xn � x0, x1, . . . , xn  in addition to the observations
Dn � d1, d2, . . . , dn , then we would consider Xn, Dn  as
the complete data. Under the Gaussian assumption, the log-
likelihood of the complete data can be written as

lnL Dn,Xn;ψ(  � −
1
2
ln P0/0


 −

1
2
x0 −x0/0( 

TP−1
0/0 x0 −x0/0( 

·
n

2
ln|Q| −

1
2



n

t�1
xt −Fxt−1( 

TQ−1 xt −Fxt−1( 

−
n

2
lnR −

1
2



n

t�1
dt −Gxt 

2
R

−1
.

(18)

From (18), if we did have the complete data, it will be
straight forward to obtain the maximum likelihood esti-
mate of ψ using multivariate normal theory. However, we
cannot observe the states. 'e EM algorithm is an iterative
method for finding the maximum likelihood estimate of ψ
based on the incomplete data by successively maximizing
the conditional expectation of the complete data log-
likelihood. Each iteration of the EM algorithm consists of
two steps, the expectation step (E-step) and the maxi-
mization step (M-step). In the E-step, the conditional
expectation of the complete data log-likelihood is com-
puted given the parameter estimates from the previous
iteration:

Q ψ |ψ(j− 1)
  � E lnL Dn, Xn;ψ( 

 Dn,ψ(j− 1)
 . (19)

From (18), we can obtain

Mathematical Problems in Engineering 5



Q ψ |ψ(j− 1)
  � −

1
2
ln P0/0


 −

1
2
tr P−1

0/0 P0/n + x0/n − x0/0(  x0/n − x0/0( 
T

  

·
n

2
ln|Q| −

1
2
tr Q− 1 S11 − S10F

T
− FST

10 + FS00F
T

   −
n

2
lnR −

1
2
R

− 1


n

t�1
dt − Gxt/n 

2
+ GPt/nG

T
 ,

(20)

where

S11 � 
n

t�1
xt/nx

T
t/n + Pt/n ,

S10 � 

n

t�1
xt/nx

T
t−1/n + Pt,t−1/n ,

S00 � 
n

t�1
xt−1/nx

T
t−1/n + Pt−1/n .

(21)

Pt,t−1/n is the error covariance of xt−1/n and xt/n. In the
M-step, (20) is maximized with respect to the parameters
and then the updated parameter estimates are obtained as

ϕ(j)
i � S10S

−1
00 1i

, i � 1, . . . , p,

σ2(f)
� n

− 1 S11 − S10S
−1
00S

T
10  11,

θ(j)
i � 

n

t�1
dtx

T
t/n

⎛⎝ ⎞⎠S−1
11

⎛⎝ ⎞⎠

i+1

, i � 1, . . . , q

x(j)

0/0 � x0/n,

P(j)

0/0 � P0/n.

(22)

'e flowchart of the EM algorithm is shown in Figure 1.
'e one-step-ahead prediction of the workload based on

Kalman prediction is given by

dt � − 
d

j�1

d

j
 (−1)

j
dt−j + Gxt/t−1. (23)

For each time t, even with a workload prediction
method, the underprovisioning problem can occur due to
underestimation, which causes the SLA violation. To reduce
the SLA violation rate, (23) can be modified as

dt � −
d

j�1

d

j
 (−1)

j
dt−j +Gxt/t−1 +α ·

���������

GPt/t−1G
T



, α>0.

(24)

6. Evaluation

In this section, we conduct extensive experiments to evaluate
the effectiveness of the proposed two-phase algorithm based
on a real-world workload trace and Amazon EC2’s pricing
models.

6.1. Experiment Setup. 'e workload trace used in the ex-
periments is obtained from a 4-week access log file of the
NASA web server [27], as shown in Figure 2.'e probability

distribution of the workload can be estimated based on the
workload trace. We consider four types of VM instances
offered by Amazon EC2: small (m1.small), medium
(m1.medium), large (m1.large), and extralarge (m1.xlarge)
[5]. Table 2 shows the configuration and the pricing models
of each VM type. 'e parameters of the algorithms are set as
follows. 'e sample size of the SAA problem is set to 10. In
the subgradient method, we use a diminishing step size
c(k) � (1 + m)/(k + m) where m � 100, and repeat the it-
erations until the stopping criterion
|(D(k) − D(k− 1)) | D(k)|≤ ε is satisfied where ε � 0.00001. In
the EM algorithm, the initial values of the parameters are set
according to [25].

6.2. Performance of Resource ReservationAlgorithm. We first
analyze the impact of resource reservation on the opera-
tional cost. Figure 3 shows the operational cost under dif-
ferent resource reservations. We can observe that the
operational cost can be significantly reduced by resource
reservation, and there is a tradeoff between the on-demand
cost and the reservation cost. 'e optimal resource reser-
vation is nr

1 � 0, nr
2 � 1, nr

3 � 0, nr
4 � 1  with the reserved

processing capacity of 275 requests/s, and the optimal op-
erational cost is $3407.9. By combining on-demand and
reserved instances, the operational cost can be reduced by
25.58% compared with the pure on-demand strategy.

We compare the accuracy of the uniform discretization
grid with that of the Monte Carlo and quasi-Monte Carlo
methods [21]. As can be seen from Figure 4(a), the uniform
discretization grid is the best among the three methods
under the same sample size. We also study the impact of the
sample size on the accuracy of the uniform discretization
grid. As can be seen from Figure 4(b), the accuracy of the
uniform discretization grid becomes higher as the sample
size increases, and reaches 98.01% when N � 10.

Figure 5 shows the convergence of the dual decompo-
sition-based branch and bound algorithm. It can be seen that
the optimal solution can be obtained by the DDBnB algo-
rithm after 9 iterations. Table 3 compares the performance of
our resource reservation algorithm based on stochastic
programming (RRSP) with two existing algorithms: the
RIPAM algorithm considering only medium instance type
[15] and the DCRA algorithm [16]. 'e RRSP algorithm can
reduce the operational cost by 24.92%. Our algorithm can
achieve 4.14% more cost saving than RIPAM, and 20.84%
more cost saving than DCRA.

6.3. Workload Prediction Based on Hybrid ARIMA-Kalman
Model. In this subsection, we evaluate the performance of
the hybrid ARIMA-Kalmanmodel.'e data of the first three
weeks are used as the training data and the data of the last
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week as the test data. Figure 6 shows the prediction results.
We can observe that the predicted workload is very close to
the actual workload. 'e prediction accuracy of the hybrid
ARIMA-Kalmanmodel is compared with the ARIMAmodel
[8] and the neural network method [9] based on three
metrics, mean absolute percentage error (MAPE), root mean
square error (RMSE), and mean absolute error (MAE). 'e
ARIMA model has an autoregressive order of 2 and a
moving average order of 1. 'e neural network method uses
the backpropagation neural network, the learning rate is set

to 0.7, there is only one hidden layer, and the numbers of
neurons in the input, hidden, and output layers are 6, 4, and
1, respectively. As can be seen from Table 4, the hybrid
ARIMA-Kalman model is better than the other two
methods.

Although the predicted workload is very close to the
actual workload, the underprovisioning problem can
occur due to underestimation of the workload. To reduce
the SLA violation rate, modified workload prediction
formula (24) is used. Figure 7 shows the impact of the

Start

Initialization: set j = 0 and choose the
initial values of the parameters Ψ(0);

E-step: calculate the smoothed values 
xt/n, Pt/n, Pt,t–1/n based on Ψ(j – 1) and use 
xt/n, Pt/n, Pt,t–1/n to calculate S11, S10, S00;

M-step: update the parameter 
estimates using (20) to obtain Ψ(j); 

Convergence check 

Stop

Set j = j + 1;

No

Yes

Figure 1: 'e EM algorithm.
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Figure 2: 'e workload trace.
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Table 2: 'e configuration and the pricing models of each VM type.

VM type Resource configuration Processing capacity
(requests/s)

Reserved instance
(1 year, partial upfront) On-demand instance usage fee

(per hour)
Upfront payment Usage fee

(per hour)
Small 1 vCPU, 1.7GiB RAM, 160GB disk 20 $123 $0.010 $0.044
Medium 1 vCPU, 3.75GiB RAM, 410GB disk 50 $247 $0.020 $0.087
Large 2 vCPU, 7.5GiB RAM, 840GB disk 110 $493 $0.042 $0.175
Extralarge 4 vCPU, 15GiB RAM, 1680GB disk 225 $987 $0.083 $0.35
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Figure 3: Impact of resource reservation on the operational cost.
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Figure 4: Performance of the SAAmethod. (a) Comparison of uniform discretization withMonte Carlo and quasi-Monte Carlo. (b) Impact
of the sample size on the accuracy of uniform discretization.
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parameter α on the SLA violation rate and the on-demand
cost. It can be seen that, as the value of α increases, the SLA
violation rate decreases while the on-demand cost
increases.

7. Conclusion

In this paper, we propose a two-phase cloud resource
provisioning algorithm for cloud users to reduce the re-
source rental cost using both on-demand and reserved
instances. In the first phase, we formulate the resource
reservation problem as a two-stage stochastic program-
ming problem. We use the sample average approximation
method to reduce the number of scenarios, and solve the
SAA problem by a dual decomposition algorithm with
branch and bound to obtain the optimal resource reser-
vation. In the second phase, we propose a hybrid ARIMA-
Kalman model for workload prediction and determine the
number of on-demand instances based on the predicted
workload. 'e effectiveness of the proposed two-phase
algorithm is evaluated based on a real-world workload
trace and Amazon EC2’s pricing models. 'e simulation
results show that the proposed algorithm can achieve
about 5%–20% more cost saving than existing algorithms
while guaranteeing the SLA. In the future, we plan to
investigate more pricing models offered by cloud pro-
viders such as spot pricing model, and use these pricing
models to further reduce the resource rental cost of cloud
users.
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Table 3: Comparison of RRSP with two existing algorithms.

Operational cost ($/year) Cost saving (%)
RRSP 3438.5 24.92
RIPAM [15] 3628.1 20.78
DCRA [16] 4392.6 4.08
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Figure 6: Prediction results.

Table 4: Comparison of prediction accuracy of the three prediction
methods.

MAPE RMSE MAE
ARIMA-Kalman 0.1417 52.1098 42.9142
ARIMA 0.1418 52.1102 42.9359
Neural network 0.1426 52.8228 42.6461
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