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In this paper, value streammapping (VSM) is integrated with fuzzy set theory to incorporate variability and uncertainty in the lean
production system. VSM is one of the primary analytical tools for identifying waste and optimizing a production line. However,
the standard VSM fails to consider the variability in manufacturing environments, which is, in fact, one of the root causes of waste.
'erefore, this article proposes fuzzy VSM to overcome this weakness. Two alternative forms of fuzzy numbers, triangular fuzzy
numbers (TFNs) and normal fuzzy numbers (NFNs), are applied, respectively, to depict time intervals, inventories, and other
operating variables in VSM. An industrial case for assessing the validity of the proposed approaches is presented. Both approaches
make it possible to incorporate and analyze variability in VSM and can be easily applied to industrial cases, as they only require
basic algebraic operations.'e obtained results are compared and the choice between TFNs and NFNs is discussed accordingly. A
triangular fuzzy VSM tends to overestimate the variability of the process in complex production environment with complicated
operational processes. However, it permits a more accurate description of variation in the environment where the optimistic and
pessimistic values have very different variations from the core.

1. Introduction

Lean manufacturing, originated from the Toyota Production
System, has been receiving great attention from researchers
and practitioners since its production [1]. 'e lean pro-
duction system has been widely applied in manufacturing
industry worldwide and is considered as one of the most
effective approaches in improving operational efficiency
[2–4]. In general, the analysis of the product value stream is
implemented as the first step toward leanness, as it helps in
identifying the areas where the improvement efforts should
be concentrated [5]. Value streammapping (VSM) is a visual
tool that facilitates the process of the lean production system
through identifying value-added activities and eliminating
wastes [6]. It can be described as “a graphical tool used to
map the as-is situation of the organization, to identify op-
portunities for waste elimination, and to decide the im-
provements to be implemented to eliminate the waste” [7],

and it has found its way into various industries and domains
as one of the key lean tools [8, 9].

However, the conventional VSM methodology is unable
to give a real vision of the variability problems concerning
the production process analyzed. Indeed, variability is one of
the important factors influencing the cycle time of each stage
and the work-in-process (WIP) between adjacent processes
[10]. It affects the queueing time and causes congestion and
uncertainty in input rates and processing times. Such var-
iability originates from various aspects, which include but
are not limited to the characteristics of the product (and
WIP) itself, the workforce, the equipment, and the envi-
ronment, of the value stream. 'erefore, it is always difficult
to obtain deterministic values when collecting data associ-
ated with times, inventories, and other operating variables
[11]. Moreover, the uncertainty in data and their intrinsic
variability acts as one of the root causes of waste [12] and is a
significant noise factor in terms of processes, inputs, outputs,
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random breakdowns, and random setup times for a pull
system. Considering these issues, the lack of consideration of
real variability in the value stream is one of the main
drawbacks of VSM. To overcome this weakness, this paper
proposes a fuzzy VSM method to incorporate variability in
value stream analysis and improvement. 'e same issue also
has been studied by Braglia et al. [11] and Seyedhosseini et al.
[13]. Braglia et al. [11] proposed two alternative approaches
based on statistics and fuzzy algebra, respectively. Both
methods were designed to support practitioners and can be
easily employed in industrial applications. Seyedhosseini
et al. [13] applied fuzzy set theory to map the value stream
and to determine the best future-state VSM. However, these
two studies both simply use triangular fuzzy numbers to
describe values in VSM without considering and comparing
the appropriateness and accuracy of different fuzzy ex-
pressions in different production environments. 'e current
study is conducted to fill the research gap. 'is paper adopts
two forms of fuzzy numbers, triangular fuzzy number (TFN)
and normal fuzzy number (NFN), respectively, to describe
time intervals, inventories, and other operating variables in
VSMs. Moreover, two alternative ranking methods of fuzzy
numbers, namely, modified coefficient of variation (CV) and
centroid point method, are proposed to determine the ideal
fuzzy VSM. Modified CV index enables decision makers to
assign different weight on the mean value and standard
deviation of fuzzy numbers. 'e centroid point method can
be easily performed in the comparison of TFNs but en-
counters computational difficulties in the ranking of NFNs.
In order to accelerate the computation, this paper proposes a
novel method to determine the approximate centroid point
of NFNs.

'e remainder of this paper is structured as follows. A
review of literature on existing and related work is presented
first, followed by the presentation of fuzzy VSM in two
forms. Next, the proposed fuzzy VSM approach is dem-
onstrated through an industrial application, followed by the
discussion of the choice from two forms of fuzzy VSM
according to the case results. Finally, conclusions and future
research prospects are presented at the end of the paper.

2. Literature Review on VSM

'e core of VSM consists of the definition of a current-state
VSM and a future-state VSM [14, 15]. A graphical pre-
sentation of both materials and information flow in the
current system is defined as a current-state VSM, which has
a timeline showing the average time spent by an item at each
stage of the production process in both value-added and
non-value-added activities [16]. Accordingly, the total
production lead time (TPLT) can be obtained by summing
all the times reported on the timeline [17]. Furthermore, this
permits to compute the efficiency η of the production line as
the ratio of the total value-added time (TVAT) with respect
to the TPLT (i.e., η�TVAT/TPLT), which serves as one of
the main criteria in evaluating the leanness of the supply
chain [5, 18]. With reference to current-state VSM, an
analyst identifies and measures the waste generated from
incapacity, inefficiency, and the unreliability of information,

time, money, space, people, machines, materials, and
manufacturing tools during the management of processing
within an organization, and improvement initiatives are
created accordingly [7]. A future-state VSM indicating
modifications and continuous improvement plans is then
developed for the system [19].

Compared to other mapping techniques, VSM has some
specific features, making VSM important and unique for lean
manufacturing. For instance, VSM not only manages the
manufacturing processes but also optimizes the whole system
by creating a holistic view of it [13, 20]. VSM is a door-to-door
demonstration for visualizing a production process at the
plant level rather than the single-process level and illustrating
the flow of materials and information in the entire supply
chain rather than for separate manufacturing plants [21].
'us, it includes information related to production times, as
well as to inventory levels, and offers a reflection of systemic
vision maintaining local details of process by diagrammati-
cally linking material flow, information flow, and timeline [6].
Moreover, by using operating parameters such as Takt time,
which determines the production rate at which each pro-
cessing stage in the manufacturing system should operate,
VSM links product planning and demand forecasts to pro-
duction scheduling and flow-shop control. 'rough visual-
ized mapping, VSM successfully forms a blueprint for lean
implementation and can be integrated into various qualitative
and quantitative analyses-based tools to refine and redesign
strategic improvements [22].

Due to its effectiveness and advantages in promoting
lean manufacturing, the implementation of VSM has been
studied by many scholars. Some of the studies lead to a
further improvement in the VSM technique. Abbas et al.
[23] proposed an innovative mapping technique named
value network mapping (VNM) obtained from an integra-
tion of production flow analysis and simplification toolkit
into VSM. 'e authors show that VNM supports lean
manufacturing through the creation of U-shaped cells and
improvement of material handling methodologies. Braglia
et al. [24] developed a step-by-step procedure named im-
proved value streammapping that makes it possible to apply
VSM to products characterized by complex bills of materials.
'e basic idea of the method is using a temporized bill of
material to identify the critical production path. 'en, all
possible sharing with secondary paths are considered as
possible constraints to make improvements to the critical
path. McDonald et al. [25] and Lian and Landeghem [26]
pointed out that traditional VSM lacks the capability for the
rapid development and evaluation of multiple what-if an-
alyses required to prioritize different alternatives. To over-
come this lack, both papers suggested combining VSM with
discrete-event simulation to define the basic parameters for
the FSM (i.e., number of kanbans, pitch increments,
micromix, etc.) and to assess the effects of these parameters
on the performance of the system. In terms of the application
environment, although lean manufacturing originates from
the automobile sector, various studies have shown mixed
results in the implementation of lean manufacturing in
different industry sectors. For instance, Pavnaskar and
Gershenson [27] identified the main differences and
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similarities between a productive and an engineering pro-
cess. 'eir analysis was used to accommodate VSM for
engineering processes. Zokaei and Simons [28] introduced
lean thinking to the red meat industry. Lean production
techniques (principally Takt time and standard operations)
were proven to make significant contributions to all stages of
the red meat value chain, resulting in a 2%–3% potential cost
savings for each actor in the chain [28]. Jimenez et al. [29]
elaborated on the application of the lean concept to wine
processing in an environment of continuous production.
'e authors used VSM as the main tool to identify process
wastes, developed present and future maps with plans for
improvement, and found that VSM highlighted areas of
improvement [29]. Also, the application of VSM in the
pharmaceutical industries was examined by Chowdary and
George [30] and several opportunities were explored to
reduce lead times, cycle times, and WIP inventory levels.

3. Fuzzy VSM

To handle the variability of value stream parameters in a
computational way, fuzzy set theory is applied to transform
the uncertainties into fuzzy numbers [31]. A fuzzy set can be
viewed as a subset from the real number set that represents
uncertain values [32]. Zadeh [33] defines a fuzzy set as a class
of objects having a range of degrees of membership. Such a
set is characterized by a membership function μ(x) that
assigns each object class a membership degree between zero
and one. 'e degree indicates whether an object or element
is located wholly inside, wholly outside, or partially inside
and outside the set. 'e membership of this set is graduated
and not related to a probability distribution [33]. 'is paper
applies TFNs and NFNs, respectively, to describe the vari-
ability in VSM.

3.1. TFN-Based VSM. 'e first approach is the use of TFNs
to describe the time intervals spent by an item for each stage
of the production process. 'e use of TFNs appears to be
compatible with the aim of VSM, since they offer a good
trade-off between computational costs and accuracy in the
final ranking. A generic TFN Ã is defined by an ordered
quartet Ã� (a, b, c), where a represents the lower bound and
c represents the upper bound, respectively. c-a suggests the
fuzzy degree of Ã: the larger the value of c-a, the higher is the
degree of fuzziness. TFNÃ degenerates into a real number in
the case of a� b� c. 'e interval [a, c] is denoted as the
support ofÃ. 'emembership function μÃ (x) is the bilinear
relation given in the following relation:

μ~A(x) �

0, x≤ a,

x − a

b − a
, a<x≤ b,

c − x

c − b
, b< x≤ c,

0, x> c.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

To describe the processing and waiting times with the
appropriate TFNs, data collection should be carefully con-
ducted to acquire the sample data. To determine the values of
a, b, and c, this study introduces parameter α, which is
similar to that proposed by Rommelfanger [34]:

(i) α� 1: μ(x)� 1 means that value x certainly belongs to
the set of possible values.

(ii) α� λ: μ(x)> λ means that value λ has a chance of
μ(x)> λ belonging to the set of possible values.

'erefore, the value of b is set to the mean of the sample
data at an α-cut α1 � 1. 'e minimum and maximum values
of the sample correspond to an α-cut α2 � 0.1, rather than to
0, in order to incorporate other possible extreme values that
fail to be captured by observation. Accordingly:

a �
(min(sample) − 0.1b)

0.9
, (2)

b � μ(sample), (3)

c �
(max(sample) − 0.1b)

0.9
. (4)

If it is impossible to collect real data intervals, for in-
stance, in the calculation of future-state performance, the
process staff will be asked to provide the most likely estimate
at an α-cut α1 � 1, as well as the optimistic and pessimistic
estimates at an α-cut α2 � 0.1. 'e meanings of these three
estimates are as follows:

(i) 'e most likely estimate at an α-cut α1 � 1 represents
a value that definitely belongs to the set of duration
estimations.

(ii) 'e optimistic and pessimistic estimates at α-cut
α2 � 0.1 define an interval in which each value has a
probability above 0.1 of belonging to the set of
duration estimations.

In this way, b is the most likely estimated duration, and
the values of a and c can be calculated using the membership
function:

a �
(optimistic estimate − 0.1b)

0.9
,

c �
(pessimistic estimate − 0.1b)

0.9
.

(5)

3.2. NFN-Based VSM. 'e second form of fuzzy number
applied is NFN.'emembership function of an NFN can be
expressed as

μ~A(x) � e
− (x− μ)2/2σ2( ), σ > 0. (6)

As a result, Ã can be uniquely identified by μ and σ and
then expressed as Ã� (μ, σ). Ã, as a fuzzy number, is capable
of objectively describing the actual time intervals spent by an
item for each stage of the productive process, which is
vulnerable to multiple influencing factors. For two NTNs
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Ã1 � (μ1, σ1) and Ã2 � (μ2, σ2) (see Appendix A for the proof
process):

A1 + A2 � μ1 + μ2, σ1 + σ2( , (7)

A1 − A2 � μ1 − μ2, σ1 − σ2( . (8)

3.3. Ranking Fuzzy VSMs. 'is paper suggests two alter-
native approaches to compare or rank the future-state VSMs
in terms of performance criteria such as production line
efficiency (measured by η�TVAT/TPLT), both of which
offer a good compromise between the computational
complexity and the robustness of the final result.

3.3.1. Modified CV Method. Cheng et al. [35] proposed the
concept of CV index, defined as σ/μ, where σ and μ refer to
the standard deviation and the mean, respectively, of fuzzy
numbers. 'e fuzzy number with smaller CV suggests a
lower degree of dispersion and gets a higher ranking ac-
cordingly. 'e standard deviation and mean value are given
the same degree of significance in this method, while de-
cision makers might prefer different priorities of the indi-
cators in practical application. 'erefore, this paper
proposes modified CV index to solve the problem.

modifiedCV �
σα

μ1− α, α ∈ [0, 1]. (9)

α> 0.5 suggests a higher importance of standard devi-
ation; α< 0.5 suggests a higher importance of mean value;
and α� 0.5 suggests an equal importance of standard de-
viation and mean value.

For TFN Ã� (a, b, c), μ and σ can be expressed as [36]

μ �
a + b + c

3
, (10)

σ �

���������������������

a
2

+ b
2

+ c
2

− ab − ac − bc

18



. (11)

For NTN Ã� (μ, σ), μ and σ are identified as Ã suggests.
Accordingly, the value of modified CV can be easily ob-

tained and the fuzzy number with smaller modified CV is
ranked higher. 'is method provides an efficient approach in
ranking fuzzy numbers, yet it fails in the ranking of fuzzy
numbers with different μ and σ values but same σ/μ value if
equal importance is given to standard deviation andmean value.
For instance, NTN Ã1� (2, 1) and NTN Ã2� (4, 2) have same
value of modified CV when α� 0.5. Consequently, an alter-
native ranking procedure is described in the following section.

3.3.2. Centroid Point Method. The centroid point of a fuzzy
number corresponds to an x value on the horizontal axis and a
y value on the vertical axis. 'e centroid point method uses
distance between centroid and original points (i.e.,
R(A) �

������

x2 + y2


) as the indicator of fuzzy number ranking:
for larger-the-better parameters, the fuzzy number with larger

value of R(A) is ranked higher; for smaller-the-better pa-
rameters, the fuzzy number with lower value of R(A) is ranked
higher. It should be noted that although this method has been
criticized by scholars for its deficiency in dealing with negative
fuzzy numbers [37], it works well in the situation described in
this research because parameters in VSM, such as time in-
tervals and WIP volumes, cannot be negative values.

For fuzzy number TFN Ã� (a, b, c), the centroid point
(x, y) is [38]

x �
a + b + c

3
, (12)

y �
1
3
. (13)

For NTN Ã� (μ, σ), the calculation of centroid point is
complicated and time consuming; hence, this paper pro-
poses a novel method to determine the approximate centroid
point efficiently. 'e main idea is to replace the membership
function of NTNs by linear function approximation. 'e
membership function of an NTN Ã� (μ, σ) is described in
equation (6) and illustrated as Figure 1.

'e concavity and convexity of the function change in
the points where the second derivative of μ~A(x) equals 0
(i.e., μ~A( x )″ � 0); accordingly, the inflection points are
(μ− σ, (1/

�
e

√
)) and (μ+ σ, (1/

�
e

√
)). We draw a tangent to

the normal distribution curve through (μ− σ,(1/
�
e

√
)) and

(μ+ σ, (1/
�
e

√
)), respectively, expressed as (blue-colored

lines in Figure 2)

f(x) �

1
σ

�
e

√ x +
2σ − μ
σ

�
e

√ , x≤ μ,

−
1

σ
�
e

√ x +
2σ + μ
σ

�
e

√ , x> μ.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(14)

f(x) intersects vertex tangent g(x) � 1 (black-colored line
in Figure 2) at (μ − 2σ + σ

�
e

√
, 1) and (μ + 2σ − σ

�
e

√
, 1) and

intersects X axis at (μ− 2σ, 0) and (μ+2σ, 0). 'e area sur-
rounded byf(x), g(x), and X axis serves as the approximation
of the area under the normal distribution curve between μ− 2σ
and μ+2σ. According to the empirical rule of normal distri-
bution, about 95% of the area under the curve falls within two
standard deviations (i.e., between μ− 2σ and μ+2σ), while 99.7%
of the area under the curve falls within three standard deviations
(i.e., between μ− 3σ and μ+3σ). In other words, the adoption of
(μ− 2σ, 0) and (μ+2σ, 0) to approximately substitute the
boundaries of μ~A(x) is less accurate comparedwith adoption of
(μ− 3σ, 0) and (μ+3σ, 0) as approximate boundaries. Ac-
cordingly, the line determined by (μ±3σ, 0) and (μ±2σ, (1/e2))
((1/e2) is the value of μ~A(x) when x� μ±2σ, i.e., μ~A(μ ± 2σ))
is drawn, expressed as (green-colored lines in Figure 2)

h(x) �

1
σe

2 x +
3σ − μ
σe

2 , x≤ μ,

−
1
σe

2 x +
3σ + μ
σe

2 , x> μ.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(15)
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h(x) intersects f(x) at (μ − 2σ + (σ/e
�
e

√
− 1),

(1/(e2 −
�
e

√
))) and (μ + 2σ − (σ/e

�
e

√
− 1), (1/(e2 −

�
e

√
)))

and intersects X axis at (μ− 3σ, 0) and (μ+ 3σ, 0). As a result,
the area surrounded by f(x), g(x), h(x), and X axis serves
as the approximation of the area under the normal distri-
bution curve, and the NFN Ã� (μ, σ) can be approximately
substituted by fuzzy number μ~A′(x) (as shown in black bold
lines in Figure 2):

μ~A′(x) �

0, x≤ μ − 3σ,

x − (μ − 3σ)

(σe
�
e

√
/e

�
e

√
− 1)

, μ − 3σ < x≤ μ − 2σ +
σ

e
�
e

√
− 1

,

x − (μ − 2σ)

σ
�
e

√ , μ − 2σ +
σ

e
�
e

√
− 1
<x≤ μ − 2σ + σ

�
e

√
,

1, μ − 2σ + σ
�
e

√
<x≤ μ + 2σ − σ

�
e

√
,

(μ + 2σ) − x

σ
�
e

√ , μ + 2σ − σ
�
e

√
<x≤ μ + 2σ −

σ
e

�
e

√
− 1

,

(μ + 3σ) − x

(σe
�
e

√
/e

�
e

√
− 1)

, μ + 2σ −
σ

e
�
e

√
− 1
< x≤ μ + 3σ,

0, x> μ + 3σ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

'e centroid point (x, y) of fuzzy number μ~A′(x) can be
calculated according to [35], and consequently,

x � μ, (17)

y �
1
3

1
e
2

−
�
e

√ . (18)

While the modified CV method is invalid in certain
situations, as discussed in 3.3.1, the centroid point method of
fuzzy number ranking also has its shortcomings. For ex-
ample, TFN Ã� (1, 2, 6) and TFN Ã� (2, 3, 4) have same
value of x and y and accordingly same value of
R(A) �

������

x2 + y2


. In such cases, the centroid point method
fails to perform the ranking result. 'erefore, the two al-
ternative ranking methods of fuzzy numbers compensate
each other, and the combined application of the two ap-
proach can provide satisfactory results while single appli-
cation fails to give the ranking in some circumstances.

4. Description of an Industrial Application

In this paper, a footwear manufacturer named EA is ex-
amined to illustrate the application of the proposed fuzzy
VSM in two forms, respectively, to incorporate variability in
value stream analysis. 'e investigated factory is a final
assembly plant with a production line for “cut-through-
assembly” products, which, in this case, are shoes. EA
outsources the production of soles and imports the raw
materials for the uppers in the global market. To reduce the
transport costs, EA tends to place large orders in batches of

more than 20,000 pieces on a monthly basis. 'e uppers are
manufactured and attached to the soles in the factory. 'e
productive process consists of a flow shop system divided
into five main steps: (1) cutting, (2) prefitting, (3) computer
stitching, (4) manual stitching, and (5) assembly. Production
begins in the cutting room. Here, raw materials for the
uppers are cut into prescribed shapes using instruments that
look like cookie cutters. After cutting is prefitting, in which
some of the cut parts are skived for better fit and some are
embossed or embroidered with details or logos. Next, the
parts are brought to the computer stitching department,
where a machine guided by computer vision joins the
separate parts to the uppers, which are transformed from a
flat form to a three-dimensional form. Parts that cannot be
automatically stitched are taken to a manual stitching
workshop. Finally, the nearly finished uppers circulate to the
assembly line, where the uppers are placed and stretched on
foot-shaped moulds called “lasts” and attached to the soles.

'e standard cycle time (i.e., the designed processing
time according to the technical process plus the necessary
preparation and changeover times) for cutting, prefitting,
computer stitching, manual stitching, and assembly is 20, 30,
320, 300, and 510 s, respectively. For each shoe, five different
parts, including the upper body, shoe tongue, heel counter,
and other functional or decorative pieces, need to be cut
from the fabric or leather rolls. A cutting machine can
handle up to ten tiers of flat stock at a time and a prefitting

Figure 1: 'e membership function of an NTN Ã.

Figure 2: 'e approximate linear membership function of an
NTN Ã.
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machine can process up to ten pieces at a time. To obtain
actual operational data, field research was conducted to
record the cycle time of each process and the sizes of the raw
materials, buffer inventories, and finished products along the
production line. 'e data collection is carefully designed to
consider the various factors influencing variability. More
specifically, in cycle time collection, the gathered data for
each production process includes data from different
product groups, operators, machines, times of day, and
environmental conditions, such as temperature, humidity,
and ambient noise. For the data collection, 100 groups of
data were gathered and carefully examined by EA’s experts
to produce an adequate sample for further analysis. Simi-
larly, data relevant to the volume of raw materials, WIP, and
finished products were gathered. 'e time intervals can be
expressed in the form of TFNs according to equations
(2)–(4) (see Table 1 for details).

With the 100 groups of observation data (see Table 2 for
details), the descriptive statistics of the sample were ac-
quired, as shown in Table 3. 'e results of the Kolmogor-
ov–Smirnov test provide the significance value (sig.) for
every sample data that exceed 0.05, which is consistent with
the hypothesis of the normal distribution (see Table 4 for the
results of the Kolmogorov–Smirnov test in SPSS).

Accordingly, the normal fuzzy numbers of the time
duration of each stage can be obtained and expressed as
Ã� (μ, σ) (see Table 5 for details).

EA’s manufacturing plant is directed by an ERP pro-
duction control system that sends a daily schedule to the
shipping department and a weekly schedule to each separate
workstation. 'e current state value stream map in the
manufacturing plant is shown in Figure 3. At the bottom of
the figure, the timelines for the standard, triangular fuzzy,
and normal fuzzy approaches are depicted. Note that the
valued-added times of cutting and prefitting are five times of
their respective cycle times because the cutting and prefitting
operation, respectively, repeats five times to produce the five
different parts for every single shoe. It can be observed from
the current-state map that the total production lead time in
days (TPLT) is 8.5 days, whereas the total value-added time
in seconds (TVAT) is only 23min, leaving a great margin for
improvement.

Using the triangular fuzzy timeline, TPLT (days) can be
described as TFN A∼(3.06, 8.82, 16.59) with the following
membership functions:

μA(x) �

0, x< 3.06,

x − 3.06
5.76

, 3.06≤x≤ 8.82,

16.59 − x

7.77
, 8.82≤x≤ 16.59,

0, x> 16.59.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

TVAT (min) can be described as TFN B∼(21.04, 22.98,
26.06) with the following membership functions:

μB(x) �

0, x< 21.04,

x − 21.04
1.94

, 21.04≤ x≤ 22.98,

26.06 − x

3.08
, 22.98≤ x≤ 26.06,

0, x> 26.06.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(20)

Alternatively, using the normal fuzzy timeline, TPLT
(days) can be described as NFN A∼(8.82, 2.53) with the
following membership function:

μA(x) � e
− (x− 8.82)2/12.8( ). (21)

TVAT (mins) can be described as NFN B∼(23, 0.79) with
the following membership function:

μB(x) � e
− (x− 23)2/1.25( ). (22)

Having noticed the low efficiency of the production
processes in the current situation, EA could make some
modifications in the production line to reduce waste and
improve overall performance. Two alternative future-state
VSMs were designed accordingly and characterized by the
following modifications of the original production
processes:

(i) 'e reoriented value stream is to be balanced on a
Takt time of 36 seconds per shoe that corresponded
to the demand for 400 pairs a day.

(ii) A daily Heijunka schedule is to be followed in order
to achieve a quick response to the pull of customers
and low changeover times.

(iii) Supermarket and kanban systems are to be applied
to the production line in order to replace WIP and
prevent overproduction. A supermarket is to be set
up at the beginning of the internal value streamwith
a withdrawal kanban system in order to instruct
material handlers to obtain and transfer items from
the supermarket to the cutting stage. Materials are
to be delivered to the production line on a daily
routine. 'erefore, the maximum capacity of this
supermarket is to be set to 8 hours. To regulate the
final assembly in accordance with the pace of the
shipping schedule, another supermarket and kan-
ban systems are to be arranged at the end of the
internal value stream before the finished products
are shipped. Shipping is to be arranged on a daily
basis. 'erefore, the maximum capacity of this
supermarket will equal 8 hours.

(iv) 'e production line is to be levelled by a CONWIP
system with production cards cycling from the
assembly unit to the cutting stage via the whole
production process and back to the assembly unit.

Differences among the two alternative solutions are as
follows. 'e first solution of the future-state value stream
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(see Figure 4) is supposed to change the layout of the plant
to move the cutting and the prefitting units closer to each
other, to realize the operator shifts between the two units
four times a day. Such a modification is to be made after
the productivity of each production process and the Takt
time of the whole value stream (36 s per shoe) are com-
pared. In particular, for cutting and prefitting, the pro-
cessing times of an upper are 100 s and 150 s, respectively
(as previously mentioned, five times per cycle time of a
device). However, the concurrent output of these two
processes is ten items. 'erefore, the times required to
produce one item by these two processes are 10 s and 15 s,
respectively. For computer stitching, manual stitching,
and assembly, the number of facilities working concur-
rently is 10, 10, and 15 while the corresponding cycle
times are 320 s, 300 s, and 510 s, respectively. Each ma-
chine can handle a single shoe at a time. 'erefore, the
output paces of these three processes are 32, 30, and 34 s
per shoe, respectively. Table 6 lists the cycle time and WIP
of each production process in this solution.

'e cutting and prefitting have output paces, as
measured by the time taken to produce one item (10 s and
15 s, respectively), of less than half of the Takt time of the
line. 'erefore, the proposal of shift working in cutting
and prefit processes is generated, as indicated by the arrow
connecting cutting and prefitting in Figure 4. In accor-
dance with this hypothesis, the line is balanced under the
condition that the cutting unit works on half shift but
keeps its original productive rate. Hence, it is necessary to
place a buffer immediately after the cutting unit to store
the items released at a rate that is double that of the line. A
supermarket is placed after the prefitting unit to inform
the production kanban of the number of items to be
produced. Such a modification makes it possible to reduce
not onlyWIP volumes but also labor density. When it goes
to the computer stitching, manual stitching, and assembly
departments, the batch approach is replaced by the flow
approach. First-in-first-out (FIFO) inventory stocking
with a maximum of two pairs is implemented between the
cells of two adjacent departments. As a result, the pro-
duction lead time drops from 8.5 days in the initial “push”
line to 14 hours through significant attention to process
improvement and the reduction of WIP.

In the second solution (see Figure 5), the hypothesis is to
change the overall layout of the plant to unify the cutting and
the prefitting units into a single cell and the computer and
manual stitching units into another to realize a “one-piece”
flow within the working cells.

'e cutting and prefitting production unit is operated by
one worker handling ten pieces as a batch without inter-
ruption or delay between the two steps. Similarly, in the
computer and manual stitching cells, an upper flows directly
from the computer to the manual stitching without tem-
porary storage to eliminate the WIP between the two
processes in the same production cell and reduce unnec-
essary transporting due to the isolation of the two depart-
ments as in the original plant layout. 'e stitched uppers are
sent to the assembly line following a FIFO lane with a
maximum of two pairs. Consequently, the production rate of
the computer and manual stitching cell is directed by the
assembly line. 'e pace of the cutting and prefitting cell can
be determined by setting a supermarket system between the
two production cells. Table 7 lists the cycle time and WIP of
each production process in this solution.

In the form of TFN, TPLT1 (in hours) can be described by
TFN A1∼(2.88, 14, 25.1), whereas TPLT2 (in hours) can be
described by TFN A2∼(− 0.44, 9, 18.44). TPLT2 has a negative
value, which would be illogical and unrealistic in a real case.
Having examined the calculation process of TPLT, it is dis-
covered that the irrationality was due to the simple summation
of the separate lead times. More specifically, the two super-
markets at the beginning and end of the production line cannot
reach their respective lower limits at the same time.

At the beginning of a day, the supermarket at the be-
ginning of the line holds the maximum volume because the
external materials have just arrived, whereas the super-
market at the end of the line holds the minimum volume
because no product is ready for shipping yet. In contrast, at
the end of a day, the supermarket at the beginning of the line
holds the minimum volume because all external materials
have been delivered to the productive processes, whereas the
supermarket at the end of the line holds the maximum
volume with finished products waiting to be shipped.
Consequently, the summation of the items in these two
supermarkets is in balance with an average of 8 hours in a
24-hour period. Similarly, due to the negative correlation

Table 1: TFNs corresponding to cycle time and WIP.

Observed value
TFN

Min. Mean Max.
Raw material inventory (days) 1.2 2.01 2.7 (1.11, 2.01, 2.78)
Cutting (s) 16 19.84 24 (15.57, 19.84, 24.46)
Buffer 1 (days) 0.3 0.80 1.4 (0.24, 0.80, 1.47)
Prefitting (s) 27 30.05 34 (26.66, 30.05, 34.44)
Buffer 2 (days) 1.1 1.49 2.0 (1.06, 1.49, 2.06)
Computer stitching (s) 303 320.60 334 (301.04, 320.60, 335.49)
Buffer 3 (days) 0 0.43 0.8 (0, 0.43, 0.84)
Manual stitching (s) 271 298.06 327 (268.00, 298.06, 330.22)
Buffer 4 (days) 0.5 1.91 4.4 (0.34, 1.91, 4.68)
Assembly (s) 485 510.58 547 (482.16, 510.58, 551.05)
Buffer 5 (days) 0.5 2.18 4.5 (0.31, 2.18, 4.76)
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Table 2: Data recorded for the value stream.

Raw material
inventory
(days)

Cutting
(s)

Buffer 1
(days)

Prefitting
(s)

Buffer 2
(days)

Computer
stitching (s)

Buffer 3
(days)

Manual
stitching

(s)

Buffer 4
(days)

Assembly
(s)

Buffer 5
(days)

(1) 1.9 23 0.6 30 1.5 310 0.6 324 2.5 511 3.4
(2) 1.8 20 1.2 28 1.7 317 0.5 299 2.6 496 2
(3) 2.2 21 0.4 27 1.3 325 0.4 273 1.8 531 2.9
(4) 2 19 0.6 32 1.5 322 0.3 300 1.9 509 3
(5) 1.9 22 0.9 29 1.6 319 0.1 310 0.5 493 2.2
(6) 2.3 20 0.6 31 1.4 333 0.4 305 1.1 505 4
(7) 2.1 19 0.6 31 1.6 331 0.5 311 0.7 508 1.8
(8) 2.1 18 0.5 33 1.6 321 0.5 295 1.7 528 4.2
(9) 1.5 19 0.7 30 1.2 320 0.4 315 0.5 504 1.9
(10) 2 22 0.9 30 1.4 322 0.4 306 3.5 547 1.8
(11) 1.9 21 1.1 31 1.4 319 0.6 298 2.4 522 2.6
(12) 2.4 20 0.6 30 1.4 315 0.5 307 3 520 3.1
(13) 2 19 0.3 30 1.4 328 0.5 291 2.2 503 0.5
(14) 1.2 22 0.8 31 1.4 323 0.2 292 1.2 525 0.7
(15) 2 21 1 32 1.4 303 0 287 1.2 514 1.5
(16) 2.2 16 0.7 27 1.7 314 0.3 303 2.4 530 1.1
(17) 2.5 20 0.9 33 1.3 321 0.2 279 0.5 515 2.6
(18) 1.5 19 0.7 31 1.6 327 0.4 271 1.7 494 2
(19) 2.1 21 1.1 27 1.6 315 0.5 299 1.8 506 1.2
(20) 2.2 20 0.9 32 1.5 315 0.6 296 1 512 2
(21) 1.5 23 0.6 33 1.5 323 0.2 300 0.5 492 3.4
(22) 2.5 20 0.8 31 1.2 324 0.7 311 0.5 506 1.9
(23) 1.7 21 1 29 1.6 329 0.4 297 1.5 495 2.5
(24) 2 22 1 31 1.6 327 0.7 318 1.7 514 2.1
(25) 2.4 20 0.8 28 1.2 315 0.4 293 1.3 518 2.4
(26) 2.2 20 0.8 31 1.5 314 0.2 305 1.2 536 2.6
(27) 2.6 20 1.2 31 1.5 318 0.3 295 2.3 531 3.5
(28) 2.3 20 0.7 28 1.6 326 0.5 295 1.2 519 3
(29) 2 20 0.9 31 1.4 325 0.6 309 2.1 492 1.9
(30) 1.7 21 0.9 30 1.6 314 0.5 288 1.9 496 2.7
(31) 1.8 19 0.8 29 1.4 317 0.7 294 1.9 518 3.5
(32) 2.3 17 1 31 1.2 318 0.6 327 2.3 518 2.8
(33) 1.9 21 1 30 1.5 333 0.5 277 1.8 527 1.3
(34) 2.6 20 1 29 1.4 317 0.4 303 1.8 489 2
(35) 1.6 24 0.6 29 1.6 323 0.4 300 3.2 500 2.4
(36) 2.1 22 1.1 30 1.6 318 0.4 280 2 505 2.1
(37) 2.1 17 1.2 29 1.3 326 0.3 283 4.4 518 3.4
(38) 1.9 20 0.6 27 1.3 326 0.2 296 2.5 521 2.7
(39) 2 19 0.7 31 1.4 323 0.5 289 3.3 510 2.4
(40) 1.5 19 0.6 30 1.5 310 0.5 290 2.7 493 1.4
(41) 2 19 0.9 31 1.3 327 0.2 314 2.6 502 1.6
(42) 2.2 18 0.9 32 1.5 313 0.5 296 1.6 487 0.8
(43) 2 22 0.6 32 1.6 308 0.5 298 3 523 1.5
(44) 2.1 19 0.6 30 1.6 325 0.7 286 2.4 506 3
(45) 2.5 19 0.3 30 1.3 328 0.6 307 3.2 514 1.6
(46) 2.2 19 0.7 29 1.6 314 0.6 287 2.7 510 0.5
(47) 2 18 0.5 29 1.7 333 0.3 289 2 510 1.4
(48) 2 17 0.9 28 1.4 318 0.4 297 1.9 520 1.7
(49) 2 22 1.4 30 2.0 311 0.4 308 3.1 519 4.5
(50) 2.1 21 0.8 29 1.5 316 0.4 306 3.7 506 2.7
(51) 2 20 0.7 32 1.5 322 0.6 294 1 502 2
(52) 1.7 20 0.8 32 1.4 322 0.3 304 2.4 505 2.1
(53) 2.3 21 0.8 31 1.7 322 0.7 292 1.3 507 2.2
(54) 1.9 20 1 31 1.6 327 0.1 307 2.5 508 2.1
(55) 1.5 21 1 34 1.4 320 0.2 301 2.4 488 2.2
(56) 1.6 21 1 28 1.5 317 0.4 275 1.4 519 2.7
(57) 2 17 0.8 31 1.7 319 0.7 319 1.3 502 2.5
(58) 2.1 17 0.9 30 1.7 323 0.3 286 3 506 1.7
(59) 2 19 0.7 29 1.7 320 0.7 299 2.4 530 1.5
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Table 3: Descriptive statistics of cycle time and WIP.

Range Mean± Std. deviation (i.e., μ± σ) K-S test
Raw material inventory (days) (1.2, 2.7) 2.01± 0.31 0.061
Cutting (s) (16, 24) 19.84± 1.89 0.064
Buffer 1 (days) (0.3, 1.4) 0.80± 0.23 0.252
Prefitting (s) (27, 34) 30.05± 1.60 0.090
Buffer 2 (days) (1.1, 2.0) 1.49± 0.15 0.063
Computer stitching (s) (303, 334) 320.60± 6.25 0.721
Buffer 3 (days) (0, 0.8) 0.43± 0.17 0.055
Manual stitching (s) (271, 327) 298.06± 11.24 0.977
Buffer 4 (days) (0.5, 4.4) 1.91± 0.84 0.590
Assembly (s) (485, 547) 510.58± 12.61 0.773
Buffer 5 (days) (0.5, 4.5) 2.18± 0.83 0.705

Table 2: Continued.

Raw material
inventory
(days)

Cutting
(s)

Buffer 1
(days)

Prefitting
(s)

Buffer 2
(days)

Computer
stitching (s)

Buffer 3
(days)

Manual
stitching

(s)

Buffer 4
(days)

Assembly
(s)

Buffer 5
(days)

(60) 1.8 18 0.8 30 1.6 311 0.6 304 1.1 494 2.8
(61) 2.3 19 0.9 31 1.5 315 0.4 286 0.9 499 2.4
(62) 1.7 17 0.6 28 1.4 327 0.5 309 2.4 516 1.7
(63) 1.6 18 0.9 29 1.6 320 0.3 285 2.5 494 2.3
(64) 2.2 18 0.6 27 1.5 329 0.4 297 1.1 508 3.3
(65) 1.8 20 0.8 31 1.5 310 0.6 288 1.5 521 2.3
(66) 2.1 22 0.9 29 1.5 325 0.3 305 1.2 516 1.1
(67) 1.9 17 0.3 29 1.4 320 0.3 293 1.6 506 2.7
(68) 2.1 19 0.8 29 1.3 320 0.3 309 1.3 516 1.8
(69) 2 17 0.5 28 1.3 326 0.4 294 1.9 505 1.4
(70) 2 17 1.2 31 1.7 328 0.3 289 2.5 509 1
(71) 1.9 19 0.8 28 1.3 311 0.2 298 1.1 505 2.8
(72) 1.8 21 0.7 30 1.1 322 0.7 290 2.8 518 1.3
(73) 2.4 22 0.7 29 1.6 324 0.2 284 1.2 509 2.3
(74) 2.5 21 0.6 30 1.3 323 0.5 313 2.9 531 1.9
(75) 2.3 19 0.5 28 1.5 310 0.4 283 0.9 516 1.8
(76) 1.2 18 0.8 28 1.5 323 0.4 315 1.9 506 1.5
(77) 2.2 19 0.8 30 1.4 323 0.4 303 1.9 489 1.4
(78) 2 23 1.4 30 1.4 326 0.7 317 2.2 525 2
(79) 2.6 22 0.7 27 1.8 324 0.5 290 1.6 522 2.1
(80) 2.1 21 1.2 33 1.7 320 0.5 290 0.8 540 1.2
(81) 2 19 1 29 1.7 326 0.5 296 1.7 522 3.1
(82) 2.4 21 1 32 1.3 325 0.5 290 2.8 505 1.2
(83) 2 21 0.8 29 1.4 325 0.4 292 2.4 516 1.4
(84) 1.7 19 0.4 29 1.5 320 0.6 296 0.7 511 4.2
(85) 1.8 18 1.1 28 1.5 316 0.5 285 0.8 515 1.1
(86) 2 19 0.7 29 1.6 315 0.3 300 0.6 516 1.9
(87) 1.9 24 1.1 30 1.3 312 0.4 301 2.3 501 1.2
(88) 1.5 23 0.7 32 1.6 316 0.2 312 3 519 2.2
(89) 1.3 24 0.9 33 1.5 327 0.7 306 0.5 485 0.9
(90) 1.9 20 0.7 30 1.4 334 0.3 289 2.8 493 3.4
(91) 2 19 0.8 32 1.6 316 0.4 315 1.4 514 2.3
(92) 2.2 23 0.8 30 1.6 316 0.4 288 1.4 524 2.2
(93) 2.7 18 0.9 29 1.4 323 0.5 304 2.3 491 2.8
(94) 1.9 18 0.3 31 1.2 325 0.5 292 2.4 525 3.5
(95) 1.9 16 1 31 1.5 316 0.2 297 1.1 496 1.4
(96) 2 18 0.3 29 1.6 319 0.7 303 3.2 509 2.2
(97) 2.2 24 0.8 32 1.5 319 0 295 1.1 517 2.1
(98) 1.4 17 0.6 32 1.4 333 0.8 318 2.2 508 2.9
(99) 2.5 18 0.8 32 1.6 318 0 301 3.1 494 2.4
(100) 2.1 21 1 30 1.8 311 0.6 308 1.9 517 1.7
Mean 2.01 19.84 0.80 30.05 1.49 320.60 0.43 298.06 1.91 510.58 2.18
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Table 5: 'e NFNs corresponding to cycle time and WIP.

NFN
Raw material inventory (days) (2.01, 0.31)
Cutting (s) (19.84, 1.89)
Buffer 1 (days) (0.80, 0.23)
Prefitting (s) (30.05, 1.60)
Buffer 2 (days) (1.49, 0.15)
Computer stitching (s) (320.60, 6.25)
Buffer 3 (days) (0.43, 0.17)
Manual stitching (s) (298.06, 11.24)
Buffer 4 (days) (1.91, 0.84)
Assembly (s) (510.58, 12.61)
Buffer 5 (days) (2.18, 0.83)

Production control

ERPSupplier

Retailers

2 days 0.8 days 1.5 days 2 days

Distribution 
center

Monthly order
Weekly order

Daily

100s

2 days

150s

0.8 days

320s

1.5 days

300s

0.4 days

Shipping

510s

1.8 days

0.4 days 1.8 days

Warehouse

Value-added
time = 23min 

Production lead
time = 8.5 days 2 days

Manufacturing plant

WIP
Queuing 

time

Long-time 
forecast

C/T = 20s
C/O = 0
Uptime = 60%
1 shi�

C/T = 30s
C/O = 0
Uptime = 60%
2 shi�s

C/T = 320s
C/O = 5min
Uptime = 65%

2 shi�s

C/T = 300s
C/O = 2min
Uptime = 90%
2 shi�s

C/T = 510s
C/O = 0
Uptime = 100%
2 shi�s

(99.20,
9.45) s 

(2.01, 0.31)
days 

(150.25, 8) s

(0.80, 0.23)
days 

(320.60, 6.25)
s 

(1.49,
0.15) days 

(298.06,
11.24) s

(0.43, 0.17)
days 

(510.58,
12.61) s 

(1.91, 0.84)
days 

Value-added
time = (23, 0.79) min 

Production lead
time = (8.82, 2.53)

days 
(2.18,

0.83) days 

Standard
timeline 

Cutting Prefit Computer 
stitching

Stitching Assembly

Weekly schedule
Daily shipping schedule

WIP

NFN
timeline 

(77.85,
99.2,

122.3) s 

(1.11, 2.01,
2.78) days 

(133.3,
150.25,

172.2) s 

(0.24, 0.80,
1.47) days 

(301.04,
320.6, 

335.49) s 

(1.06, 1.49,
2.06) days 

(268, 298.06,
330.22) s 

(0, 0.43,
0.84) days 

(482.16,
510.58, 

551.05) s

(0.34, 1.91,
4.68) days 

Value-added
time = (21.04, 22.98,

26.06) min 

Production lead
time = (3.06, 8.82,

16.59) days 
(0.31, 2.18,
4.76) days TFN

timeline 

Figure 3: Current-state value stream map.
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between the two supermarkets, the deviations for them are
traded off against each other. 'erefore, a revised TPLTfor a
TFN approach is placed in the two future-state maps il-
lustrated in Figures 4 and 5.

In conclusion, using the TFN approach, the revised
TPLT1 (in hours) can be described with TFN A1∼(11.76, 14,
16.22), whereas TPLT2 (in hours) can be described with TFN
A2∼(8.44, 9, 9.56).

Supplier

Warehouse

Daily
shipment

Kaizen

Kaizen

Daily

Daily
heijunka
schedule

Daily

Daily

Weekly order Weekly order

OXOX

Production control

ERP
Retailers
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Distribution center
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stitching
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Figure 4: Future-state value stream map (1).

Table 6: Cycle time and WIP for future-state value stream map (1).

Estimated value
TFN NFN

a b c
Raw material inventory (hours) 0 4 8 (− 0.44, 4.00, 8.44) (4.00, 1.33)
Cutting (s) 16 20 26 (15.56, 20.00, 26.67) (19.84, 1.89)
Buffer 1 (hours) 2 3 4 (1.88, 3.00, 4.11) (3.00, 0.33)
Prefitting (s) 25 30 35 (24.44, 30.00, 35.56) (30.05, 1.60)
Buffer 2 (hours) 2 3 4 (1.88, 3.00, 4.11) (3.00, 0.33)
Computer stitching (s) 300 320 340 (297.78, 320.00, 342.22) (320.60, 6.25)
Manual stitching (s) 270 300 340 (266.67, 300.00, 344.44) (298.06, 11.24)
Assembly (s) 480 510 560 (476.67, 510.00, 565.56) (510.58, 12.61)
Buffer 5 (hours) 0 4 8 (-0.44, 4.00, 8.44) (4.00, 1.33)
Note: the NTNs of cutting, prefitting, computer stitching, manual stitching, and assembly do not change with the current state.
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μA1(x) �

0, x< 11.76,

x − 11.76
2.24

, 11.76≤ x≤ 14,

16.22 − x

2.22
, 14≤ x≤ 16.22,

0, x> 16.22,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μA2(x) �

0, x< 8.44,

x − 8.44
0.56

, 8.44≤ x≤ 9,

9.56 − x

0.56
, 9≤x≤ 9.56,

0, x> 9.56.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

Alternatively, in the form of NTN, TPLT1 (in hours) can
be described by NFN A1∼(14, 0.66), whereas TPLT2 (in
hours) can be described by NFN A2∼(9, 0.17).

μA1(x) � e
− (x− 14)2/0.871( ),

μA2(x) � e
− (x− 9)2/0.058( ).

(24)

'e results of the two alternative future-state maps are
graphically shown in Figure 6. Obviously, both solutions
lead to significant improvements in lead time as compared
to the current state (14 and 9 hours, respectively, as
compared to 8.82 days). To compare the obtained solutions,
the modified CV and centroid point method are applied,
respectively. Using the modified CV approach, μ and σ of
TFNs A1 and A2 are calculated, respectively, following
equation (10) and (11). According to equation (9), for TFN-
based VSM1, modified CV � (0.91α/141− α); for TFN-based
VSM2, modified CV � (0.23α/91− α); for NFN-based VSM1,
modifiedCV � (0.66α/141− α); and for NFN-based VSM2,
modifiedCV � (0.17α/91− α). Giving same weight to μ and
σ, i.e., α� 0.5, the modified CV for TFN-based VSM1 and
VSM2 equals 0.255 and 0.160, respectively, and the mod-
ified CV for NFN-based VSM1 and VSM2 equals 0.217 and
0.137, respectively. 'erefore, using the modified CV ap-
proach, future-state VSM2 is superior to VSM1 in both TFN
and NFN expressions. Using the centroid point method, x

and y of TFNs A1 and A2 are calculated, respectively,
according to equations (12) and (13), and x and y of NFNs
A1 and A2 are calculated, respectively, according to
equation (17) and (18). As a result, for TFN-based VSM1,
R(A) � 14; for TFN-based VSM2, R(A)� 9; for NFN-based
VSM1, R(A)� 14; and for NFN-based VSM2, R(A) � 9. As
production lead time is “smaller-the-better” parameter,
using the centroid point method, future-state VSM2 is

Cutting + pre fit
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timeline

TFN timeline

(510.58, 12.6) s
NFN timeline

Production control
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FIFO
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4h
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Production lead
time = 9h4h
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Daily shipping

Production lead
time = (–0.44, 9,

18.44) h

Talk time: 36
seconds

1h

Figure 5: Future-state value stream map (2).
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superior to VSM1 in both TFN and NFN expressions. In
conclusion, both the modified CV and centroid point
methods identify future-state VSM2 as the ideal solution. It
is worth noticing that, in this case, the comparison of the
two alternative solutions is obvious because the mem-
bership functions of TFNs A1 and A2 make no interception,
and the mean value and standard deviation of NTN A2 are
both lower than those of A1.

5. Discussion

As demonstrated by the case study, the introduction of fuzzy
logic to the traditional value stream analysis makes it possible to
handle the variability and uncertainty of each step of the
process, as well as the entire value stream. Both triangular and
normal fuzzy membership functions incorporate variability in
analysis and optimization. However,more consideration should
be given to the choice between the two approaches (i.e., TFN
and NFN).

'e triangular and normal fuzzy expressions of the current
state and two future states have been drawn in a single figure to
compare the two approaches of the fuzzy expressions. As shown
in Figure 7, the fuzzy TPLTof both the current state and future
A1 solution presents different ranges of variations when the
triangular and normal fuzzy expressions, respectively, are used.
In contrast, A2 generates triangular and normal fuzzy TPLT
expressions with similar lower and upper limits. 'e triangular
fuzzy VSM appears to be less accurate in processes such as the
current and A1 states, which comprise more operational pro-
cesses, as the addition of the individual lead time in each process
amplifies the dispersion of the support of the triangular fuzzy
TPLT. 'erefore, a triangular fuzzy VSM tends to overestimate
the variability of the process in a more complex productive
environment (i.e., composed of more operational processes).
However, a triangular fuzzy VSM permits a more accurate
description of variation in the production environment, where
the optimistic and pessimistic values have very different vari-
ations from the core. For example, in the current state VSM

0 2 4 6 8 10 12 14 16 18

A1
A2

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

A1
A2

(b)

Figure 6: Future-state lead time: (a) in triangular fuzzy numbers; (b) in normal fuzzy numbers.

Table 7: Cycle time and WIP for future-state value stream map (2).
Estimated value TFN NFNa b c

Raw material inventory (hours) 0 4 8 (− 0.44, 4.00, 8.44) (4.00, 1.33)
Cutting + prefitting (s) 41 50 61 (40.00, 50.00, 62.23) (49.89, 2.48)
Supermarket no. 1 (hours) 0.5 1 1.5 (0.44, 1.00, 1.56) (1.00, 0.17)
Computer +manual stitching (s) 570 620 680 (564.45, 620.00, 686.66) (618.66, 12.86)
Assembly (s) 480 510 560 (476.67, 510.00, 565.56) (510.58, 12.6)
Supermarket to shipping (hours) 0 4 8 (− 0.44, 4.00, 8.44) (4.00, 1.33)

0 4 8 11.64 15.64

(a)

10 12.5 14.5 16.22

(b)

4 8 8.7 9.1 9.5 12

(c)

Figure 7: Lead time in triangular and normal fuzzy numbers: (a) current VSM (days); (b) future-state VSMA1 (hours); (c) future-state VSM
A2 (hours).
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(Figure 7(a)), the lopsidedness of the lower and upper limits of
TPLT dispersed from the mean value could be manifested
through the triangular fuzzy expression as a scalene triangle.
However, the normal fuzzy VSM, in this case, appears to be less
accurate for describing a symmetrical dispersion of TPLT.

6. Conclusions

In this study, fuzzy set theory was applied in VSM analysis
to include variability in a manufacturing environment.
'e main idea behind fuzzy logic is to describe values
using fuzzy numbers instead of deterministic values [11].
Two types of fuzzy numbers, TFN and NFN, were adopted
to depict time intervals, inventories, and other operating
variables in a value stream. An industrial application
demonstrates the practicality and the effectiveness of the
proposed fuzzy VSM for both TFN and NFN forms to
incorporate variability in VSM analysis. Moreover, both
triangular and normal fuzzy VSMs can be easily per-
formed and applied, as only basic algebraic operations are
required in the analysis and optimization process to
ensure straightforward implementation in industrial
cases. 'e choice between the two fuzzy number forms in
VSM analysis is also discussed.

Accordingly, future research can be designed to avoid
the disadvantages of the respective triangular and normal
fuzzy VSM while retaining their advantages. For instance,
TFN and NFN can be integrated to develop skewed-
distributed fuzzy numbers to avoid overestimating the
variability incurred by TFN addition on the one hand and
illustrating the different variations of the optimistic and
pessimistic estimates on the other hand. Additionally, the
proposed fuzzy VSM optimization relies highly on the
estimates of decision makers. 'erefore, examining a
fuzzy VSM through simulative approaches could be an-
other interesting development for improving the accuracy
of VSM analysis.

Appendix

A. Proof Process of Equations (8) and (9)

A1 + A2(z) � ∨
x+y�z

A1(x)∧A2(y) 

� ∨
x∈R

A1(x)∧A2(z − x) 

� ∨
x∈R

e
− x− μ1( )

2/2σ21( ∧e− x− μ2( )
2/2σ22( 

 .

(A.1)

r'e functional images of μ~A1(x) � e− ((x− μ1)2/2σ21) and
μ~A2(x) � e− ((z− x− μ2)2/2σ22) are illustrated in Figure 8.
∨x∈R(e− ((x− μ1)2/2σ21)∧e− ((x− μ2)2/2σ22)) refers to the overlap

of the two curves, and the intersection of the two functions is
e− ((x− μ1)2/2σ21) � e− ((z− x− μ2)2/2σ22).

Let

x − μ1( 
2

2σ21
�

z − x − μ2( 
2

2σ22
� d. (A.2)

'en,

x − μ1( 
2

� 2σ21d,

z − x − μ2( 
2

� 2σ22d,

x − μ1(  z − x − μ2(  � 2σ1σ2d.

(A.3)

'en,

z − μ1 − μ2( 
2

� x − μ1(  + z − x − μ2(  
2

� x − μ1( 
2

+ z − x − μ2( 
2

+ 2 x − μ1(  z − x − μ2(  � 2σ21d + 2σ22d + 4σ1σ2d

� 2d σ1 + σ2( 
2
.

(A.4)

'en,

e – ((x – µ1)2/2σ2
1) = e – ((z – x – µ2)2/2σ2

2)

µÃ2 (x) = e – ((z – x – µ2)2/2σ2
2)

µÃ1 (x) = e – ((x – µ1)2/2σ2
1)

Figure 8: Functional images of ~A1 and ~A2.
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d �
z − μ1 − μ2( 

2

2 σ1 + σ2( 
2 . (A.5)

'erefore,

∨
x∈R

e
− x− μ1( )

2/2σ21( ∧e− x− μ2( )
2/2σ22( 

  � e
− z− μ1+μ2( )( )

2/2 σ1+σ2( )
2( 

.

(A.6)

Similarly,

A1 − A2(z) � e
− z− μ1− μ2( )( )

2/2 σ1− σ2( )
2( 

. (A.7)
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