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In this paper, we investigate pattern dynamics with multivariable by using the method of matrix analysis and obtain a condition
under which the system loses stability and Turing bifurcation occurs. In addition, we also derive the amplitude equation with
multivariable. +is is an effective tool to investigate multivariate pattern dynamics. +e example and simulation used in this paper
validate our theoretical results. +emethod presented is a novel approach to the investigation of specific real systems based on the
model developed in this paper.

1. Introduction

+e pattern formation was first investigated and inter-
preted by Alan Turing 60 years ago [1]. In general,
Turing model contains two reactants: activator and
inhibitor, which engage in diffusion. Recently, the study
of Turing bifurcation, amplitude equation, and sec-
ondary bifurcation have paid more attention on the
pattern formation [2–4], and Lee and Cho found that
dynamical parameters and external periodic forcing play
an important role in the shape and type of pattern
formation [5]. And the robustness problem is also in-
vestigated [6]. +e effects of cross-diffusion, the phe-
nomenon in which a gradient in the concentration of
one species induces other species, on pattern formation
in reaction-diffusion systems have been discussed in
many theoretical papers [7–14]. Regarding noise, noise
is a ubiquitous phenomenon in nature and always
deemed to play a very important role in the natural
synthetic system [15]. Viney and Reece [16] treated noise
as adaptive and suggested that applying evolutionary
rigour to the study of noise is necessary to fully un-
derstand organismal phenotypes, and Shen considered
the Lévy noise in the gene network [17, 18].

Recently, the pattern formation with three or four
variables has been investigated, and it obtains promising
results [19, 20], and Xu et al. made a concrete analysis with
three variables [21]. As we all know that amplitude equation
is a promising tool to investigate the pattern dynamics of the
reaction-diffusion system [2, 22], however, the amplitude
equation is a complex process [3], and the researcher often
chose the amplitude equation [23–26] to investigate the
reaction-diffusion system. In conclusion, spatial patterns in
reaction-diffusion systems have attracted the interest of
experimentalists and theorists during the last few decades.
But, these previous works did not give a general method to
define Turing instability and derive the amplitude equation
with n variables.

Besides, the study of patterns can offer useful infor-
mation on the underlying processes causing possible
changes in the system. In order to better understand the
reaction-diffusion model, first, we propose to study the
Turing instability with n variables by matrix theory [27]. In
addition, we also derive the amplitude equation by using the
standard multiple scale analysis [28, 29] which provides a
way to investigate the mechanism of pattern formation.

+e paper is organized as follows. In Section 2, we give
the general reaction diffusion with multivariable and derive
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the condition of Turing instability. In Section 3, we derive
the amplitude equation from the reaction-diffusion system
with multivariable. In Section 4, we utilize an example to
illustrate the application of these ideas. +e simulation
validates our theoretical results. Finally, we summarize our
results and conclusion.

2. Turing Instability with Multivariate

For a multivariate reaction-diffusion system, we have
zu
zt

� f(u) + D∇2u, u � u11, . . . , unn( , (1)

where the function f(u) specifies dynamics of the interaction
of the species and D is the diffusion parameter diagonal
matrix.

Also, we can obtain the following linear system at
equilibrium u � 0 from (1):

zu
zt

� Au + D∇2u, (2)

where A is the Jacobian matrix.
As we all know that the stability of a system depends on

the sign of the real part of eigenvalue [23], for coefficient
matrix A, there is a nonsingular matrix P subject to
A � P− 1JP, and J is a Jordan form [27]. Also, we have

|λI − A| � |λI − J| �

λ − J1 0 0 0

0 λ − J2 0 ⋮

0 0 λ − J3 0

0 · · · · · · λ − Jn





� λ + λ1(  λ + λ2(  · · · λ + λn(  � 0,

(3)

where

J �

J1 0 ⋮

0 J2 ⋮

· · · · · · Ji

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (4)

where

Jk �

λk 1 0 0

0 λk 1 ⋮

0 0 λk 1

0 · · · · · · λk

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (5)

where −λi is the eigenvalue and has a negative real part
which means stable without diffusion. In addition, we can
get the condition of stability by Routh–Hurwitz criteria.

In the standard way, we assume that u takes the form

u � ceλkt+ikr
, (6)

and obtains the characteristic equation from system (1.2) as
follows:

λI − A + Dk
2
 � λI − J − Dk

2
 � λn

+ a1λ
n− 1

+ · · · + an−1λ + an � 0,

(7)

and there is at least λ> 0 which exists when an < 0 based on
Routh–Hurwitz criteria.

Now, we obtain the definition of Turing instability with n

variables.

Theorem 1. Turing instability occurs when an < 0.

In addition, we obtain the critical condition of Turing
instability. Assume x � k2 and p(x) � xn + p1x

n− 1

+ · · · + pn, p′(x) � 0 has n − 1 roots, and xi, i � 1, . . . , n − 1
and can get the minimum value p(xc > 0) [30]. We can
obtain the critical condition of Turing instability from
an(k2

c) � 0.

3. Amplitude Equation with Multivariable

In this paper, we continue to study the system with n

variables. In the following, we use multiple scale analysis to
derive the amplitude equations.

+e solutions of systems can be expanded as

c � c0 + Zie
ikir + c.c., i � 1, 2, 3. (8)

And system (1) can be written as
zc
zt

� Lc + N(c, c), (9)

where c � u is the variable, L � A + D∇2 is the linear op-
erator, N � N1u2 + N2u3 is the nonlinear term, N1u2 is all
the twice term, and N2u3 is all the triple term.

We need to investigate the dynamical behavior when c is
close to cc, and then we expand c as

cc − c � εc1 + ε2c2 + · · · , (10)

where cc is the critical value and ε is a small enough
parameter.

We expand c and N as the series form of ε:

c � u1ε + u2ε
2

+ · · · ,

N � N1u
2
1ε

2
+ N1u1u2 + N2u

3
1 ε3 + o ε4 .

(11)

Linear operator L can be expanded as

L � Lc + cc − c( M. (12)

Let

T0 � t,

T1 � εt,

T2 � ε2t, . . . .

(13)

Ti is a dependent variable, and amplitude is a slow
variable. For the derivation of time, we have that

zW

zt
� ε

zW

zT1
+ ε2

zW

zT2
+ · · · . (14)

Substituting the above equations into (1) and expanding
(1) according to different orders of ε, we can obtain three
equations as follows:
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ε : Lcu1 � 0,

ε2 : Lcu2 �
z

zT1
u1 − c1Mu1 − N1u

2
1,

ε3 : Lcu3 �
z

zT1
u2 +

z

zT2
u1 − c1Mu2 − c2Mu1 − N1u1u2 − N2u

3
1.

(15)

We first consider the case of the first order of ε. Since Lc

is the linear operator of the system close to the onset, u1 is
the linear combination of the eigenvectors that corresponds
to the eigenvalue zero. Since that

u1 � bWie
ikir + c.c, (16)

where Lcb � 0, nonzero root exists [27].
Now, we consider the case of ε2 and the zero eigenvectors

of operator L+
c , ∃b

+ s.t.:

L+
c b

+
� 0. (17)

By investigating eik1r only in the following, another case we
can get is by changing subscript which is not described in detail
here. It can be obtained from the orthogonality condition that

b+Tb
z

zT1
W1 � b+T

MbW1 + b+Tb2 N1W2W3. (18)

By using the same methods, one has

u2 � a0 + aiZie
ikir + aiiZiie

i2kir + a12Z12e
i k1− k2( )r

+ a23Z23e
i k2− k3( )r

+ a31Z31e
i k3− k1( )r

+ c.c.
(19)

For the case of ε3, we have that

Lcu2 � 0. (20)

We can obtain all the coefficients and ai � b.
Using the Fredholm solubility condition again, we can

obtain

b+Tb 
zZ

zT1
+ b+Tb 

zZ

zT2
� c1b

+T
MbZ1 + c2b

+T
MbW1

+ b+Tb2N1 Z2W3 + Z3W2( 

+ b+Tb3N2 |W|
2
1 + W2



2

+ W3



2

 W1,

(21)

and then we substitute systems (18) and (21) into (14) for
simplification, in which we can obtain

b+Tb 
zW1

zt
� cc − c( W1 + b+Tb2N1W2W3

+ b+Tb3N2 |W|
2
1 + W2



2

+ W3



2

 W1.

(22)

4. Method

In the following, we consider the Turing instability of a
system with 3 variables:

zu

zt
�

k0u

1 + k0u
− μu + d1∇

2
u,

zv

zt
�

k1u + k2v

1 + k1u + k2v
− μv + d2∇

2
v,

zw

zt
�

k3u + k4v + k5w

1 + k3u + k4v + k5w
− μw + d3∇

2
w,

(23)

and we obtain the Jacobian matrix at equilibrium
(u0, v0, w0) � (0, 0, 0):

A �

k0 − μ 0 0

k1 k2 − μ 0

k3 k4 k5 − μ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (24)

+e characteristic equation is

|λI − A| � λ − k0 + μ(  λ − k2 + μ(  λ − k5 + μ(  � 0. (25)

+e system is stable without diffusion when
μ − k0 < 0, μ − k2 < 0 and μ − k5 < 0, that is to say it is stable
when μ<min(k0, k2, k5).

+en, the Jacobian matrix with diffusion is given as
follows:

B �

k0 − μ − d1k
2 0 0

k1 k2 − μ − d2k
2 0

k3 k4 k5 − μ − d3k
2

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠.

(26)

+e characteristic equation is

|λI − B| � λ3 + aλ2 + bλ + c � 0, (27)

where

a � d3 + d1 + d2( k
2

− k0 − k5 + 3μ − k2,

b � d2d3 + d1d3 + d1d2( k
4

+ −d1k2 − k0d3 + 2μd3 + 2μd2(

− k0d2 − k2d3 − d2k5 − d1k5 + 2d1μk
2

− 2μk2 + 3μ2 − 2μk5 − 2k0μ + k0k2 + k2k5 + k0k5,

c � a5k
6

+ b5k
4

+ c5k
2

+ d5,

(28)
where
a5 � d1d2d3,

b5 � μd2d3 − k0d2d3 − d1k2d3 + d1μd3 − d1d2k5 + d1d2μ,

c5 � −μd2k5 − d1μk5 + μ2d2 − k0d2μ − d1k2μ − μk2d3

+ k0d2k5 + d1μ
2

+ d1k2k5 + μ2d3 + k0k2d3 − k0μd3,

d5 � −μ2k5 + k0μk5 + μk2k5 + μ3 + k0k2μ − k0k2k5 − μ2k2 − k0μ
2
.

(29)
For convenience, we assume x � k2, and then f(x) �

a5x
3 + b5x

2 + c5x + d5 and f′(x) � 3a5x
2 + 2b5x + c5

which have two roots x12 � −b5 ±
���������

b25 − 3a5c5



. We know

f(x)≥f(x1), k2
c � x1 � −b5 +

���������

b25 − 3a5c5



, and the critical
value is f(x1) � 0.
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Figure 1: Dispersion curve and rainbow pattern.
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Figure 2: Continued.
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Figure 2: Spot pattern occurs.
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Figure 3: Nebulous pattern occurs.
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We get k2
c � 0.12, c � −0.1022 when k0 � 2, k1 � 1, k2 �

2, k3 � 1, k4 � 1, k5 � 2, d1 � 0.1, d2 � 0.2, d3 � 0.5, and
μ � 1.5 with the perturbation 1/((X + 10)(Y + 20)) which
means Turing instability, and then the rainbow stripe
pattern (Figures 1(b)–1(d)) and dispersion curve occur
(Figure 1(a)). In addition, spot pattern occurs (Figure 2)
when k0 � 3, k1 � 1, k2 � 2, k3 � 3, k4 � 4, k5 � 5, d1 � 0.1,

d2 � 0.2, d3 � 0.3, μ � 1 with the perturbation sin(X2 + Y2),
and nebulous pattern occurs (Figure 3) when k0 � 2, k1 � 1,

k2 � 2, k3 � 1, k4 � 1, k5 � 2, d1 � 1, d2 � 2, d3 � 1, μ � 1
with the perturbation sin(X2 + Y2).

5. Conclusion

In this article, we present the theoretical analysis and nu-
merical simulation of the Turing instability with multivar-
iable. It is found that the reaction-diffusion systems with
multivariable have rich spatial dynamics by performing a
series of numerical simulations. We also give a general
method to derive the amplitude equation with multivariable
in theory which can be used to solve some problems about
pattern formation with multiple variables in the further
study. In addition, the mechanism of pattern formation with
multiple variables is on the way and can be derived based on
the above theory in this paper; however, it is a very complex
process, and we will investigate it in the future.
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