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Milling stability is a function of the tool point frequency response functions (FRFs), which vary with the movements of the moving
parts within the whole machine tool work volume. /e position-dependent tool point FRFs result in uncertain prediction of the
stability lobe diagram (SLD) for chatter-free machining parameter selection. Taking the variations of modal parameters to
represent the variations of tool point FRFs, this paper introduces the edge theorem to predict the robust milling chatter stability.
/e application of the edge theorem requires the minimum and maximummodal parameters within the machining space defined
by the machining position and machining allowance information. /en, radial basis function artificial neural networks
(RBFANNs) are used to predict the position-dependent modal parameters in X and Y directions based on the sample information
of machining positions and related modal parameters at the tool point. Moreover, sample machining spaces are determined based
on the aforementioned sample positions, and the trained RBFANNs are used to obtain corresponding sample extreme modal
parameters. On this basis, RBFANNs for predicting the position and machining allowance-dependent extreme modal parameters
can also be trained, and they are combined with the edge theorem and zero exclusion condition to calculate robust pairs of the
spindle speed (n) and limiting axial cutting depth (aplim) and then plot the robust SLD (RSLD). A case study was performed on a
real three-axial vertical machining center, and the plotted RSLD considering position variations was compared with the traditional
SLD. Results of the chatter tests show that the RSLD can provide more reliable (ap, n) pairs to guarantee the milling stability,
validating the feasibility of the proposed robust milling chatter stability prediction method.

1. Introduction

Milling is one of the major machining processes that can
obtain finished products with desired geometry, dimensions,
and surface roughness by material removal. During milling
operations, the most common self-induced vibration de-
fined as regenerative chatter is a significant obstacle limiting
improvements of the production efficiency and processing
quality [1–3]./e regenerative chatter is caused by the forces
generated during the dynamic cutting process and is not
dependent on the external periodic forces. /e disastrous
nature of chatter vibration brings numerous negative effects
including poor surface finish, aggravated tool wear, excessive
noise, and damages to machine tool components [4, 5].

/erefore, extensive research studies have been conducted to
prevent the chatter occurrence by analytical stability pre-
diction, real-time detection, chatter control technique, and
so on [6–8].

/e well-known stability lobe diagram (SLD), which
provides stable and unstable cutting zones divided by pairs
of limiting axial cutting depth and spindle speed, is a sig-
nificant approach benefiting selections of chatter-free ma-
chining parameters, such as spindle speed, axial cutting
depth, radial cutting width, and feed rate per tooth [9].
Generally, the SLD can be predicted by theoretical analyses
in time and frequency domains or based on the results of
chatter tests [10]. Guo et al. [11] have taken the effect of the
cutter’s helix angle on the chatter into consideration and
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proposed a new integral interpolation method to predict the
stability lobes with multidelays. Tang et al. [12] considered
the high-order interpolation of the state item and the time-
delay term simultaneously and proposed an updated full-
discretization method for predicting the milling stability
more accurately. Altintas and Budak [13, 14] developed a
two-degree-of-freedom (2DOF) dynamic model for the
milling vibration system and proposed an analytical chatter
prediction theory to obtain the SLD by introducing the
Fourier approximation method. As this proposed method
was proved to be efficient in obtaining the SLD, it lays a
foundation in following milling stability predictions con-
sidering various affecting factors.

To analyze the milling stability using these aforemen-
tioned methods, the frequency response functions (FRFs) at
the tool points are required. However, as the machine tool
structure is assembled by key parts and their related joints, the
tool point FRFs are a function of the moving part positions.
/en, the position-dependent tool point FRFs result in un-
certain prediction of milling stability. /erefore, the position-
dependent machine tool dynamic behaviour and milling
stability analysis have attained a lot of attention in recent years
[15, 16]. Law et al. [17] developed an efficient position-de-
pendent multibody dynamic model of a machine tool and
proposed related methodology to compute the tool point
FRFs based on reducedmodel substructural synthesis, and the
rapidly calculated tool point FRFs were used to research the
position-dependent milling stability. Semm et al. [18] also
divided the machine tool into reduced substructures and
assembled at the desired axis positions and used the local
damping models and substructuring approaches to efficiently
model the changing damping distribution and eigen-
frequencies. /en, a state-space model was obtained and
incorporated into a time domain simulation of the position-
dependent dynamic behaviour./e approximatemodels were
also used in predicting position-dependent milling stability.
Zhang et al. [19] considered the moving part displacements in
three axes and established a response surface model to predict
the minimum position-dependent critical axial cutting depth.

Majority of research studies validate that the SLD
reflecting the milling stability varies within the machine tool
work volume and provides methods to obtain the optimal
position with chatter-free machining parameters corre-
sponding to higher machining efficiency [20]. However, in
real milling operations, deviations between the predicted
and measured chatter occurring conditions are still ob-
served. /is problem may be ascribed to fact that the pre-
dicted chatter-free machining parameters are only useful at
one specific position and its adjacent space. When the
relative moving displacements between the tool and
workpiece are large, the change of machine tool structure
causes the variations of tool point FRFs, making the pre-
dicted chatter-free machining parameters at one position
invalid and bringing in the milling chatter occurrence.
Robust milling stability predictions considering the tool
point FRF uncertainties have been proposed, but few re-
search studies focusing on the uncertainties caused by
machining position variations were addressed [21]. Graham
et al. and Park and Qin [22, 23] have defined specific changes

to modal parameters of the tool point FRFs considering
effects of cutting force coefficients, high spindle speed, and
so on and combined the edge theorem and zero exclusion
condition method to obtain the robust SLD for machining
parameter selection. However, only a simple ±5% or ±10%
variation was taken to each modal parameter. Deng et al.
[24] predicted position-dependent modal parameters by the
Kriging model and obtained an optimal position with a
higher axial cutting depth through particle swarm optimi-
zation. /en, at the optimal position, modal parameter
variations within the machining space defined by three-
directional machining allowances were determined, and the
edge theorem was used to predict the robust chatter-free
machining parameters. However, this method is time
consuming to repeatedly calculate these position-dependent
modal parameters within the machining space when the
machining allowances or optimal positions change.

/erefore, this paper presents a theoretical approach to
fascinate rapid prediction of robust chatter-free machining
parameters within the machining space determined by the
machining allowances. Typical positions within whole ma-
chine tool work volume are determined by the experimental
design method, and tool point FRFs at these positions are
measured to identify the modal parameters. Radial basis
function artificial neural networks (RBFANNs) are used to
predict position-dependent modal parameters based on the
information of sample positions and modal parameters. For
each typical position, the trained RBFANNs are used to
predict the maximum and minimum values of each dom-
inant modal parameter within different machining spaces
determined by sample machining allowances. On this basis,
RBFANNs whose inputs are the information of sample
positions and their related machining allowances are also
trained to predict the extreme modal parameters. /en, a
robust position-dependent SLD for selecting robust chatter-
free machining parameters is predicted using the edge
theorem and zero exclusion condition method.

Henceforth, this paper is organized as follows. An an-
alytical methodology for predicting the robust position-
dependent milling stability based on the edge theorem and
zero exclusion condition method is first presented in Section
2. /e radial basis function artificial neural network to
predict the position-dependent modal parameters and their
extreme values within the machining space is described in
Section 3. In Section 4, a case study is performed on a real
vertical machining center for illustrating application of the
proposed method. /is is followed by a summarized con-
clusion in Section 5.

2. The Edge Theorem Applied in Traditional
Milling Chatter Stability Model

Research studies have been conducted to accurately establish
and solve the chatter stability model, and the chatter stability
has been shown to be more accurately analyzed by solving
eigenvalue problem proposed by Budak and Altintas. /en,
uncertainties in the dynamic milling process system can be
implemented in this accurate chatter stability model by
applying the edge theorem and zero exclusion condition.
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2.1. DOF Milling Stability Model. A two-degree-of-freedom
(DOF) dynamic model shown in Figure 1(a) is generally
used to describe the milling process system, in which the tool
is assumed to have two orthogonal degrees of freedom in X
and Y directions, and m, ξ, and k represent corresponding
mass, damping, and stiffness coefficients. According to the
analytical milling stability theory presented by Budak and
Altintas [13, 14], dynamic variations of the cutting forces in
two directions ΔFx and ΔFy can be can be described as
follows:
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where ap is the axial cutting depth,N is the tool tooth number,
Ktc is the tangential cutting force coefficient,Δx andΔy are the
X- and Y-directional vibration displacements, and [A] is the
average directional factor which is expressed as follows:
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whereKrt is the ratio of radical cutting force coefficient to the
tangential one and φst and φex are the start and exit angles of
the cutting tooth.

In frequency domain, vibration displacementsΔx andΔy
can be described based on the transfer function matrix
G(iω):
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where τ is the tool tooth passing period, Gxx(iω) and Gyy(iω)
are the direct tool point FRFs in X and Y directions, and
Gyx(iω) and Gyx(iω) are the cross tool point FRFs in X and Y
directions. Appling equation (3) into equation (1), the dy-
namic cutting forces are expressed using the following
equation:
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. (4)

An eigenvalue analysis is performed on equation (4) to
obtain its following characteristic equation:
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/en, if the cross tool point FRFs in two directions are
ignored, the characteristic equation can be rewritten as
follows:
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whereΛ is the eigenvalue and its real and imaginary parts are
named ΛR and ΛI. /e critical stability point occurs at the
chatter frequencyωc, and it is substituted into equation (6) to
obtain the corresponding limiting axial cutting depth aplim
and spindle speed n:

aplim � −
4π ΛR + iΛI( 􏼁

KtcN cosωcτ − i sinωcτ( 􏼁
,
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.

(7)

/erefore, in the spindle speed range, a traditional sta-
bility lobe diagram shown in Figure 1(b) can be plotted
according to equation (7). /e lobe curve is formed by dif-
ferent combinations of the limiting axial cutting depth aplim
and spindle speed n, which is used to divide the stable and
unstable zooms. /e (ap, n) pairs below the curve correspond
to stable machining conditions, and the (ap, n) pairs above the
curve result in unstable machining conditions.

2.2. Robust Milling Stability Prediction by Edge <eorem and
Zero ExclusionCondition. Equations (1) to (7) show that the
SLD mainly depends on the tool point FRFs Gxx(iω) and
Gyy(iω). A general FRF G(iω) with Nm modes can be de-
scribed using the following equation [25]:

G(iω) � 􏽘

Nm

r�1

ωnr/ker

s
2

+ 2ξrωnrs + ω2
nr

, (8)

where s� iω is the Laplace variable and ωnr, ξer, and ker are
the rth modal natural frequency, damping ratio, and stiff-
ness, respectively. During a milling operation, the machine
tool structure and its joint contact positions vary with
movements of the moving parts, causing variations in tool
point FRFs and related modal parameters and then leading
to uncertain SLD prediction.

Considering that the modal parameters will vary within
the machining space determined by the workpiece ma-
chining allowances, the edge theorem and zero exclusion
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condition are applied to develop a robust milling stability
prediction by extending traditional milling chatter stability
theory described in Section 2.1.

/e edge theorem can be used to determine the stability
of the time-delay system with uncertainties varying within a
specific range defined by the minimum and maximum
values. According to the edge theorem, for a polynomial P
with uncertain parameters in the Laplace domain, the
minimum and maximum values of each uncertain param-
eter can be selected to form different combinations, and a
corresponding family of polynomials can be obtained by
substituting these combinations into the polynomial. Cal-
culating each extreme polynomial at a given frequency will
obtain different vertices on the complex plane, and the
adjacent vertices can be connected to form a polygon. If the
polygon edges are all stable, robust stability of the system
within the boundary of edges can be guaranteed.

For applying the edge theorem to the 2DOF milling
system with uncertain modal parameters, the characteristic
equation of the chatter stability model expressed in equation

(6) is first rewritten in the Laplace domain as follows
[22–24]:
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Since the application of edge theorem in performing the
robust stability evaluation requires the system characteristic
equation to be in a polynomial form, the denominator of one
dominant mode shown in equation (8) is multiplied to the
left and right sides of equation (9) to yield equation (10) in a
polynomial form:
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/e variations of dominant modal parameters are
taken to represent the machining position changes, and
they are assumed to vary within its minimum and max-
imum values. /en, the left and right boundary values of
the natural frequency, damping ratio, and stiffness vari-
ation internals in X and Y directions are defined as ωnxmin,

ωnxmax, ωnymin, ωnymax, ξxmin, ξxmax, ξymin, ξymax, kxmin,
kxmax, kymin, and kymax. /ese extreme values of modal
parameters are selected to form different combinations,
which are substituted into equation (10) to determine a
family of polynomials P as expressed in the following
equation:
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Figure 1: (a) /e 2DOF dynamic milling system. (b) /e traditional stability lobe diagram.
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P � p1(s, v), p2(s, v), . . . , pi(s, v)􏼈 􏼉
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where i is the total number of the combinations with extreme
values and i will be 2Nv if the number of varying parameters
is Nv. As one dominant mode has three modal parameters,
there are 6 uncertain parameters considering X and Y di-
rections. /us, Nv equals 6, and there are 64 combinations
containing extreme values of modal parameters. /en,
values of the extreme combinations are calculated using
equation (10) to produce vertices in the complex plane when
a frequency is given. /e adjacent vertices are connected to
form the edges of a polygon, and the robust stability of the
milling system is dependent on the edges according to the
edge theorem. /erefore, the zero exclusion condition is
introduced to efficiently evaluate the stability of each edge.

/e zero exclusion condition is a graphic approach to
investigate the relationships among the edge locations and the
origin at a given frequency in the complex plane. /e system
is stable if the origin is located inside the polygon formed by
the edges; otherwise, the system is unstable. A system with
two uncertain parameters is assumed to have a better illus-
tration of the zero exclusion condition. /e two uncertain
parameters yield four vertices, which form a quadrilateral in
the complex plane as shown in Figure 2./e quadrant angle α
of each vertex is defined, and distributions of the quadrant
angles are used to discuss whether the quadrilateral encircles
the origin. Five cases are summarized in Table 1 according to
distributions of the quadrant angles. /e symbols + and ‒
shown in Figure 2 and Table 1 mean the maximum and
minimum quadrant angles in one quadrant, respectively.

/erefore, the robust milling stability prediction is
transformed into a graphic problem. Modal parameters cor-
responding to the positions within the machining space are
predicted to determine the minimum and maximum values of
each dominant modal parameter. At each spindle speed n, a
smaller axial cutting depth ap is first defined.With the given (n,
ap) pair, the vertices and stabilities of the edges at each fre-
quency within the defined variation range are determined
according to equations (9) to (11) and the zero exclusion
condition described in Table 1. If the formed polygons are
stable for all frequencies, the axial cutting depth is increased by
a small increment to repeat the aforementioned calculation
until an unstable condition occurs./en, for this spindle speed
value, the corresponding axial cutting depth is the limiting one
and the frequency is the chatter frequency. After the repeated
calculations sweep all the defined spindle speed values, a robust
SLD can be plotted by the detected limiting (ap, n) pairs.

3. The RBFANN-Based Robust Position-
Dependent Milling Chatter Stability

As the tool point FRF is a function of the displacements of
the machine tool moving parts, the position dependency
should be considered to predict milling stability more ac-
curately. It is time consuming to repeatedly perform the

impact testing or virtual simulation to obtain the tool point
FRFs at any position within the whole machine tool work
volume.Moreover, themachining space is also uncertain as the
workpiece machining allowances vary in real milling opera-
tions, bringing many difficulties in determining the variation
ranges of the modal parameters for applying the edge theorem
in predicting the robust milling chatter stability. /erefore, the
RBFANN is introduced in this paper to predict position-de-
pendent modal parameters of tool point FRFs and their var-
iation ranges corresponding to machining allowances.

3.1. A Generalized RBFANN Topologic Structure.
RBFANN is an efficient three-layer forward neural network
with the activation function of radial basis function, which
can approximate to a nonlinear function accurately with
simple topological structure and fast convergence speed. A
generalized RBFANN structure is shown in Figure 3, which
consists of one input layer, one hidden layer, and one output
layer [26–28]. /e input layer contains the input variable
vector X� [X1, X2,. . .,Xm]T, where its dimensionm is equal to
the number of neurons in this layer. /e input vector is
transferred into the nonlinear hidden layer by the radial basis
functions, changing the original nonlinear problem into a
separable linear problem. /e neural number in the hidden
layer is dependent on the system complexity, and it is nomore
than dimension of the input variable vector. For the ith
neuron in the hidden layer, its output can be written as
Φ(‖X−Xic‖), where Xic� [Xic1, Xic2,. . .,Xicm]T is the center of
the basis function and ‖·‖ means the 2-nom. /e Gauss
function is generally the basis function of RBFANN, and then
the output of the ith hidden layer neuron corresponding the
kth input sample vector Xk can be described as follows:

Φ Xk, Xic( 􏼁 � exp −
1
2σ2

Xk − Xic

����
����
2

􏼠 􏼡, (12)

where σ is the standard deviation of the Gauss function and
can be determined according to equation (13) to avoid the
Gauss curve to be too sharp or flat.

σ �
dmax������
2Numh

􏽰 , (13)

where dmax is the maximum distance between the defined
centers and Numh is the neuron number of the nonlinear
hidden layer.

Neurons in the hidden layer are linked to the neurons in
the output layer by the weights shown in Figure 3. /en, the
output layer is a linear weighting superposition of the output of
each hidden layer neuron. Assuming that the output response
vector Yki� [yk1, yk2,. . .,ykq]T has q dimensions, the neuron
number in the output layer is equal to q. /erefore, the output
of one neuron in the output layer can be described as follows:

ykj � w0j + 􏽘

Numh

i�1
wijΦ Xk, Xic( 􏼁

� 􏽘

Numh

i�0
wijΦ Xk, Xic( 􏼁, j � 1, 2, . . . , q,

(14)

Mathematical Problems in Engineering 5



where k is the kth input training sample, j is the jth output
layer neuron, i is the ith hidden layer neuron, and wij is the
weight between the ith and jth neurons in the hidden and
output layers, respectively.

3.2. LearningAlgorithmof aRBFANN. Equations (12) to (14)
show that the basic function centerXc, the standard deviation

of the Gauss function σ, and the weights linking the hidden
and output layers are three important parameters to establish
an accurate RBFANN. /e self-organizing selection center
method is used in this paper to determine these parameters
with the following two procedures. First, the centerXc and the
standard deviation σ are obtained through the unsupervised
learning process, and then the linking weights w are opti-
mized by a supervised learning process.
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Table 1: Stable or unstable conditions for different distributions of the vertices in the complex plane.

Case
no.

Milling
condition Distributions of the vertices in the complex plane

1 Stable All vertices are located in the same quadrant, and the origin is outside the polygon.
2 Stable Vertices are located in two adjacent quadrants, such as I-II, II-III, III-IV, or IV-I.

3 Stable
Vertices are located in diagonal quadrants such as I–III or II–IV, and the system is stable only when

α+
m+2-αm

_< π or α+
m+2-αm

+> π. m is the mth quadrant, and α+
m+2 and αm_ are the minimum and maximum

quadrant angles.

4 Stable
Vertices are located in three quadrants as I-II-III, II-III-IV, III-IV-I, and IV-I-II where only the following four
conditions correspond to the stable system: α+

3 -α1
_< π in I-II-III; α+

4 -α2
_< π in II-III-IV; α3_-α1+< π in III-IV-I;

α4_-α2+< π in IV-I-II.
5 Unstable Vertices are located in four quadrants, and the origin is inside the polygon.

Input Output

N
or

m
al

iz
at

io
n

A
nt

in
or

m
al

iz
at

io
n

Φ (||X – X0c||)

Φ (||X – X1c||)

Φ (||X – Xic||)

Φ (||X – XIc||)

X1
X′1

X2

...

...

...

...

...

...

...

...Xk

Xm

X′2

...

...

X′k

X′m

y′k1 y′k1

yk2

ykj

ykq

y′k2

...

...

y′kj

y′kq

w I1
w I1

w01

w02
w

0j
w

0q

w i1 w i2
w ij

w iq

w I2

w I2

w Ij

wIj

w Iq

w
Iq

Figure 3: /e topologic structure of a generalized RBFANN.
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/e K-means clustering algorithm is one of the most
common used clustering methods, which divides the data
into different categories with similar internal properties to
get representative centers. /ree stages are summarized to
illustrate the application of the K-means clustering method
as follows [29]:

(1) Randomly select L different vectors from the input
training sample information to be the initial cluster
centers Xc.

(2) Randomly select one vector Xk from the input
training sample information and calculate the dis-
tance between it and each cluster center using
equation (15). If the minimum distance is between
Xk and the ith cluster Xci(s) after s iterations, Xk is
classified to the ith cluster center, and then the ith
cluster center is updated according to equation (16)
as a new vector Xk joins in:

i Xk( 􏼁 � argmin Xk − Xci(s)
����

����, (15)

Xci(s + 1) �
Xci(s) + λ Xk − Xci(s)( 􏼁, i � i Xk( 􏼁,

Xci(s), i≠ i Xk( 􏼁,
􏼨

(16)

where λ is the learning rate between 0 and 1.
(3) If the variations of the cluster centers are less than the

defined small threshold, the K-means algorithm is

regarded to have a convergence. Otherwise, the
calculation will jump into the second stage to con-
tinue the iteration.

/erefore, Xci(s) at the end of the iteration is the final
cluster center. /en, after the cluster centers are determined,
the standard deviation σ can be calculated using equation
(13). On this basis, the linking weights between the hidden
and output layer can be optimized by the following cost
function:

Ej �
1
2

􏽘

Numt

k�1
e
2
jk, (17)

where Ej is the error of the jth neuron in the output layer,
Numt is the total number of the training sample, and ejk is the
error between the predicted and actual output values of the
jth output layer neuron for the kth training sample.

ejk � yrjk − 􏽘

Numh−1

i�0
wijΦ Xk,Xic( 􏼁, (18)

where yrjk is the actual value of the jth output layer neuron
for the kth training sample and Numh is the total neuron
number of the hidden layer.

/en, the optimal linking weights are searched for
minimizing the cross function with the gradient descent
algorithm.

zE(v)

zwij(v)
� 􏽘

Numt

k�1
eΦ Xk − Xic

����
����􏼐 􏼑 ⟶ wij(v + 1) � wij(v) − η

zE(v)

zwij(v)
, (19)

where η is the learning rate with the value between 0 and 1.

3.3. Application of the RBFANN in Robust Milling Stability
Prediction. According to the modal theory, traditional
milling chatter stability model, and edge theorem described
in Section 2, if the position-dependent modal parameters
and their variation ranges within the given machining space
are obtained, the robust chatter milling stability can be
predicted by the edge theorem. /erefore, RBFANNs for
predicting two different types of outputs are defined in this
paper to benefit the efficient robust milling stability pre-
diction. One type is to predict the position-dependent modal
parameters, and the other type is to predict the workpiece
machining allowance-dependent variation ranges of modal
parameters.

/e RBFANN for predicting the position-dependent
modal parameter can be established according to the five
procedures summarized as follows:

(1) Sample Data Processing. Different combinations of
the moving parts’ displacements within the whole
machine tool work volume are determined with the
aid of the experimental design method. /e tool

point FRFs for each combination are obtained and
further used to identify corresponding modal pa-
rameters./en, different displacement combinations
are defined as the input sample information, and the
corresponding modal parameters are defined as the
output sample information.

(2) Design of the Input and Output Layers. /e obtained
sample information in procedure (1) is divided
into the training and testing sample, respectively,
and the sample information is normalized between
the interval (−1, 1) to have a fast convergence
rate. /e normalized input training sample is
defined as the input data of the RBFANN, and the
normalized output training sample is defined as
the output data of the RBFANN. Neuron numbers
of the input and output layers are determined by
dimensions of the input and output variables,
respectively.

(3) Design of the Hidden Layer. /e cluster centers and
the standard deviation are determined based on the
K-means clustering algorithm described in Section
3.2. /us, the number of neurons in the hidden layer
is equal to the number of cluster centers.
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(4) Training of the RBFANN. With the obtained input
and output training sample information, cluster
centers, and standard deviation, the linking weights
between the hidden and output layers are optimized
according to equations (17) to (19).

(5) Validation of the RBFANN. /e trained RBFANN in
procedure (4) is used to predict the modal param-
eters corresponding to the input testing sample,
which are compared with those of the original output
testing sample to validate the accuracy of the
RBFANN.

Procedures to establish the RBFANN for predicting the
workpiece machining allowance-dependent variation ranges
of the modal parameters are similar to the aforementioned
five procedures. /e differences are mainly lying in the first
procedure, where different combinations of positions and
machining allowances are defined as the input sample in-
formation and the obtained minimum and maximum values
of the modal parameters within the corresponding ma-
chining spaces are defined as the output sample information.
/erefore, with the input and output sample information,
the second RBFANN can be trained and validated according
to the procedures (2) to (5) summarized above.

4. Case Study

/e proposed robust milling chatter stability prediction
method based on the RBFANN and edge theorem is applied
to a real three-axis vertical machining center. /e worktable,
saddle, and spindle system move along the X, Y, and Z
directions, respectively, as shown in Figure 4(a), and the
corresponding moving intervals are 0–550mm, 0–400mm,
and 0–400mm. /en, the X-directional displacement of the
worktable, the Y-directional displacement of the saddle, and
the Z-directional displacement of the spindle system are
combined to represent the machining position.

4.1. Sample Information Based on ExperimentDesignMethod.
Extreme values of the x, y, and z directions enclose the
machine tool work volume. To efficiently obtain the tool
point FRFs within the machine tool work volume, the or-
thogonal experimental design method is introduced to de-
termine some representative machining positions.
According to variation ranges of the x, y, and z directions, 8
specific values were selected uniformly for each directional
displacement [30]. Factors and their levels are listed in
Table 2; 64 combinations of the displacements in three
directions are arranged in Table 3.

/e moving parts were driven to the 64 machining
positions with the arranged displacements in sequence, and
the tool point FRFs in X and Y directions at each position
were obtained by impact testing shown in Figure 4(a) [31].
/e 64 FRF curves for each direction are described in
Figure 4(b), where the natural frequencies and amplitudes
show obvious differences. /ere are four obvious modes of
each X-directional FRF and three obvious modes of each Y-
directional tool point FRF. /en, corresponding modal
parameters of each tool point FRF were identified according

to the modal theory. Two different positions are randomly
selected from the 64 combinations, and their corresponding
modal parameters are identified in Table 4. Difference of the
natural frequency, damping ratio, and stiffness values at the
two positions is observed, further indicating that the tool
point FRFs are dependent on the machining position.

4.2. RBFANN for Position-Dependent Modal Parameter
Prediction. Since each mode has three parameters including
the natural frequency, modal damping ratio, and modal
stiffness, there are total 21 modal parameters for the four and
three obvious modes of the X- and Y-directional tool point
FRFs. Predicting the 21 modal parameters at one time will
introduce difficulties in training the RBFANN with higher
accuracy and faster convergence speed. /erefore,
RBFANNs are utilized to predict the natural frequencies,
modal damping ratios, and modal stiffnesses, respectively.
/en, 3 RBFANNs are trained to predict four natural fre-
quencies, four modal damping ratios, and four modal
stiffnesses in X direction, and another 3 RBFANNs are
trained to predict three natural frequencies, three modal
damping ratios, and three modal stiffnesses in Y direction.
/e training process of a single RBFANN for predicting the
modal stiffnesses in X direction is described to give an
illustration.

/e input layer has 3 neurons standing for the dis-
placements X, Y, and Z in three directions, and the output
layer has 4 neurons standing for the modal stiffness of each
mode. According to Section 4.1, 58 combinations of the
position information were randomly selected fromTable 2 to
be the input training sample, and their corresponding modal
stiffnesses were taken as the output training samples. /e
remaining 6 combinations of the position information and
the corresponding modal stiffnesses were defined as the
input and output testing samples, respectively. /en, the
RBFANN for predicting the position-dependent four modal
stiffnesses were trained based on the 58 input and output
training samples, where the neuron number in the hidden
layer is 55 and the standard deviation σ is 0.2. For the six
testing samples, errors between the predicted and actual
modal stiffness values are described in Figure 5(a).
According to the absolute error distributions in Figure 5(b),
the absolute errors all below 1.4% show that the trained
RBFANN has a higher accuracy of predicting the position-
dependent modal stiffness. Moreover, the varying fourth-
order modal stiffness values within the Y-Z plane with the X-
directional displacement of 300mm are described in
Figure 5(c) to show the necessity of considering the position
effects.

4.3. RBFANN for Extreme Value Prediction of the Dominant
Modal Parameters. Section 4.2 shows that the modal pa-
rameters vary within the machine tool work volume. /en,
the predicted chatter-free machining parameters with the
tool point FRFs at one position cannot guarantee the sta-
bility during real milling process as the relative position of
the tool and workpiece changes. /us, the edge theorem and
exclusion condition described in Section 2 are used to
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perform the robust milling stability prediction. /e appli-
cation of the edge theorem needs to obtain the maximum
and minimum values of each modal parameter within the
machining space. /e workpiece and its machining allow-
ances in X, Y, and Z directions are described in Figure 6(a),
where the three-directional machining allowances form the
machining space. At one position, the machining space will
vary with the three-directional machining allowances,

affecting the corresponding extreme values of the modal
parameters. /erefore, the RBFANN is again used to predict
the position and machining allowance-dependent extreme
values of the modal parameters.

According to the edge theorem in Section 2.2, there will
be 221 polynomials determined to check the system stability
if all 21 uncertain modal parameters are considered, seri-
ously increasing difficulties of the robust milling chatter

Spindle
system

Accelerometer

Hammer

Worktable

(a)

O

y
z

x

6

5

4

3

2

1

0
0 500

×10–8 ×10–7

Frequency (Hz)

X-directional FRFs

A
m

pl
itu

de
s (

m
/N

)

15001000 2000

3

2.5

2

1.5

1

0.5

0
0 500

Frequency (Hz)

Y-directional FRFs

A
m

pl
itu

de
s (

m
/N

)

15001000 2000

(b)

Figure 4: (a) /e studied three-axial vertical machining center. (b) Tool point FRFs related to 64 positions.

Table 2: Factors and levels for the orthogonal experiment design method.

Factor
Level

1 2 3 4 5 6 7 8
x (mm) 70 140 210 280 350 420 490 550
y (mm) 50 100 150 200 250 300 350 400
z (mm) 50 100 150 200 250 300 350 400
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stability calculation. Research studies have shown that the
dominant modes of the tool point FRFs inX and Y directions
exert more effects on the milling stability than other modes
with smaller amplitudes [5]. /erefore, the 4th and 2nd
modes with higher amplitudes in X and Y directions, re-
spectively, are determined as the dominant modes, and their
corresponding 6 modal parameters are defined as the un-
certain parameters of the robust prediction.

/en, the defined 64 positions in Section 4.1 were used to
determine some related machining spaces for obtaining the
sample information of the RBFANN. A position described in
Figure 6(b) is taken as an instance to illustrate how to obtain
its related sample information. Coordinates of the example
position are defined as xs, ys, and zs, and limiting coordinates
of three directions are defined as xlim, ylim, and zlim. /en,
sample coordinates [xs, x1, . . ., xo, . . ., xlim], [ys, y1, . . ., yp, . . .,
ylim], and [zs, z1, . . ., zq, . . ., zlim] of each direction are de-
termined from the intervals [xp xlim], [yp ylim], and [zp zlim],
and the adjacent coordinates of each direction have a 40mm
difference. /en, the distance between xs and xo, the distance
between ys and yp, and the distance between zs and zq are taken
as the length, width, and height of one machining space.

Within each machining space, its corresponding machining
allowance of each direction is divided uniformly to define
some subpositions, and adjacent coordinates of each direction
have a 5mm difference./en, dominant modal parameters of
all subpositions are predicted by the trained RBFANNs de-
scribed in Section 4.1 to determine the minimum and
maximum values of the 6 dominant modal parameters. After
the aforementioned procedures have been performed on the
64 sample positions in Table 3 in sequence, 8816 machining
spaces are been obtained and defined as the sample infor-
mation for training the RBFANNs.

As each dominant modal parameter has two extreme
values, 12 extreme values should be predicted for 6 domi-
nant modal parameters in x and y directions. Using one
RBFANN to predict 12 extreme values simultaneously will
slow the convergence, so one RBFANN was established to
predict 6 extreme values for x direction and the other one
was established to predict 6 extreme values in y direction.
/en, for one RBFANN, the input layer has 6 neurons in-
cluding the position (X, Y, and Z) and the machining al-
lowances (L, W, and H), and the output layer has 6 neurons
including the minimum and maximum values of each

Table 3: Schemes arranged by the orthogonal experimental table.

Order x (mm) y (mm) z (mm) Order x (mm) y (mm) z (mm) Order x (mm) y (mm) z (mm)
1 7 4 6 23 5 4 8 45 3 6 8
2 3 8 6 24 8 6 3 46 1 4 4
3 7 1 7 25 5 2 6 47 7 6 4
4 6 5 2 26 7 7 1 48 8 4 5
5 3 3 1 27 4 5 8 49 5 1 5
6 4 4 1 28 2 6 5 50 4 7 6
7 5 7 3 29 8 8 1 51 2 5 6
8 5 3 7 30 6 2 5 52 7 3 5
9 4 3 2 31 5 6 2 53 3 2 4
10 2 7 8 32 1 1 1 54 6 3 8
11 4 6 7 33 1 2 2 55 6 7 4
12 2 2 1 34 5 5 1 56 7 2 8
13 4 1 4 35 3 4 2 57 1 5 5
14 6 6 1 36 8 2 7 58 5 8 4
15 8 7 2 37 6 1 6 59 1 8 8
16 3 1 3 38 2 8 7 60 2 1 2
17 8 5 4 39 4 8 5 61 6 8 3
18 4 2 3 40 1 3 3 62 3 7 5
19 7 5 3 41 1 6 6 63 1 7 7
20 3 5 7 42 2 3 4 64 7 8 2
21 6 4 7 43 8 3 6
22 2 4 3 44 8 1 8

Table 4: Modal parameters of two different positions.

Direction Modes
Position 1 Position 2

Natural frequency ω (Hz) Damping ratio ζ (%) Stiffness
K (×109N/m)

Natural frequency
ω (Hz)

Damping
ratio ζ (%)

Stiffness K
(×109N/m)

X

1 504 1.98 0.88 484 5.37 0.66
2 912 1.97 6.58 916 3.28 4.75
3 1228 1.79 1.13 1252 3.99 5.47
4 1392 3.00 0.39 1400 4.60 0.36

Y
1 384 2.08 1.49 380 4.21 3.74
2 636 1.89 0.13 624 5.06 0.18
3 1432 1.68 1.14 1408 4.83 1.72
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dominant modal parameter. Taking the RBFANN for pre-
dicting the X-directional dominant modal parameters as an
instance, 8700 combinations of the position and machining
allowance sample information were defined as the input
training sample, and their corresponding extreme values of
the modal parameters were taken as the output training
sample. /en, the RBFANN was trained, and its accuracy
was validated by the remaining 116 combinations of the
sample information. Distributions of the 116× 6� 696 errors
between the predicted and actual extreme values of modal
parameters are described in Figure 6(c). Most of the errors
are less than 1%, and the maximum error is 1.52%, showing
the accuracy of the trained RBFANN.

4.4. Robust Milling Chatter Stability Prediction with the Edge
<eorem and RBFANNs. Considering the machining within
the machining space, six modal parameters of the 4th and
2nd dominant modes in X and Y directions, respectively, are

taken as the uncertainties, including ωx4th, kx4th, ξx4th, ωy2nd,
ky2nd, and ξy2nd. /us, when the position (X, Y, and Z) and
machining allowance (L,W, andH) are defined, the extreme
values of the 6 parameters can be calculated based on the two
trained RBFANNs described in Section 4.3. /e 4th position
(420mm, 250mm, and 100mm) in Table 3 and the ma-
chining allowances (100mm, 40mm, and 20mm) are taken
for instance. /e modal parameters at the 4th position and
the extreme values of the 6 dominant modal parameters
within the machining space are listed in Table 5. Considering
the error introduced by the RBFANNs, a ±2.9% variation
calculated according to the maximum errors in Sections 4.2
and 4.3 was taken to the basic value of each modal parameter
to obtain their extreme values. /en, with the final obtained
minimum and maximum values of each modal parameter,
the algorithm for the edge theorem and zero exclusion
condition mentioned in Section 3 was developed in
MATLAB software to predict and plot the robust stability
lobe diagram (RSLD) on the basis of a four-teeth tool with a
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Figure 5: (a) Errors of the six testing samples . (b) Absolute error distributions of the six testing samples. (c) Variations of themodal stiffness
within the Y-Z plane.
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diameter of 20mm, a radial cutting width of 8mm, and
tangential and radial cutting force coefficients of 1769MPa
and 1219MPa.

/e obtained RSLD is described as a red lobe curve in
Figure 7(a), which is formed by different robust pairs of
spindle speed and its related maximum axial cutting depth
stable for all frequencies within the focus frequency range
from 0Hz to 2000Hz. /e red lobe curve is below the blue
lobe curve which is a traditional SLD plotted based on the
basic modal parameters listed in Table 5 since it considers
the variations of the modal parameters within the machining
space and can provide more conservative limiting axial
cutting depths. /erefore, the (ap, n) pairs below the red
curve is selected to guarantee the milling stability during the
real machining process.

Down milling tests have been performed based on the
three-axis vertical machining center shown in Figure 4(a) to
illustrate the feasibility of the RSLD. Eighteen (ap, n) pairs

were defined according to the red and blue lobe curves in
Figure 7(a), which were used to perform the chatter tests by
end milling the 1045 steel with the four-teeth tool and in
accordance with the 4th position. During the milling op-
erations, the cutting force signals for each (ap, n) pair were
measured as shown in Figure 7(b) and analyzed in the
frequency domain to detect whether chatter occurred. A
force spectrum of the milling condition with the spindle
speed of 3000 rpm and axial cutting depth of 8.2mm is
described in Figure 7(c), and the dominant vibration fre-
quency (718Hz) is not the tool passing frequency (200Hz)
or its harmonics, indicating that the related (ap, n) pair has
caused a chatter vibration [32]. Comparing the distributions
of the stable and unstable (ap, n) pairs shown in Figure 7(a),
all (ap, n) pairs below the red lobe curve correspond to stable
milling conditions, validating that the proposed robust
milling chatter prediction method can provide reliable
chatter-free machining parameters; all the (ap, n) pairs above
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the blue curve are corresponding to unstable milling con-
ditions, which should be avoided when selecting chatter-free
machining parameters; (ap, n) pairs for stable and unstable
milling conditions are both observed within the region
between the red and blue curves since each uncertain

parameter may fall anywhere within its minimum and
maximum values and form a combination of uncertain
modal parameters. /erefore, the main benefit of the robust
milling chatter prediction is that it can provide conservative

Table 5: /e minimum and maximum values of the example position and machining space.

Direction
X Y

Natural frequency ω
(Hz)

Damping ratio ζ
(%)

Stiffness K (×109N/
m)

Natural frequency ω
(Hz)

Damping ratio ζ
(%)

Stiffness K
(×109N/m)

Basic value 1392 2.59 0.39 636 1.89 0.13
Minimum
value 1336×1.029 2.37×1.029 0.24×1.029 664×1.029 1.71× 1.029 0.11× 1.029

Maximum
value 1468× 0.971 2.81× 0.971 0.43× 0.971 612× 0.971 2.05× 0.971 0.15× 0.971
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ap values to guarantee reliable milling stabilities within the
machining space.

5. Conclusions

/is paper considers the variations of tool point FRFs within
the machining space and then provides a method to benefit
the rapid prediction of the robust milling chatter stability
with the edge theorem and radial basis function artificial
neural networks. According to the modal theory, variations
of the tool point FRFs can be represented by variations of the
modal parameters. /en, the modal parameters are taken as
uncertain parameters, and the edge theorem is introduced to
predict robust pairs of spindle speed and limiting axial
cutting depth in a graphic approach based on the traditional
milling chatter stability model and zero exclusion condition.
As the edge theorem needs the extreme values of each modal
parameter in advance, RBFANNs for predicting the posi-
tion-dependent modal parameters in X and Y directions are
first presented and further used to obtain the minimum and
maximum values of the dominant modal parameters within
the machining space defined by the machining allowances in
X, Y, and Z directions. /erefore, with the obtained extreme
values of each modal parameter, the robust pairs of spindle
speed and limiting axial cutting depth can be predicted and
utilized to plot the robust stability lobe diagram.

A case study was performed on a real vertical three-axial
vertical machining center to illustrate the feasibility of the
proposed method. /e orthogonal experiment design
method is used to determine 64 sample positions within the
whole machine tool work volume defined by extreme
moving distances of the saddle, worktable, and spindle
system in X, Y, and Z directions. Impact testing was per-
formed to obtain the tool point FRFs and corresponding
modal parameters of the 64 positions. /en, 6 RBFANNs
were trained to predict the natural frequencies, modal
stiffnesses, and modal damping ratios in X and Y directions,
respectively. Moreover, 8816 machining spaces were de-
termined according to the 64 sample positions and the
defined machining allowances, and then the minimum and
maximum values of the dominant modal parameters within
each machining space were obtained with the aid of the 6
RBFANNs established above. On this basis, two RBFANNs
for predicting the position and machining allowance-de-
pendent extreme values of each dominant modal parameter
in X and Y directions were established, respectively. /e
robust milling chatter stability prediction was developed
based on the 4th sample position, and the RSLD was plotted
and compared with the traditional SLD. /e RSLD is below
the SLD and provides more conservative limiting axial
cutting depths. Several (ap, n) pairs were determined
according to the two lobe curves to perform the milling tests
on the machine tool, and the milling cutting forces were
measured to detect the chatter occurrences. /e (ap, n) pairs
below the RSLD all correspond to stable conditions, and the
stable and unstable (ap, n) pairs are both observed between
two lobe curves, validating the feasibility of the RSLD for
predicting reliable chatter-free machining parameters.
/erefore, the proposed method for predicting the robust

milling chatter stability can benefit the reliable selection of
chatter-free machining parameters considering uncertain
machining position information at the design stage. In
further research, the proposed method can be extended to
take more uncertain parameters into consideration such as
the temperature and cutting forces, and much more accurate
models for predicting the position-dependent modal pa-
rameters and their extreme values can be studied to reduce
the effects caused by the prediction errors.
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