
Research Article
Improving Dam Seepage Prediction Using Back-Propagation
Neural Network and Genetic Algorithm

Xuan Zhang , Xudong Chen , and Junjie Li

School of Water Conservancy Science and Engineering, Zhengzhou University, Zhengzhou 450001, China

Correspondence should be addressed to Xudong Chen; chenxudong@zzu.edu.cn

Received 20 September 2019; Revised 16 December 2019; Accepted 7 January 2020; Published 13 April 2020

Academic Editor: Daniel Zaldivar

Copyright © 2020 Xuan Zhang et al. *is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Statistical model is a traditional safety diagnostic model for dam seepage. It can hardly display the nonlinear relationship between
dam seepage and the load sets and has the disadvantage of poor extension prediction. In this paper, the theories of Back
Propagation Neural Network (BPNN) combined with Genetic Algorithm (GA) are applied to the seepage prediction model.
Taking a typical dam in China as an example, the prediction results of BPNN-GA model and statistical model are compared with
the monitoring values. *e results show that the improved dam seepage model enhances the ability of nonlinear mapping and
generalization and makes the seepage prediction more accurate and reasonable in the near future. According to the established
criterion, the safety state of the dam in flood season is evaluated.

1. Introduction

Seepage can directly reflect the dam working state and plays an
important role in the dam safety monitoring. Related statistical
studies have shown that dam break caused by seepage accounts
for 30%–40% of the total dam break [1]. *erefore, developing
or improving a reliable model, timely analyzingthe dam
seepagemonitoring data, and predicting its change trend are of
great significance to grasp the safety state of dam seepage.

Faneli from Italy and Roeha from Portugal first applied the
statistical regression method to the field of dam safety mon-
itoring. Afterwards, Fanarin and others combined the theory of
finite element with the monitoring data-derived deterministic
model and hybrid model [2]. In recent years, with the con-
tinuous development of numerical simulation technology,
scholars have introduced different prediction methods into the
study of dam seepage analysis models [3–9]. Artificial Neural
Network (ANN) is a research hotspot in the field of artificial
intelligence since the 1980s. For the water conservancy project,
ANN is a new and very important frontier research topic, and
they have mature applications in many aspects including
hydrological simulating, flood predicting, safety monitoring,
and comprehensive evaluating [10–19]. Dawson et al. [10] used
the Radial Basis Function Neural Network (RBFNN) to

simulate the local rainfall-runoff evolution of the Yangtze River
in China, which promoted its development in the field of
hydrological simulation. Campolo et al. [11] established a flood
forecasting model based on the ANN and used real-time in-
formation of a watershed to predict the water level evolution.
Jeong et al. [12] used the ANNmethod to establish the rainfall-
runoff model in order to predict the ensemble streamflow.
Wang et al. [13] used the improved ANN to predict the
displacement of a concrete-faced rockfill dam, which provided
a new idea for monitoring dam displacement. Mata [14]
combined the ANNmodel with the comprehensive evaluation
system and proposed the correspondingmethod for evaluating
the dam working behaviour. Zadhesh et al. [15] adopted the
ANN to estimate the secondary permeability required for the
grouting quality assessment on the Cheraghvays dam’s
foundation. Unes et al. [16] used the ANN to predict daily
reservoir levels of theMillers Ferry Dam on the Alabama River
in the USA. Li et al. [17] applied the Back Propagation Neural
Network (BPNN) to analyze the relationship between the
sediment-flushing efficiency of the*ree Gorges Reservoir and
its influencing factors. Shaw et al. [18] successfully simulated
the prediction ability of a high-fidelity hydrodynamic and
water quality model using the ANN. Bui et al. [19] proposed a
novel hybrid artificial intelligent approach for modeling and
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predicting of the horizontal displacement of hydropower
dams. In the proposed model, the neural fuzzy inference
system was used to create a regression model, whereas particle
swarm optimization was employed to search the best pa-
rameters for the model.

BPNN is a feedforwardmultilayer network using the error
backpropagation training algorithm. It can solve many
complex nonlinear problems in practical engineering appli-
cations. GA is an evolutionary algorithm developed from
biology. It is often used to find optimal solution. In this paper,
we combine the BPNN and GA to improve the dam seepage
prediction model and illustrate it with a typical dam in China.
On this basis, the seepage safety state of this dam is studied.

2. Dam Seepage Statistical Model

Dam seepage monitoring variables are generally divided into
two categories: uplift pressure and leakage. Taking the uplift
pressure as an example, it is mainly affected by factors in-
cluding water pressure, temperature, and time-effect
[2, 20–25], which can be shown as

δ � δH + δT + δθ, (1)

where δ is the uplift pressure, δH is the water pressure
component, δT is the temperature component, and δθ is the
time-effect component.

(1) Water Pressure Component δH. *e change of reser-
voir water levels has a great influence on the seepage
of the dam and has a certain delay [2].*e equivalent
water level can be calculated according to the method
in the literature [21–23] to express the delay effect of
seepage. δH has a linear relationship with water level,
so the water pressure component can be expressed as

δH � a1H
∗
, (2)

where H∗ is the equivalent water level on the
monitoring day and a1 is the regression coefficient.

(2) Temperature Component δT. *e temperature com-
ponent refers to the seepage change caused by the
temperature change of the dam concrete and foun-
dation rock. *ermal expansion reduces cracks, en-
hances impermeability, and then slows down seepage.
Cooling shrinkage increases cracks, reduces imper-
meability, and thus intensifies seepage. *e temper-
ature of the dam body and foundation rock varies
periodically with atmospheric temperature, which can
be expressed with a periodic function. Considering
the linear relationship between seepage and temper-
ature, the multiperiod harmonic is chosen as the
factor to represent the temperature component:

δT � 􏽘
2

i�1
b1i sin

2πit

365
+ b2i cos

2πit

365
􏼒 􏼓, (3)

where t is the number of days from the initial
monitoring day to the monitoring day and b is the
regression coefficient.

(3) Time-Effect Component δθ. *e time-effect compo-
nent is an irreversible component that develops in a
certain direction over time. It mainly reflects the
influence of dam body material creep, dam foun-
dation rock creep, rock mass joint crack, and weak
structure on uplift pressure. Its mechanism is
complicated, and the accurate expression is often
difficult to derive [23]. Typically, the variation of the
time-effect component usually changes sharply at the
beginning and gradually turns stable during the later
period. *e general variation law of the time-effect
component can be expressed by the combination of
two empirical formulas, which can be expressed as

δθ � c1θ + c2 ln θ, (4)

where θ � 0.01 t and c is the regression coefficient.
In summary, the statistical model of the uplift pressure

can be expressed as

δ � 􏽘
1

i�0
aiH
∗ i

+ 􏽘
2

i�1
b1i sin

2πit

365
+ b2i cos

2πit

365
􏼒 􏼓 + c1θ + c2 ln θ.

(5)

3. Improved Dam Seepage Model Based on
BPNN and GA

3.1. Back-Propagation Neural Network. *e Back Propaga-
tion Neural Network (BPNN) was proposed by Rumelhart
and McClelland in 1986. It is a multilayer feedforward
network trained by the error backpropagation algorithm and
is also the most widely used neural network model at
present. *e BPNN consists of input layer, hidden layer, and
output layer, and each layer contains several neurons [26].
*e neurons in the same layer are not connected with each
other, while the neurons in the adjacent layers are connected
with each other, as shown in Figure 1.

Assuming the number of samples (xi, yi) (i� 1, 2,..., n) is
n, the i is one of the samples, xi is the input vector, and yi is
the expected output vector of the BPNN. Taking the node j at
them-level as the research object, when sample i is input, the
node j receives the output information of the previous layer
as follows:

I
m
ji � 􏽘

n1

k�1
ωkj · O

m−1
ki , (6)

where k is a node in the upper layer, n1 is the number of
nodes in this layer, ωkj is the connection weight between the
node k and the node j, and Oki is the output signal of the
node k.

*e output value of the node j after the action function
can be expressed as

O
m
ji � f I

m
ji􏼐 􏼑, (7)

where f(x) is the function at the node j. *e sigmoid
function is often used in practical applications. *e output
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value of the sigmoid function is between (0, 1). *e form of
the function is as follows:

f(x) �
1

1 + e− x
. (8)

According to equations (6)–(8), the output value 􏽢yi of
the output layer can be obtained by calculating the output
layer by layer.

In the process of error backpropagation, it is necessary to
define an objective function. *at is, the sum of squares of
errors between the output value 􏽢yji of the output layer and
the expected output value yji

Ei �
1
2

􏽘

l

j�1
yji − 􏽢yji􏼐 􏼑

2
, (9)

where l is the number of nodes in the output layer of the
BPNN. In practical applications, there is often only one node
in the output layer, so the above expression can be expressed as

Ei �
1
2

yi − 􏽢yi( 􏼁
2
. (10)

*en, the total error is

E �
1
2n

􏽘

n

i�1
Ei, (11)

where n is the number of samples.
*e process of error adjustment is equivalent to an

unconstrained optimization problem, that is, to minimize E
by adjusting the connection weights without any restriction:

E(ω) � min . (12)

Repeat the above steps and constantly correct the
weights of BPNN until the error meets the requirement.

BPNN, due to its ability to map complex nonlinear and
unknown relationships, is a preferred choice among researchers
for modeling unstructured problems and has been well applied
in many practical engineering problems. However, it also has
some shortcomings, such as being affected by the initial values
and easily falling into a local extremum [26–28]. In this paper,
the Genetic Algorithm (GA) is used to optimize the initial
weights and thresholds of the BPNN, so as to improve the
convergence speed of the BPNN and reduce the possibility of
the BPNN algorithm falling into the local extremum.

3.2. Optimizing BPNN by Genetic Algorithm. Genetic Algo-
rithm (GA) is a gradient-free global optimization and search
technique inspired by the evolutionary processes namely,
natural selection and genetic variation. It was first proposed by
Professor Holland of the United States in the 1970s. It operates
directly on the structural object without restriction of deri-
vation and function continuity. It adopts the probabilistic
optimization method, can automatically obtain and guide the
optimization search space, adjusts the search direction
adaptively, and does not need to determine the rule. Different
from the traditional optimization algorithm, the GA allows
simultaneous search for optimal solutions in different direc-
tions, instead of starting from one direction [26]. GA has no
specific requirements for the state of the objective function,
and it has a good global search ability. *erefore, GA can be
used to optimize the connection weights and thresholds of the
BPNN [26–29], and the flow chart is shown in Figure 2.

BPNN is based on gradient descent algorithm for
training and weight adjustment. Before training, the BPNN
randomly initializes the connection weights and threshold of
each layer to the values between interval [0, 1]. *is method
of random initialization tends to slow down the convergence
speed of the BPNN and lead to local extremum problem,
while GA has strong global convergence, but the ability of
local refinement is deficient. So, we can combine GA with
BPNN. When the convergence speed of BPNN is slow, the
connection weights and threshold of each layer in the
network can be used as the input information of GA.
*rough the genetic operator, the optimal individual is
obtained. *e optimal individual obtained by GA is decoded
and assigned as the initial weights and thresholds of BPNN.
*en, BPNN is used for local optimization, and the output
values with global optimal solution are obtained.

From the point of view of BPNN based on GA, the
method is to use GA to search the solution space of target
information. *en, when the GA finds a better network
form, it uses the BP algorithm to locate so as to find the
optimal solution of the problem. *e specific steps are as
follows [30–32]:

(1) Initial Population. Firstly, the topological structure of
the BPNN should be determined, and then the length
of individual should be determined according to the
network structure. All weights and thresholds in the
network are real coded as a set of chromosomes X:

X � ω11,ω12, . . . ,ωmm, θ1, θ2, . . . , θm,φ11,φ12, . . . ,􏼂

φmn, μ1, μ2, . . . , μn􏼃,

(13)

where ω is the weight between the input layer and the
hidden layer, θ is the connection threshold between
each layer of the hidden layer, φ is the weight be-
tween the hidden layer and the output layer, and μ is
the output layer threshold.

(2) Fitness Function. *e reciprocal of the sum of the
absolute errors between the predicted output and the

Output layerHidden layerInput layer

…

…

x1

xi y

xn

Figure 1: Structure of a typical BPNN.
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expected output of the BPNN is taken as the fitness
function F:

F �
1

􏽐
N
i�1

�������������

􏽐
m
j�1 yi

j − oi
j􏼐 􏼑

2
􏽱 , (14)

where N is the number of training samples, m is the
dimension of the output variables, yi

j is the target
value of the output node j of the BPNN when sample
i acts, and oi

j is the output value.
(3) Genetic Operations.

(1) Selection. Using the roulette method to select the
operator, the probability of being selected is

pi �
Fi

􏽐
c
i�1 Fi

,

(15)

yik � yikr + yjk(1 − r),

yjk � yjkr + yik(1 − r),
􏼨 (16)

yij �

yijr + yij − ymax􏼐 􏼑r1 1 −
s

smax
􏼠 􏼡, r2 ≥ 0.5,

yijr + ymin − yij􏼐 􏼑r1 1 −
s

smax
􏼠 􏼡, r2 < 0.5,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(17)

where c is the number of individuals in the
population.

(2) Crossover. Using the real number cross method, the
cross operation method of the ith and jth individual
at the position k is as follows:
where yik and yjk represent, respectively, the gene of
the ith and jth individual at the position k, and r is the
random number between (0, 1).

(3) Mutation. Selecting the jth gene of the ith individual
(yij) for mutation operation, the method is as
follows:
where ymax is the upper bound of yij, ymin is the
lower, s is the current number of iterations, smax is
the maximum number of iterations, and r1 and r2
are the random numbers between [0, 1].

(4) Decode.*e weights and thresholds of GA output are
taken as the initial weights and thresholds of BPNN.
BPNN carries out forward propagation, calculates
global error, adjusts network parameters, and repeats
learning training.

Using GA to optimize the BPNN has a great probability
to avoid the network falling into a local extremum and to
speed up the training of the network, and the final con-
nection weights will be more stable.

3.3. Seepage Model Based on BPNN-GA. *e research object
of this paper is the dam seepage prediction model, so the
output variable is the predicted value of uplift pressure of
dam foundation in a certain period of time in the future.*e
prediction model is designed as a three-layer BPNN.
Combining the seepage theory with BPNN-GA, in the
improved model, the input variables are recorded as x:

x � H
∗
, sin

2πt

365
, cos

2πt

365
, sin

4πt

365
, cos

4πt

365
, θ, ln θ􏼒 􏼓,

(18)

where the meaning of each letter is the same as equation (5).
*e output variable is the uplift pressure y, and denote

the sample set as Qm:

Qm � x1, y1, x2, y2, . . . , xm, ym􏼈 􏼉, (19)

where xi represents the input variables of the ith group and
yi represents the corresponding uplift pressure monitoring
value.

*e GA assigns the optimal initial weights to the BPNN
through copying, crossing, and varying. *e BPNN uses the
training set sample Qm for machine learning, and the network
continuously adjusts the weights to achieve the set minimum
error, so that the optimized BPNN can better predict the uplift
pressure. At this point, if the test factors are input into the
trained model, the model prediction value can be obtained.

3.4. Evaluation Criterion of Dam Seepage State. *e BPNN-
GAmodel is used to get the prediction value (δ′) of the uplift
pressure at a certain time, which can be compared with the
monitoring value (δ) at that time. According to the prob-
ability and statistics theory, the probability of |δ − δ′| (the
absolute difference between the monitoring value and the
prediction value) falling into (0, 2S) is 95.5%, and the

Determine the structure of BPNN

Code

Initialize population

Calculate fitness

Whether the
fitness meets the
requirements?

Whether the
error meets the
requirements?

Decode

Calculate the output
value of BPNN

Select

Vary

Cross

Y

N

Output result

Y

Adjust weightsN

Figure 2: Flow chart of BPNN-GA.
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probability of |δ − δ′| falling into (0, 3S) is 99.7% [33, 34],
where S is the standard deviation of the model.

In this way, the state of seepage can be evaluated [3, 20]:

(I) Normal: |δ − δ′||2S

(II) Basically normal: 2S< |δ − δ′|≤ 3S, and tendency
to change does not exist.

(III) Abnormal: 2S< |δ − δ′|≤ 3S, and tendency to
change persists.

(IV) Dangerous: |δ − δ′|> 3S.

4. Case Study

Cotton Beach hydropower station is located in Yongding
County, Fujian Province, China. *e project is mainly
based on power generation, with comprehensive benefits
such as flood control, navigation, and aquaculture. It be-
longs to class I, the layout of the hub is mainly composed of
the main dam, auxiliary dam, the spillway, the bottom hole,
the water delivery structure, and the underground power
house. *e main dam is arranged in the main river bed of
the river valley. *e dam crest elevation is 179.0m, the
maximum dam height is 113.0m, and the dam crest length
is 308.5m.*e normal water storage level of the reservoir is
173.0m, the storage capacity is 1.122 billion cubic meters,
and the check flood level is 177.8m, corresponding to a
total storage capacity of 2.035 billion cubic meters. *e
main dam is divided into six dam sections, of which 1#∼2#
are the left bank gravity dam sections, 3#∼4# are the
overflow dam sections, and 5#∼6# are the right bank gravity
dam sections.

*e uplift pressure is one of the safety monitoring
contents of a gravity dam, and its size directly affects the
stability, strength, and engineering cost of the dam. To this
end, various engineering measures such as curtain
grouting, dam foundation drainage, or forced drainage are
needed to reduce uplift pressure in dam construction [35].
Engineering practice shows that the geological conditions
of the dam section of the main river bed are complex and
greatly influenced by the environmental factors. *e
seepage state in the overflow dam section should be paid
more attention due to the frequently overflow influence
[20]. *erefore, the measuring points UP9 and UP11 of the
overflow dam section are studied, shown in Figure 3.

Selecting the uplift pressure and monitoring data of
upstream water level, temperature, and time in the overflow
section of Cotton Beach dam from January 2006 to June
2008 as training samples of BPNN-GA, the model is carried
out. *e trained model is used to predict the uplift pressure
in flood season (July 2008). *e statistical model is used as a
contrast model.

*e monitoring values and the prediction values of two
models are shown in Figure 4 and Tables 1 and 2.

It can be seen from Figure 4 that both the statistical
model and the BPNN-GA model have certain predictive
extension capability. From the change trend, the BPNN-GA
model is more in line with the change of monitoring value
than the statistical model.

We also introduce the Mean Absolute Percentage Error
(MAPE), Mean Square Error (MSE), and Mean Absolute
Error (MAE) to quantify the prediction effectiveness of the
two models, where a smaller parameter indicates a more
effective model. *ey are expressed as follows:

MAPE �
1
n

􏽘

n

i�1

Ai − Fi

Ai

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (20)

MSE �

�������������

1
n

􏽘

n

i�1
Ai − Fi( 􏼁

2

􏽶
􏽴

, (21)

MAE �
1
n

􏽘

n

i�1
Ai − Fi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (22)

where n is the number of samples, Ai is the monitoring
value, and Fi is the prediction value. *e calculated pa-
rameters are presented in Table 3.

From Table 3, taking MAPE as an example, it can be seen
that the prediction error of the statistical model is 0.18% and
0.38%, while that of the BPNN-GA model is only 0.08% and
0.14%.*eprediction accuracy of the BPNN-GAmodel is 180%
and 158% higher than that of the statistical model, respectively.
*is is mainly because the BPNN-GA model has stronger
nonlinear mapping and generalization ability, which improves
the prediction accuracy of the model. *e above results show
that the BPNN-GA model has better prediction ability.

Since the prediction accuracy of BPNN-GA model is
higher than that of the statistical model, the prediction
values of the BPNN-GA model are used to evaluate the
seepage safety state of Cotton Beach dam in flood season.
*e prediction values of uplift pressure from July 1 to 31,
2008, of the two points are obtained by BPNN-GA. *e
results of the absolute difference |δ − δ′| values are shown in
Figure 5.

From Figure 5, the absolute difference |δ − δ′| values are
relatively small and stable on the whole, illustrating the
BPNN-GA model has a good prediction effect. However,
Figure 5(a) shows a slightly larger fluctuation on July 29.*e
affecting factors are analysed, especially the water level,
which is often considered to be the main factor. *e analysis
results show that the upstream water level dropped signif-
icantly with a range of 0.6m on that day, which has a certain
impact on data analysis. When there are mutation data in the
stationary time series, the BPNN-GA model does not cap-
ture its impact well, which leads to the above error. *e
accuracy of the BPNN-GA model is slightly lower in cap-
turing the mutation data, but it can accurately predict the
trend of data change. *is is enough to meet the engineering
application needs.

In general, all of the absolute difference |δ − δ′| values lie
in the interval (0, 2S). According to the criteria in Section
3.4, it can be evaluated that the two points are in the normal
seepage state, indicating that the seepage control effect of the
overflow dam section is good. Accordingly, the samemethod
can be used to predict the seepage state of other points and
analyse the seepage control effect of other dam sections, so

Mathematical Problems in Engineering 5
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Figure 4: *e monitoring and prediction value process line of two points.

Table 1: Comparison of prediction results of two models (UP9).

Date (yyyy/m/d) Measured value
(m)

Predictive value (m)
Statistical model BPNN-GA

2008/7/1 96.61 96.42 96.47
2008/7/2 96.62 96.38 96.50
2008/7/3 96.67 96.37 96.52
2008/7/4 96.45 96.34 96.42
2008/7/5 96.52 96.31 96.49
. . .. . . . . .. . . . . .. . . . . .. . .

2008/7/28 96.07 96.24 96.12
2008/7/29 95.57 96.14 95.10
2008/7/30 95.71 96.24 95.73
2008/7/31 96.06 96.47 95.99

Table 2: Comparison of prediction results of two models (UP11).

Date (yyyy/m/d) Measured value
(m)

Predictive value (m)
Statistical model BPNN-GA

2008/7/1 113.50 112.92 113.43
2008/7/2 113.30 112.85 113.27
2008/7/3 113.26 112.83 113.23
2008/7/4 113.14 112.78 113.09
2008/7/5 113.03 112.73 112.97
. . .. . . . . .. . . . . .. . . . . .. . .

2008/7/28 112.40 112.48 112.36
2008/7/29 112.02 112.30 112.09
2008/7/30 112.37 112.45 112.46
2008/7/31 113.12 112.81 113.21
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that the decision-makers can take corresponding counter-
measures in special circumstances.

5. Conclusions

In this paper, the seepage monitoring model of the dam is
studied according to its own working characteristics.
Combining the seepage theory with BPNN-GA, an im-
proved seepage model is established and applied to the
monitoring and analysis of the uplift pressure of Cotton
Beach dam. *e results are shown as follows:

(1) From the prediction results of the two points,
compared with the statistical model, the BPNN-GA
model has high prediction accuracy and can predict
the trend of data change better. *is shows that it is
reasonable and feasible to apply the BPNN and GA
theory to improve the seepage prediction model.

(2) Compared the prediction values of the improved
seepage prediction model with the monitoring
values, according to the established criteria of the
dam seepage safety state, the seepage safety state of
the Cotton Beach dam in flood season is evaluated.
*e results show that the seepage state of the two
measuring points are normal, and the seepage

control effect of the overflow dam section is good.
*is method can be extended to other points to
obtain a comprehensive seepage safety state and
seepage control treatment effect.
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Figure 5: Seepage safety assessment of two points. By calculating, the standard deviations of the two points are 0.29 and 0.34, respectively.
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