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A vibration system with two homodromy exciters operated in different rotational speed is established to investigate whether the
phenomenon of bistable phase difference intervals exists in the times-frequency vibration synchronization system. Some
constructive conclusions are proposed. (1) By introducing an average angular velocity perturbation parameter ε0 and two sets of
phase difference perturbation parameters and ε2, the frequency capture criterion and the necessary criteria for realizing the times-
frequency vibration synchronization are derived.,e corresponding stability analysis is carried out. (2) By the theoretical analysis
and experiments, it is verified that the times-frequency vibration synchronization system exists the phenomena of bistable phase
difference interval. ,at is, the phase differences between the two homodromy exciters are stable around 180 degrees when they
are located at a short distance; the antiphase synchronization phenomenon appears. On the contrary, they are stable around 0
degrees at the in-phase synchronization state. (3) Because of the two homodromy exciters operating in the different rotational
speed, the vibration system obtains relatively complex compound motion trajectories; the corresponding application is in-
vestigated by adding a feeding material chamber.,e times-frequency vibration synchronization system can be used to design the
vibration mill for reducing its low-energy zone and developing chaotic mixing equipment for obtaining a better mixing effect.

1. Introduction

Synchronization can be explained as the adjustment of
oscillating objects due to their weak interaction. As early as
in the 17th century, because Huygens studied the coupling
phenomenon of pendulum clocks, the phenomenon of in-
phase synchronization and antiphase synchronization was
observed [1]. In the last century, Blekhman repeated this
experiment, and the phenomenon was further observed and
explained in theory. Later, Kozlov et al. found two van der
Pol–Duffing oscillators with nonlinear coupling which can
also realize the bistable phase synchronization [2]. ,e
phenomena of bistable phase synchronization in nature have
attracted more andmore researchers to study deeply, such as
active Nambu mechanics system [3], inhibitory coupled
bursting neurons system [4], and coupled systems of
piecewise constant oscillators [5].

Blekhman and Lurie have used the Poincare–Lyapunov
small parameter method to study the vibration system
composed of double eccentric rotors in 1953, pointing out
that the system could realize self-synchronization and
proving the system’s motion stability [6, 7]. Since then, the
synchronization theory in the mechanical system has been
studied. Recent studies have shown that the vibration system
also has double phase synchronization phenomena, which
mainly exist in four forms: (1) the bistable phase synchro-
nization phenomenon is natural to appear in some vibration
systems with double vibration mass or multimass [8, 9],
including some rotor-pendulum systems [10, 11]; (2) some
vibration systems have the in-phase and antiphase syn-
chronization phenomena when they operate in a sub-
resonance or a superresonance state, respectively [12, 13]; (3)
the event of bistable phase difference intervals also exists in
some near-resonance nonlinear vibration synchronous
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systems [8, 10]; (4) it is more popularly known in the vi-
bration synchronization system with two homodromy ex-
citers located at a single vibration mass body [14–16],
including rotor-pendulum systems [10] and two eccentric
rotors with a common rotational axis system [17, 18].,e in-
phase synchronization phenomenon between the two
homodromy exciters appears when they are located at a
relatively far distance, i.e., the stable phase difference interval
is (− 90°, 90°). On the contrary, the antiphase phenomenon
appears and the steady interval is (90°, 270°). In this con-
dition, the system operates in the swing state, it has little
engineering application in a general way. ,erefore, the in-
phase synchronization phenomenon gains more traction
compared with antiphase synchronization. Meanwhile, two
or more exciters operating in the in-phase synchronization
state can make the exciting force superimposition, which is
possible to make the system gain a larger vibration ampli-
tude with linear or near-elliptic motion trajectories.

In actuality, the structure of the system with two or more
than two vibration masses is complex. Because of the lim-
iting minimum natural frequency of the supporting springs,
the rotational speed of the exciters is impossible to run at a
relatively high speed, which makes the subresonance system
not obtain a more significant exciting force even its structure
is more complicated. ,us, the in-phase vibration syn-
chronization system is usually designed as a single vibration
mass with two homodromy exciters located at a far distance
and operates in a superresonance state. But, the more re-
alistic question is, just as mentioned above, obtaining a
stable synchronization state for a system relies on the ad-
justment of oscillating objects due to their weak interaction.
,e longer distance between the two exciters means the
more weak interaction; it is unfavorable for a mechanical
system. At the same time, the impulse loads from mineral
and some other external factors can easily disturb the weak
interaction, which makes the system change violently to
deviate from the normal in-phase synchronization state.
,us, for obtaining a stable synchronization state, it is
necessary to design the vibration system with a relatively
shorter distance between the two exciters for achieving a
robustness state. Now that the vibration system powered by
the same frequency supply cannot obtain the desired motion
trajectories quickly, what can we do to realize the engi-
neering requirements and protect the system from this kind
of vulnerability? Maybe a times-frequency synchronization
system is the right choice. Some vibration machines rely on
gear unit or other speed change mechanism unit to achieve
the synchronization state, such as double-frequency vibra-
tion compacting machine, vibrating feeder, multiaxis inertia
table concentrator, and screening machine [19, 20]. ,e
forced synchronization by rigid coupling causes even more
serious problems especially in cracks of the mechanical
structure, makes the system more complex, and decreases
system reliability and stability. ,erefore, the times-
frequency vibration synchronization theory may take on
even more importance.

By the symmetric layout of four exciters in a vibration
system of plane motion, the phenomenon of tripling fre-
quency vibration synchronization is observed and

investigated by Inoue and Araki in the 1970s [21]. It is a pity
that the study did not continue to carry out related research
and experiments on this basis. Subsequently, in the 1980s,
Wen had pointed out that some nonlinear systems could
achieve the times-frequency synchronization state. ,e
system designed by Wen has two vibration masses; each one
has two degrees of freedom, supported by piecewise non-
linear springs [19]. On the one hand, this system has a
relatively complex mechanical structure; on the other hand,
it rests in the conceptual phases of product design and the
reliability cannot be proved by experiments.

,e difficulty in the design of the times-frequency vi-
bration synchronization system is just as the one pointed out
by Wen; it is more challenging to implement the high-order
harmonics and the subharmonic times-frequency capture
than the fundamental frequency capture because of the
smaller frequency capture interval [19]. Recently, a times-
frequency vibration system has been investigated by Jia, who
gets a stable state by way of controlled synchronization [22].
If we can control the system based on the optimal structure
parameters of the mechanical model, it will raise the effi-
ciency, enhance the stability and the robustness, and de-
crease the energy loss by forcing control of the system.,us,
it is necessary and urgent to investigate the times-frequency
vibration system to develop the theory of times-frequency
synchronization and give out the critical structural
parameters.

In our previous research, a vibration system with two
exciters rotating in opposite directions is investigated. ,e
condition of times-frequency vibration synchronization and
its stability criterion are obtained, which is also proved by
experimental studies. It shows that the system only exhibits
in-phase vibration synchronization phenomenon [23]. In
this study, we mainly investigate the vibration system with
two homodromy exciters operating at different rotational
speeds and find out whether the system exhibits bistable
phase difference intervals and gives out the critical structural
parameters and corresponding criteria. Furthermore, the
engineering application of times-frequency vibration syn-
chronization is also explored by adding a feeding material
chamber to observe the motion trajectories of particle
materials.

2. Dynamics Equation and Steady-State
Response of the System

2.1. Dynamics Equation of the System. ,e typical model of
the vibration synchronization system exciting by two
homodromy exciters is shown in Figure 1, where oxy is the
fixed coordinate system, o′x′y′ is the moving coordinate
system, m is the mass of the rigid frame, o is the mass center
of the whole vibration system, kx, ky and cx, cy are the
stiffness and damping of the system in x, y direction, re-
spectively. mi and ri are the mass and eccentric radius of the
eccentric block of the exciter i(i � 1, 2), respectively. _φi and
φi are the instantaneous angular velocity and the angle of
rotation relative to the starting point of the exciter i(i � 1, 2),
respectively. li and βi are the distance from the axis of the
exciter i(i � 1, 2) to the mass center o of the system and the
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angle between its connection and the horizontal direction,
respectively. lsi and θi(i � 1, 2) are the distance from the
connecting point between the spring i(i � 1, 2) and frame to
point o and the angle between its connection and the
horizontal direction. l0 is the distance from the composite
mass center of the two exciters to the mass center of the
system, β0 is the angle between l0 and the horizontal di-
rection, and l is the distance from the axis of exciter 1 to the
axis of exciter 2. By the way, all the nomenclature of the
physical parameters and the symbols of intermediate pa-
rameters are normalized and listed at the end of the article
and Table 1, respectively.

Considering that the angular displacement ψ of the
system is too small comparing with βi and θi(i � 1, 2), o can
be left out owhen calculating the kinetic energy of the system
and the potential of the springs. Based on Figure 1, the

equation of kinetic energy, potential energy, and energy
dissipate function of the system is given as follows:
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where Jp is the moment of inertia of the vibration system to
its mass center o, Ji is the moment of inertia of the eccentric
mass of the exciter i(i � 1, 2) to its mass center, and ci is the
damping coefficient of the axes of the exciter i(i � 1, 2).

Taking q � [x, y,ψ,φ1,φ2]
T as the generalized coordi-

nate, substitute the kinetic energy T, potential energy V, and
energy dissipate function D0 of the system into the Lagrange
equation and consider the following relations:
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,en, the differential equation of motion of the system is
obtained:
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Figure 1: Dynamic model of the vibration system driven by two homodromy exciters.

Table 1: Symbols of intermediate parameters.

Items Types

r,rm ,rl,ls ,le ,β,α,α0,􏽥α,η,ωm ,ωm0,δ,Δ,c,p,W
Single
value

μi1,μi2,ci1,ci2,τni ( i � x, y,ψ) Single
value

χij
′ ,χij (i � 1, 2andj � 1, 2) Single

value

hi ,ui,ρi ,Di,LRi ,Wsi0,Wci0,Wsis ,Wsic ,Wcic ,Wcis (i � 1, 2) Single
value

Ei ,Ci (i � 0, 1) Matrix
P,Q,G,A,U,I Matrix
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(3)

where Ji is the moment of inertia of the exciter i(i � 1, 2) and
Lei is the output torque of the motor which is driving the
exciter i(i � 1, 2).

2.2. Steady-State Response of the System. For a times-
frequency vibration system, the angular velocities of two ex-
citers rotating in the same direction have definite multiple
relations. Assume n is the multiple relationships of rotational
speed between the two exciters and T0 is the single cycle of the
high-speed exciter. Considering the multiple relationships in a
common period nT0, the angle of rotation should be 2nπ and
2π, respectively. Suppose the average phase of two exciters in
steady-state is φ and the average phase difference between the
two exciters is α. ,e phase relations in a common period
between the two exciters can be represented by Figure 2 and the
following equation:

φ1 � n φ + α1( 􏼁,

φ2 � φ + α2,
(4)

where the steady-state phase difference of two exciters in its
every single cycle is α1 and α2, respectively. From Figure 2
and equation (4), it can be concluded that the average

steady-state phase difference of two exciters in a single
common period is as follows:

α � nα1 − α2. (5)

In this case, when the system is in a steady-state, the angular
velocity _φi of the eccentric block of exciter i(i � 1, 2) should be
constant; the relation between steady angular velocity and
angular acceleration of the two exciters is as follows:

_φ1 � n _φ2 � n _φ ≈ nωm,

€φi ≈ 0, (i � 1, 2).
(6)

Usually, in the same type of vibration system where the
majority of models of the exciters are interchangeable, we only
need to adjust the participating mass of the eccentric block to
obtain the required exciting forces, that is, we can assume
r2 � r1 � r, m2 � ηmr, and m1 � mr. Considering the group
arrangement of the same springs and the symmetrical ar-
rangement of the exciters, we can get the following relations:
kx1 � kx2 � kx/2, ky1 � ky2 � ky/2, cx1 � cx2 � cx/2, cy1 �

cy2 � cy/2, ls1 � ls2 � ls, β1 � π − β, β2 � β, θ1 ≈ π, θ2 ≈ 2π,
and l1 � l2 � l/2 cos β. In this case, the first three equations in
equation (3) can be simplified to
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where M is the total mass of the vibration system,
M � m + 􏽐

2
i�1 mi, and J is the moment of inertia of the

whole vibration system to the mass center of the system,
J � Jp + ml20 + 􏽐

2
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2
i . For a vibration system, the sup-

porting positions of the spring can profoundly influence the
dynamic characteristics of the whole system. As shown in

equation (7), the location of the spring and the related
parameters has a noticeable influence on the stiffness and
damping of the system in the ψ direction when it swings
around the mass center of the body. Transforming equation
(7) to the dimensionless form, we can conclude that
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,e damping effect on the amplitude of the vibration
system can be neglected because the damping ratio of the
system is too small. Furthermore, the steady-state response
of the system can be obtained by using the superposition
principle as follows:
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(11)

As mentioned in related references, it is noteworthy that
the operating frequency of the superresonance vibration
system is more than three times that of its natural frequency.
For the multifrequency vibration machine, because of the
limitation of the maximum speed of the exciting motor and
the natural frequency of the supporting springs, the rotation
speed of the low-speed exciter of the multifrequency vi-
bration system can quickly fall near the natural frequency of
the system. At this time, according to the phase-frequency
characteristics of the vibration system, we can get that
ci2 ≈ π/2, (i � x, y,ψ). ,e trajectories of this kind of near-
resonant machine are more complex and should be avoided
as much as possible.

3. Vibration Synchronization Conditions of the
Times-Frequency Vibration System

3.1. Frequency Capture Equation of the Times-Frequency
VibrationSystem. ,e small perturbation parameter ε0(t) of
average speed _φ and the small phase perturbation param-
eters ε1(t) and ε2(t) of the two exciters are introduced when
the system operates in a steady-state. In this case, the speed
and acceleration of the two exciters in equation (6) can be
expressed more accurately as follows:

_φ1 � n _φ + _α1( 􏼁 � nωm 1 + ε0(t) + ε1(t)􏼂 􏼃,

_φ2 � _φ + _α2 � ωm 1 + ε0(t) + ε1(t)􏼂 􏼃,

€φ1 � nωm _ε0(t) + _ε1(t)􏼂 􏼃,

€φ2 � ωm _ε0(t) + _ε2(t)􏼂 􏼃.

(12)

2π
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2nπ

α1

α2

α1 α1

4π
Exciter 1:

Exciter 2:

φ

φ

φ φ

Figure 2: ,e phase relations in a common period between the two exciters.
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According to the requirements of the last two equations
in equation (3), the required derivatives in x, y, andψ di-
rections are easily worked out from the time-domain re-
sponse of equation (10). ,en, the relations in equation (12)
should be considered. After substituting them into equation
(10), the average values are obtained by integrating them in a
common period. As known from equation (3), the average
angular velocity should be constant when the system

operates in a steady state, that is, when calculating the av-
erage values by integrals, there must be

_ε0 � 􏽚
t+nT0

t
_ε0(t)dt � 0,

ε0 � 􏽚
t+nT0

t
ε0(t)dt � 0.
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,en, the following equations can be obtained:
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Because the rotational inertia of the axis of the exciter is
much smaller than that of the eccentric mass on the axis, it
can be neglected.,us, themoment of inertia of the exciter is
Ji ≈ mir

2
i (i � 1, 2). Considering the relation between the

motor output torque Le0i of the exciter i(i � 1, 2) and its
stiffness coefficients ke0i of the angular velocity at a certain
speed ωm,

Lei � Le0i − ke0iεi, i � 1, 2. (16)

,e frequency capture equation of the times-frequency
vibration synchronization system can be obtained by
substituting them into equation (14) and sorting it out as a
matrix form. We have

E1 ·
_ε1
_ε2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� C1 ·

ε1
ε2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+

u1

u2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (17)

where

E1 �
1
2
mrωmr

2
rm

n
2

rm

− Wc10􏼠 􏼡 − η Ws2s − Ws2c( 􏼁sin α + Wc2s + Wc2c( 􏼁cos α􏼂 􏼃

nη Ws1s + Ws1c( 􏼁sin α + Wc1s − Wc1c( 􏼁cos α􏼂 􏼃 η
2

rm

− ηWc20􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

,

C1 � mrω
2
mr

2
rm

− n nWs10 + τ1( 􏼁 η Wc2s + Wc2c( 􏼁sin α + Ws2c − Ws2s( 􏼁cos α􏼂 􏼃

− n2η Wc1c − Wc1s( 􏼁sin α + Ws1s + Ws1c( 􏼁cos α􏼂 􏼃 − η2Ws20 + τ2( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

u1 � Le01 − nf1ωm −
1
2
n
2
mrω

2
mr

2
rmWs10 +

1
2
ηmrω

2
mr

2
rm Wc2c + Wc2s( 􏼁sin α + Ws2c − Ws2s( 􏼁cos α􏼂 􏼃,

u2 � Le02 − f2ωm −
1
2
η2mrω

2
mr

2
rmWs20 −

1
2
n
2ηmrω

2
mr

2
rm Wc1c − Wc1s( 􏼁sin α + Ws1s + Ws1c( 􏼁cos α􏼂 􏼃,

τ1 �
ke01 + c1ωm

mrω2
mr2

,

τ2 �
ke02 + c2ωm

mrω2
mr2

.

(18)

3.2. Necessary Conditions for Realizing Times-Frequency Vi-
bration Synchronization. For the dynamic system shown in
equation (3), to make the system running stability, as
mentioned before, the first three equations of equation (3)
must have a steady solution. Furthermore, the last two
equations of equation (3) also must be stable under the

perturbations, that is, for the frequency capture equation
of the times-frequency vibration synchronization system
shown in equation (17), there must be _εi � 0 and
εi � 0 (i � 1, 2). It means ui � 0 (i � 1, 2). ,en, subtracting
the two equations, the moment balance equations for the
frequency capture of two exciters can be obtained:

− n
2

Wc1c − Wc1s( 􏼁 + Wc2c + Wc2s􏽨 􏽩sin α − n
2

Ws1c + Ws1s( 􏼁 + Ws2c − Ws2s􏽨 􏽩cos α �
LR1 − LR2

2ηmrω2
mr2rm

, (19)

where

LR1 � Le01 − nc1ωm −
1
2
n
2
mrω

2
mr

2
rmWs10,

LR2 � Le02 − c2ωm −
1
2
η2mrω

2
mr

2
rmWs20.

(20)

It is noteworthy that the system damping of the vibration
synchronization equipment is small. For the vibration sys-
tem which does not work in the subresonance or super-
resonance state, the value of phase difference angle of the
time-domain displacement responses lagging the exciting

loads approximates to zero in the low-frequency working
condition, which is approximate to π in the high-frequency
working condition. ,erefore, it means that Wsis, Wsi0, and
Wcis are much less than Wsic, Wci0, and Wcic(i � 1, 2) in the
frequency capture equation. ,en, equation (19) can be
simplified to

− n
2
Wc1c + Wc2c􏼐 􏼑sin α − n

2
Ws1c + Ws2c􏼐 􏼑cos α �

2 LR1 − LR2( 􏼁

ηmrω2
mr2rm

.

(21)
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Furthermore, we have

sin(α + δ) �
1
D

,

α � arcsin
1
D

􏼒 􏼓 − δ,

(22)

where

δ �

arctan
n2Ws1c + Ws2c

n2Wc1c + Wc2c

􏼠 􏼡, n2Wc1c + Wc2c < 0,

− π + arctan
n2Ws1c + Ws2c

n2Wc1c + Wc2c

􏼠 􏼡, n2Wc1c + Wc2c ≥ 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(23)

and D is a synchronization performance index with a value
of

D �
1/2mrω2

mr2rmη
������������������������������

n2Ws1c + Ws2c( 􏼁
2

+ n2Wc1c + Wc2c( 􏼁
2

􏽱

Tr1 − Tr2
.

(24)

If |D|< 1, there are no solutions in equation (22), the
stationary equation cannot be satisfied, the eccentric block of
the two exciters does not have a stable phase difference, and

the system cannot achieve a times-frequency synchroniza-
tion vibration state. ,erefore, the necessary condition for
realizing times-frequency vibration synchronization of the
vibration system is the synchronization performance index:

|D|≥ 1. (25)

3.3. Stability Criterion of the Vibration Synchronization State.
To analyze whether the system can run stably near the
equilibrium point, the critical point is to check the global
stability of the system at the equilibrium point. Moreover, we
need to discuss whether the system is uniformly asymp-
totically stable and exponentially stable at the equilibrium
point.

3.3.1. Equivalent Perturbed System. ,e Taylor expansion is
used to linearize equation (17) at α � α0 and ωm � ωm0.
,en, the equivalent linearized formula is obtained by taking
into account that Wsis, Wsi0, are Wcis are far less than
Wsic,Wci0, and Wcic(i � 1, 2):

E0 ·
_ε1
_ε2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� C0 ·

ε1
ε2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+ U0, (26)

where

E0 �

nρ1
1
2
η Ws2c sin α0 − Wc2c cos α0( 􏼁

1
2

nη Ws1c sin α0 − Wc1c cos α0( 􏼁 ρ2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

,

C0 � ωm

− nτ1 η Wc2c sin α0 + Ws2c cos α0( 􏼁

− n2η Wc1c sin α0 + Ws1c cos α0( 􏼁 − τ2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

U0 �
1
2
ηωm α − α0( 􏼁

− Ws2c sin α0 + Wc2c cos α0
n2 Ws1c sin α0 − Wc1c cos α0( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

ρ1 �
1

rm

−
1
2
Wc10,

ρ2 �
η

rm

−
η2

2
Wc20. (27)

When E0 is invertible, the following equation should be
satisfied:

Δ � n ρ1ρ2 −
1
4
η2 Ws1csin α0 − Wc1ccos α0( 􏼁􏼔

· Ws2csin α0 − Wc2ccos α0( 􏼁􏼕≠ 0.

(28)

For the vibration system, the mass m of the eccentric block
of the exciter is far less than the mass M of the whole vibration
system, so rm≪ 1. Besides, the vibration synchronization

system working in the superresonance state is a typical low
damped vibration system and the phase of the time-domain
response solution is almost antiphase, different from that of the
exciting load. Considering rl < 7 as discussed in [24, 25], we
have ρ1≪ 1 and ρ2≪ 1 in equation (26). Furthermore, it
means that Δ in equation (28) must be greater than 0.

,en, a uniform model of the perturbed system of
equation (26) can be given as

_x � f(t, x) + g(t, x), (29)
where

8 Mathematical Problems in Engineering



f(t, x) � Ax,

g(t, x) � E− 1
0 U0,

A � E− 1
0 C0,

x � ε1 ε2􏼂 􏼃
T
.

(30)

It is noteworthy that the remainder term g(t, x) contains
α, which is dependent on the time-domain variable t, usually
named as a perturbation factor of the phase difference.
Although the changes of small parameters ε1 and ε2 will
cause the change of α, the equation of the remainder term
has a definite upper limiting value and lower limiting value,
that is, for all t≥ 0, there is a positive value c can make
‖g(t, x)‖2 < c‖x‖2. In this case, according to [26], the term
g(t, x) can be treated as an additive term of the system
_x � f(t, x), which does not change the order and the un-
certainty of the system.

3.3.2. Stability of the Uniform Perturbed System under An-
gular Velocity Perturbation. According to equation (29),
when x � 0, g(t, 0) � 0, whichmeans that the origin point of
the perturbed system is an equilibrium point. In this case, the
stability of the origin point can be analyzed as the stability of
the perturbed system. ,at is to say, the problem of whether
the times-frequency vibration system can achieve the vi-
bration synchronization state can be directly treated as
solving the stability of the system at the origin point under
the condition of the angular velocity perturbation and the
phase difference perturbation.

Firstly, considering the stability of the system under
angular velocity perturbation parameters, i.e., let phase
difference perturbation term g(t, x) � 0, the system in
equation (29) becomes a two-dimensional ordinary differ-
ential system. When the matrix A satisfies the criteria re-
quired by the Hurwitz matrix, i.e., all the eigenvalues of A
having Reλ(A)< 0, the system will be asymptotically stable
at the origin point and the zero solutions are asymptotically
stable. In this case, the first-order subdeterminants matrix of
the coefficient matrix A is less than 0 and its second-order
subdeterminants matrix must be greater than 0, that is,

nωm

Δ
τ1ρ2 +

1
2

nη2 Wc1csin α0 + Ws1ccos α0( 􏼁􏼔

· Ws2csin α0 − Wc2ccos α0( 􏼁􏼃> 0,

nω2
m

Δ
τ1τ2 + nη2 Wc1csin α0 + Ws1ccos α0( 􏼁􏽨

· Wc2csin α0 + Ws2ccos α0( 􏼁􏼃> 0.

(31)

As shown in equation (17), the term mω2
mr2 in the

denominator is the exciting force multiplied by the eccentric
radius of the exciter. It is far less than the stiffness coefficients
ke0i (i � 1, 2) of the angular velocity of the motor of the
exciter [27]. At the same time, we note that ρ2≪ 1.
,erefore, the criteria in equation (31) can be satisfied.
Furthermore, it means that the matrix A is a Hurwitz matrix

and the system is asymptotically stable, the system is stable
under angular velocity perturbation.

3.3.3. Stability of the Uniform Perturbed System under Phase-
Difference Perturbation. As concluded in the previous
section, the matrix A is a Hurwitz matrix, which is a pre-
requisite for the stability of the system under phase-dif-
ference perturbation. Since Reλ(A)< 0, we can assume
Q � QT > 0, which is satisfying the following Lyapunov
equation:

PA + ATP � − Q. (32)

,e Lyapunov theorem shows that the equation exhibits
a unique solution, in which P is a positive Hermite matrix. In
this case, the quadratic Lyapunov function V(x) � xTPx

must satisfy [26] the following condition:

zV

zx
Ax � − x

TQx≤ − λmin(Q)‖x‖
2
2. (33)

,us, the derivative of V(x) along the trajectory of the
perturbed system will satisfy

_V(t, x) �
zV

zx
Ax +

zV

zx
g(t, x)

� − x
TQx + 2x

TPg(t, x)≤ − λmin(Q)‖x‖
2
2

+ 2x
TPg(t, x),

(34)

where λmin(Q) is the minimum eigenvalue of the matrix Q.
We should note that the first term of right-hand side in
equation (34) is less than 0 because of Q � QT > 0. ,us,
_V(t, x) returns a negative or positive value mainly
depending on the positive or negative sign of the second
term 2xTPg(t, x).

Assume

Q � − p
2a21 a11 + a22

a11 + a22 2a12
􏼢 􏼣 −

2a11 a12 + a21

a12 + a21 2a22
􏼢 􏼣.

(35)

We can see that the second term Q in equation (35) is a
symmetric matrix composed of − (A + AT). ,e first term is
also a symmetric matrix obtained by the primary row
transformation and then further combined similarly and
then multiplied by p. ,erefore, the necessary condition for
Q � QT > 0 is

p> 0. (36)

By substituting Q into equation (32), we have

P �
1 p

p 1
􏼢 􏼣. (37)

,en, we can conclude that the criterion of the sym-
metric matrix P and Q are positive definite matrixes is
0<p< 1. Furthermore, substituting the value of the matrix P
for the last term of equation (34), we have
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2x
TPg(t, x) � ηωm0 α − α0( 􏼁 x1 x2􏼂 􏼃(G)2×2 − Ws2csin α0 + Wc2ccos α0 n2 Ws1csin α0 − Wc1ccos α0( 􏼁􏼂 􏼃

T
, (38)

where

G � PE− 1
0􏼐 􏼑2×2 �

1
Δ

ρ2 −
p

2
nη Ws1csin α0 − Wc1ccos α0( 􏼁 pnρ1 −

1
2
η Ws2csin α0 − Wc2ccos α0( 􏼁

pρ2 −
1
2

nη Ws1csin α0 − Wc1ccos α0( 􏼁 nρ1 −
p

2
η Ws2csin α0 − Wc2ccos α0( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

. (39)

Calculating the determinant values of the matrix G, we
have

D1 �
ρ2 − p/2nη Ws1csin α0 − Wc1ccos α0( 􏼁

Δ
> 0,

D2 � 1 − p
2 > 0.

(40)

As mentioned above, ρ2≫ 1 and 1>p> 0; therefore, the
matrixG is a positive definite matrix, its eigenvalues must be
greater than 0. According to the comparison relation of
partial order in matrix theory [28],

λmin(G)I⪯G⪯λmax(G)I. (41)

,en, equation (38) can be further converted into the
following:

2x
TPg(t, x)≤ λmin(G)2×2ηωm0 α − α0( 􏼁

· − Ws2csin α0 + Wc2ccos α0( 􏼁x1􏼂

+ n
2

Ws1csin α0 − Wc1ccos α0( 􏼁x2􏽩.

(42)

As the previous definition x � ε1 ε2􏼂 􏼃
T, 􏽥α � α − α0 has

the same symbols as nx1 − x2 because 􏽥α is an integral mean
value point obtained by integrating the perturbation term
nε1 − ε2 over time in a common period nT0, that is,

􏽥α nx1 − x2( 􏼁> 0. (43)

􏽥α, x1, and x2 may vary continuously along with the time
t; all possible contingencies need to be examined. ,e first
condition, if 􏽥α> 0, we have x2 < nx1 according to equation
(43). In this case, equation (42) can be written as

2x
TPg(t, x)< λmin(G)2×2ηωm0􏽥αx1W

W � − Ws2csin α0 + Wc2ccos α0( 􏼁

+ n
3

Ws1csin α0 − Wc1ccos α0( 􏼁.

(44)

For equation (44), W≤ 0 when x1 ≥ 0; or W≥ 0 when
x1 < 0, the system can be stable.

,e second condition is that when 􏽥α≤ 0, there is
x1 ≤x2/n. Correspondingly, equation (42) can be written as

2x
TPg(t, x)< λmin(G)2×2ηωm0􏽥αx2nW. (45)

Obviously, for equation (45), W≥ 0 when x2 ≥ 0; or
W≤ 0 when x2 < 0, the system is stable.

From the discussions in equations (44) and (45), it is
known that if and only if W is equal to 0, the synchronization
state of times-frequency vibration system can be made stable
under phase difference perturbation. ,is is certainly true of
that W � 0 has solutions. ,us, the times-frequency system
can operate in a steady state.

Actually, the boundaries with large margins are obtained
by directly calculating 2xTPg(t, x)≤ 0 for such type of zero
perturbation system. Even if the perturbation term
2xTPg(t, x) of the perturbed system is greater than 0, the
derivative V(t, x) along the trajectory of the perturbed
system can also be calculated by using the general boundary
[29]. ,at is,

_V(t, x) �
zV

zx
Ax +

zV

zx
g(t, x) � − x

TQx + 2x
TPg(t, x)

≤ − λmin(Q)‖x‖
2
2 + 2λmax(P)c‖x‖

2
2.

(46)

,e origin point can be globally exponentially stable
when c< λmin(Q)/2λmax(P). ,e maximum limit of c can be
obtained by taking Q � I in equation (46) [30].

To sum up, the stability of times-frequency vibration
synchronization under angular velocity perturbation and
phase difference perturbation are proved.

4. Experimental Analysis and
Theoretical Verification

4.1. Analysis of the Empirical Phenomena. According to the
mechanical model of the vibration system in Figure 1, an
innovative platform is constructed as shown in Figure 3. It
mainly includes a times-frequency vibration system, signal
acquisition system, high-speed camera system, and some
sensors. ,e structural parameters are uniform, and the
relative property is quite strong; two same types of exciters
are used, denoted by exciter 1 and exciter 2. Besides, another
two exciters with equal mass distributions are also assembled
on the frame of the system as balance weight during the test
period. ,e main parameters of the exciters and the vi-
bration system are listed in Tables 2 and 3, respectively.
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To observe the stability of the vibration synchronization
state and its phase difference distributions, the different
distance l should be considered along with the equivalent
radius le which is a constant for the system. ,us, l � 0.68m
and l � 1.36m are taken for the experimental analysis at
different rotational speeds of the exciters. A total of 24
groups of experiments are designed. ,e parameters of the
experimental group are shown in Table 4.

,e experimental process is limited to 100 seconds. To
avoid the phenomenon of synchronous vibration

transmission, the high-speed exciter turns on firstly and the
other exciter motor powers up after 3 seconds delay. If the
difference between the maximum value or minimum value
of the phase differences of two exciters cannot exceed 30
degrees more than 60 seconds during the experimental
process, it will be regarded as achieving the vibration syn-
chronization state, and the average phase differences of
steady-state operation will be recorded; otherwise, it will not
be considered as achieving the vibration synchronization
state. ,e distributions of phase differences at steady state
according to Table 4 are plotted in Figures 4–5, respectively.

In Figures 4 and 5, the left vertical coordinate represents
the phase difference, which is statistic data of the steady-state
value and represented by boxplot. ,e size of the box gives
intervals of the upper quartile and lower quartile intuitively,
in which the straight lines denote the mean value, maximum
value, and minimum value, respectively. Also, the

(1) (2)(3) (3)
(7)

(7)

(5) (5)

(6)

(4)

(8)
(8) (6)

(9)

(10)

Figure 3: Times-frequency vibration synchronization experiment system. (1) Exciter 1, (2) exciter 2, (3) balance weight, (4) rigid frame of
the system, (5) four springs with the type of ROSTA AB27, (6) signal acquisition system, (7) two ROLSs (remote optical laser sensors),
(8) three triaxial accelerometers, (9) Basler acA1440-220uc camera, and (10) supplement light system for the camera.

Table 2: Main parameters of the exciters.

Parameter Exciter 1 Exciter 2 Unit
Poles 4 4 Pole
Maximum exciting force 7 7 kN
Eccentric mass of the block of the exciter 2.29 2.29 kg
Rated power 0.37 0.37 kW
Rated voltage 380 380 V
Rated current 1.32 1.32 A
Stator resistance 16.88 16.94 Ω
Rotor resistance 12.63 12.63 Ω
Stator inductance 41.77 41.77 mH
Rotor inductance 40.10 44.09 mH

Table 3: Main parameters of the vibration system.

Parameter Symbol Value Unit
Moment of inertia of the vibration
system J 56.5 kg×m2

Total mass of the vibration system M 270.6 kg
Stiffness coefficient in x direction kx 100 kN/m
Stiffness coefficient in y direction ky 160 kN/m

Damping coefficient in x direction cx 0.305 kN× s/
m

Damping coefficient in y direction cy 0.282 N/mm
Distance from a connecting point
between spring and frame to mass-
center o

ls 0.525 m

Table 4: Experimental design when l � 0.68m and l � 1.36m.

Item Rotational speed ratio
n � 1 1500 :1500 1200 :1200 900 : 900 500 : 500
n � 2 1500 : 750 1400 : 700 1200 : 600 1000 : 500
n � 3 1500 : 500 1410 : 470 1320 : 440 1200 : 400
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corresponding values are also labeled in the figures. ,e first
row of the horizontal coordinate respects the multiple re-
lations of the frequency of the two exciters, and the second
row of the horizontal coordinate respects the rotational
speed of exciter 1.

Because the phenomena of vibration synchronization
transmission appear quickly when n � 1, l � 1.36m,
ω2 � 1200 r/min, and ω2 � 1500 r/min, two groups of

experimental data are missing in Figure 5. As shown in
Figures 4 and 5, the different distribution intervals of phase
difference are apparent, the distributions of the boxes in the
same frequency and times-frequency experimental groups at
l � 0.68m and l � 1.36m, the former groups are stable near
180 degrees, the antiphase synchronization phenomenon
appears, while the latter groups are stable near 0 degrees and
the in-phase synchronization phenomenon comes out. It
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Figure 4: Distribution of phase differences of two exciters at l � 0.68m.
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attributes to the existence of δ in equation (22) leads to the
appearance of the bistable phase difference interval. At the
same time, the length of boxes denote the vibration syn-
chronization state at n � 1, 2 which is more steady than that
when n � 3. ,e time needed for the same frequency ex-
perimental group (n � 1) to achieve the vibration syn-
chronization state is also shorter than other groups both at
l � 0.68m and l � 1.36m, which can be found in Figure 6.
,e varying phase differences between the two exciters over
time when ω1 � 1200 r/min, n � 1, 2, 3, and l � 0.68m and
ω2 � 500 r/min, n � 1, 2, 3, and l � 1.36m are given in
Figure 6 as examples, respectively. ,e rotational speed of
the exciter over time is also plotted in Figure 7. Besides, the
experiments also show the rotational speed of exciters has no
prominent influence on the stability of the system.

From Figure 6, the synchronization state of the same
frequency vibration is more comfortable to achieve and
more stabilized than that of the times-frequency vibration
synchronization state, which is coined with Figures 4 and 5.
,e detailed quantitative analysis of the stability of the vi-
bration state can also be found in the next section.

After collecting the pulse signals from the optical laser
sensors to calculate the phase differences of the eccentric
blocks of exciters, it can be defined as the differences be-
tween the angle of rotation φ1 of exciter 1 to φ2 of exciter 2
multiplied by the multiple relations of frequency n when the
phase of the low-speed exciter is viewed as the reference, i.e.,
α2 � 0. At the same time, for an easier way to illustrate the
difference of phase differences at l � 0.68m and l � 1.36m.
,e motion of the exciters is referred to a rectangular co-
ordinate system and uses the mass center of blocks of low-
speed exciter passing the coordinate axis in a single circle as a
reference. ,us, the increments of the rotational angle of the
exciter and its instantaneous position can be examined over
the same time. ,e corresponding real-time photos of the
eccentric block of the exciters obtained by the high-speed
camera are shown in Figures 8–13.

In Figure 6 and Figures 8–13, we can quickly note that
the phase differences between the two homodromy exciters
are stable around 180 degrees when they are located at a
short distance; the antiphase synchronization appears. On
the contrary, they are around 0 degrees at an in-phase
synchronization state, which is coined with Figures 4 and 5
and further verifies the correctness of the theoretical de-
duction process. At the same time, we note that the dis-
tributions of phase differences of the exciters have not the
same increase (or decreases) rule. ,is phenomenon is due
to some external unconstant factors, especially the damping
coefficients of the axes of the exciters, which are not con-
stants when the exciters operate at different rotational di-
rections and different rotational speeds. Meanwhile, for the
vibrating system to achieve the vibration synchronization
state, the exciters adjust themselves to the rotational phase
continuously to establish the weak interaction. ,us, the
boxplot does not have the same increase (or decrease) rule.

As mentioned in the previous section, on the one hand,
times-frequency vibration machinery urgently needs to be
developed from forced synchronization to vibration syn-
chronization. On the other hand, the primary motion type is

swing around the mass center of the system for the vibration
system driven by two homodromy exciters under the same
frequency powered supply when rψ <

�
2

√
as stated in [31],

which have no obvious practical significance in engineering.
However, the motion of purely swinging around the mass
center cannot appear in the system of times-frequency vi-
bration synchronization due to the inconsistent rotational
speeds of the two exciters. To observe the trajectories of the
system, a feeding material chamber is assembled upon the
mass center of the system, and it enriches a part of the
particle materials. ,en, the influence of exciting force and
trajectories of the materials can be visually obtained by
observing the movement of material. We find that the
particle materials in the chamber have not moved as a whole
at ω1 � 1200 r/min, ω2 � 1200 r/min, and l � 0.68m and
ω1 � 500 r/min, ω2 � 500 r/min, and l � 1.36m. ,e former
phenomenon is attributing to the system operates in a swing
state.,e latter is at the root of lacking enough exciting force
when the two exciters rotate with a low speed. ,e other
conditions denote that the particles are moving with the
opposite direction against the exciters' rotation direction,
i.e., the particles rotate as a whole in the clockwise direction
when the two exciters rotate in the counterclockwise di-
rection. Obviously, the forces acting on the particles come
from the vibration of the shell; the exciting loads in the
different positions at n � 1, 2, 3, ω1 � 1200 r/min, and
l � 0.68m and ω2 � 500 r/minandl � 1.36m are shown in
Figure 14. At the same time, the times-domain responses of
them are also plotted, as shown in Figure 15 and Figure 16,
where, the data of left figures, middle figures, and right figures
are obtained from the leftmost, middle, and rightmost test
point of the frame, denoted by (a), (b), and (c), respectively.

As shown in Figure 14, because of the existence of
times-frequency loads, the force acting on the shell will not
be regular circular, but other forms. Compared with the
same frequency loads, the complex compound loads of the
shell make the particle trajectories more complicated,
which means that there are more mutual extrusion and
friction in the particle materials in the chamber along with
the process of particles rotating as a whole. It may have
apparent practical significance in engineering. For exam-
ple, for the vibration mill, the group motion of the particle
materials will increase the actual contact friction surfaces
and the crushing effects of the particles, which may sig-
nificantly reduce the low-energy zone of milling particles
and improve the milling efficiency. ,e related research is
being pushed ahead, which may be discussed in future
studies (Figure 16).

4.2. Quantitative Analysis. As mentioned above, the phe-
nomenon of bistable phase interval in the system is caused by
the angle δ when equation (21) is arranged in the form of
equation (22). Specifically, Wsic(i � 1, 2) is greater than or
equal to 0 because of β ∈ [0, π/2]. ,us, the positive or
negative sign of n2Wc1c + Wc2c determines the stability in-
terval of the phase difference of the vibration synchronization
system, which mainly varies along with the parameters rl and
β. ,e influence of rl and β on δ is plotted in Figure 17.
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Figure 6: Phase differences between the two exciters. (a) l� 0.68m and ω1 � 1200 r/min; (b) l� 1.36m and ω2 � 500 r/min.
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Figure 8: Continued.
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As shown in Figure 17, the influence of rl and β on δ is
more prominent. ,ere is only one steady-state interval
when β> 30°. ,e smaller β denotes the more steady phase
difference on δ. It just can explain why many vibration
machines require the composite mass center of the exciters,

and the mass center of the vibration system is in a line to
make the steady-state phase difference of the system ap-
proach to 0 or 180, in which the synchronous state is more
stable. For the experiments in the previous section, we have
rl � 1.56 and β � 20.9° when l � 0.68m and rl � 0.82 and

(c)

(d)

Figure 8: Instantaneous phase of the exciters when l � 0.68m, n � 1,ω1 � 1200 r/min, andω2 � 1200 r/min: (a) φ1 � 170.3°,φ2 � 2.1°,
and α � φ1 − φ2 � 168.2°, (b) φ1 � 262.6°,φ2 � 93.2°, and α � φ1 − φ2 � 169.4°, (c) φ1 � 355.2°,φ2 � 184.6°, and α � φ1 − φ2 � 170.6°, and
(d) φ1 � 86.1° + 360° � 449.1°,φ2 � 280.4°, and α � φ1 − φ2 � 168.7°.

(a)

(b)

(c)

(d)

Figure 9: Instantaneous phase of the exciters when l � 0.68m, n � 1,ω1 � 1200 r/min, and ω1 � 1200 r/min: (a) φ1 � 168.3°,φ2 �

− 3.2°, and α � φ1 − 2φ2 � 174.7°, (b) φ1 � 356.6°,φ2 � 90.2°, and α � φ1 − 2φ2 � 176.2°, (c) φ1 � 156.2° + 360° � 516.2°,φ2 � 170.3°, and
α � φ1 − 2φ2 � 175.6°, and (d) φ1 � 345.4° + 360° � 705.4°, φ2 � 267.2°, and α � φ1 − 2φ2 � 171.0°.
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(a)

(b)

(c)

(d)

Figure 10: Instantaneous phase of the exciters when l � 0.68m, n � 3,ω1 � 1200 r/min, andω1 � 400 r/min : (a) φ1 � 213.3°,φ2 �

6.5°, and α � φ1 − 3φ2 � 193.8°, (b) φ1 � 107.7° + 360° � 467.7°,φ2 � 90.2°, and α � φ1 − 3φ2 � 197.1°, (c) φ1 � 28.3° + 720° � 748.3°,φ2 �

183.6°, and α � φ1 − 3φ2 � 197.5°, and (d) φ1 � 310.2° + 720° � 1030.2°,φ2 � 278.8°, and α � φ1 − 3φ2 � 193.8°.

(a)
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Figure 11: Continued.
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β � 10.8° when l � 1.36m. Substituting the value of δ and the
electrical parameters of exciters into equation (22), the phase
difference between the simulation values and experimental
results in Figures 4 and 5 are less than ten degrees, re-
spectively, which can also be viewed in Figure 18. Also, the
corresponding synchronization performance index D cal-
culated by equation (24) is listed in Figure 19, where the
vertical coordinate is logarithmic.

As discussed in Section 1, to obtain a stable synchroni-
zation state for a system relying on the adjustment of oscillating
objects due to their weak interaction. ,e more long distance
between the two exciters means more weak interaction. ,is

point can be coined in Figure 19 when rl < 2. Actually, rl is
usually less than 2 in engineering.,us, it is necessary to design
the vibration system with a relatively shorter distance between
the two exciters for achieving a robustness steady state, es-
pecially for the times-frequency vibration system. Compared
with two and three times-frequency vibration synchroniza-
tion system, the same frequency vibration system has more
obvious stability. Also, two times-frequency systems is also
more stable than three times-frequency synchronous systems,
as shown in Figure 19. At the same time, the inflection point
of bistable intervals shows poor stability, especially for the
system with β � 0.

(d)

Figure 11: Instantaneous phase of the exciters at l � 1.3m, n � 1,ω1 � 500 r/min, andω1 � 500 r/min: (a) φ1 � − 5.6°,φ2 � − 12.4°,
and α � φ1 − φ2 � 6.8°, (b) φ1 � 90.3°,φ2 � 82.5°, and α � φ1 − φ2 � 7.8°, (c) φ1 � 184.1°,φ2 � 172.7°, and α � φ1 − φ2 � 11.4°, and (d)
φ1 � 270.3°,φ2 � 262.2°, and α � φ1 − φ2 � 8.1°.

(a)

(b)

(c)

(d)

Figure 12: Instantaneous phase of the exciters at l � 1.3m, n � 2,ω1 � 1000 r/min, andω1 � 500 r/min: (a) φ1 � 18.7°,φ2 � − 3.4°, and
α � φ1 − 2φ2 � 25.5°, (b) φ1 � 196.8°,φ2 � 85.4°, and α � φ1 − 2φ2 � 26.0°, (c) φ1 � 350.2°,φ2 � 162.2°, and α � φ1 − 2φ2 � 25.8°, and (d)
φ1 � 179.3° + 360° � 539.3°,φ2 � 254.9°, and α � φ1 − 2φ2 � 29.5°.
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(a)

(b)

(c)

(d)

Figure 13: Instantaneous phase of the exciters at l � 1.3m,n � 3,ω1 � 1500r/min, andω1 � 500r/min: (a) φ1 � − 7.2°,φ2 � 5.4°, and
α�φ1 − 3φ2 � − 23.4°, (b) φ1 � 272.8°,φ2 � 97.6°, andα�φ1 − 3φ2 � − 20.0°, (c) φ1 � 189.0° +360° � 549°,φ2 � 188.1°, andα�φ1 − 3φ2 � − 15.3°,
and (d) φ1 � 105.3° +720° � 825.3°,φ2 � 282.1°, andα�φ1 − 3φ2 � − 21.0°.
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Figure 14: Exciting loads of the times-frequency system in different positions.
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Figure 15: Continued.
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Figure 15: Time-domain responses in different positions at l � 0.68m. (a) n� 1, ω1 � 1200 r/min, and ω2 �1200 r/min; (b) n� 2, ω1 � 1200 r/
min, and ω2 � 600 r/min; (c) n� 3, ω1 � 1200 r/min, and ω2 � 400 r/min.
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Figure 16: Time-domain responses in different positions at l � 1.36m. (a) n� 1,ω1 � 500 r/min, andω2 � 500 r/min; (b) n� 2,ω1� 1000 r/min,
and ω2� 500 r/min; (c) n� 3, ω1� 1500 r/min, and ω2 � 500 r/min.
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Because of the limiting minimum natural frequency of
the supporting springs and the energy consumption re-
duction, when designing times-frequency synchronous
machinery in engineering, it is better to choose smaller
β ≈ 0, rl < 0.5 and a higher rotational speed of the exciters to
make the system realize the in-phase synchronization in a
super-resonance state. As for the antiphase synchronization
system, rl is greater than 2 is the right choice, which is can
also be found in Figures 17–19.

Besides, for the bistable phase interval approaching to 0
or 180 degrees, the stability criterion (equation (31)) under
angular velocity perturbation can be satisfied even if τ1 and
τ2 are very small when using some other torque-slip models
of themechanical characteristic for the asynchronousmotor.
Similarly, the stability criterion of the phase difference
perturbation system under phase difference perturbation
can also be proved by substituting the parameter α and some
other required parameters. ,erefore, under the condition
that the stability of the system can be satisfied, the

synchronization performance index of the system becomes
more significant in engineering.

5. Conclusions

,emechanical model of a times-frequency vibration system
driven by two homodromy exciters is established to in-
vestigate whether the phenomenon of bistable phase dif-
ference intervals exists in the system. Based on small
parameter perturbation methods and nonlinear system
theory, the system has been studied with detailed theoretical
and experimental research. Some useful conclusions can be
given as follows.

Firstly, by introducing a group of average angular ve-
locity perturbation parameter ε0 and two groups of phase-
difference perturbation parameters ε1 and ε2, the frequency
capture conditions for times-frequency vibration synchro-
nization of the system are derived. ,e phenomenon of
bistable intervals of the phase difference of the system is
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revealed. When rl is smaller, we have n2Wc1c + Wc2c ≥ 0; the
system is stable around 180 degrees and the antiphase
synchronization phenomenon appears; on the contrary,
while the system is stable near 0 degrees, the in-phase
synchronization phenomenon comes out. ,en, the fre-
quency capture equation of the times-frequency synchro-
nization system is linearized near the stable value of the
phase difference α0 in the steady state and equivalent to a
uniform perturbation system. Finally, the stability of the
system under angular velocity perturbation and phase-dif-
ference perturbation are proved.

According to the mechanical model, a vibration system
is established for verifying the phenomenon of bistable
phase-difference intervals. ,e distance between the two
exciters l � 0.68m and l � 1.36m are taken for the ex-
perimental analysis at different rotational speeds of the
exciters. A material chamber is set upon the mass center of
the vibration system to observe its trajectories. Our results
show that the system mainly operates in a swing state
around the mass center in the synchronous state of the
same frequency with a smaller distance between the ex-
citers due to the phase difference near 180°, and its engi-
neering significance is low. For the times-frequency
vibration synchronization, because of the existence of
multiple rotational speeds of exciters, no matter what the
value of rl, the system presents a more complex compound
motion trajectories.

,en, the quantitative analysis for the phenomenon of
bistable phase-difference interval and the synchronization
performance index is carried out. ,e same frequency vi-
bration system has more obvious stability than the times-
frequency vibration synchronization system. ,e results
show that it is better to choose smaller β ≈ 0, rl < 0.5 and
higher rotational speeds of the exciters in a super-resonance
state when designing the time-frequency synchronous
machinery. ,e complex compound motion trajectories of
the times-frequency vibration system can be used to reduce
the low-energy region of vibration mills and develop the
chaotic mixing equipment.

Compared with the existing results, some innovations of
this work can be summarized. Aiming at the familiar
problem of vibration synchronization system with two ex-
citers, times-frequency vibration synchronization theory of
two exciters is developed; the phenomenon of bistable
phase-difference intervals is given out. At the same time, the
in-phase and antiphase synchronization phenomena for the
times-frequency vibrating system are proved by experiments
and its corresponding application is also investigated and
discussed (Table 1).

Nomenclature

o: Mass center of the whole vibration system
oxy: Fixed coordinate system
o′x′y′: Moving coordinate system
m: Mass of the rigid frame
mr: Mass of the eccentric block
mi: Mass of the eccentric block of the exciter i(i � 1, 2)

M: Total mass of the vibration system
kx, ky: Stiffness of the system in x, y direction
kxi, kyi: Stiffness of the spring i(i � 1, 2) in x, y direction
cx, cy: Damping of the system in x, y direction
cxi, cyi: Damping of the spring i(i � 1, 2) in x, y direction
c1, c2: Damping coefficient of the axes of the exciter

i(i � 1, 2)

ri: Eccentric radius of the eccentric block of the exciter
i(i � 1, 2)

_φi: Instantaneous angular velocity and the angle of
rotation relative to the starting point of the exciter
i(i � 1, 2)

l0: Distance from the composite mass center of the two
exciters to the mass center of the system

l: Distance from the axis of exciter 1 to the axis of
exciter 2

li: Distance from the axis of exciter i(i � 1, 2) to the
mass center o of the system

lsi: Distance from connecting point between spring
i(i � 1, 2) and frame to point o

β0: Angle between the connection line l0 and the
horizontal direction

βi: Angle between the connection line li(i � 1, 2) and
the horizontal direction

θi: Angle between the connection line lsi(i � 1, 2) and
the horizontal direction

Jp: Moment of inertia of the rigid frame of the system
about o

Ji: Moment of inertia of the eccentric mass of exciter
i(i � 1, 2) to its mass center

J: Moment of inertia of the vibration system about o

T: Kinetic energy of the system
V: Potential energy of the system
D0: Energy dissipate function of the system
Lei: Output torque of the inducing motor of exciter

i(i � 1, 2)

αi: Steady-state phase difference of exciter i(i � 1, 2) in
a single cycle

n: Multiple relationships of rotational speed between
the two exciters

T0: Single cycle of the high-speed exciter
ωni: Natural frequency of the vibrating system in

i(i � x, y,ψ) direction
ξnx: Critical damping ratios of the vibrating system in

i(i � x, y,ψ) direction
ε0: Small perturbation parameter about average

speed _φ
εi: Small phase perturbation parameter of exciter

i(i � 1, 2)

εi: Average values of εi(i � 0, 1, 2) in a single cycle
_εi: Average values of _εi(i � 0, 1, 2) in a single cycle
ke0i: Stiffness coefficients of the angular velocity of the

motor of exciter i(i � 1, 2) at a certain speed ωm

Lei: Output torque the motor of exciter i(i � 1, 2)

Le0i: Output torque the motor of exciter i(i � 1, 2) at a
certain speed ωm

D: Synchronization performance index of the
vibrating system
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