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In the classical real analysis theory, Egoroff’s theorem and Lusin’s theorem are two of the most important theorems. /e
σ-additivity of measures plays a crucial role in the proofs of these theorems. Later, many researchers have carried out lots of studies
on Egoroff’s theorem and Lusin’s theorem when the measure is monotone and nonadditive (see, e.g., Li and Yasuda (2004) and Li
and Mesiar (2011)). In this paper, we study Egoroff’s theorem and Lusin’s theorem for capacities in the framework of g-ex-
pectation. We give some different assumptions that provide Egoroff’s theorem and Lusin’s theorem in the framework of g-
expectation.

1. Introduction

In the classical real analysis theory, Egoroff’s theorem and
Lusin’s theorem are two of the most important theorems. /e
σ-additivity of measures plays a crucial role in the proofs of
these theorems. But in fact, the σ-additivity of measures has
been abandoned in some areas because many uncertain phe-
nomena cannot be well modelled by using additive measures.

/e research studies on Egoroff’s theorem in nonadditive
measure theory were carried out byWang and Klir [1]; Li [2];
Li and Yasuda [3]; and Murofushi et al. [4]. /ese results
faithfully contribute to nonadditive measure theory. Li [2]
introduced the concept of condition (E) of set function and
proved an essential result: a necessary and sufficient con-
dition that Egoroff’s theorem remains valid formonotone set
function is that the monotone set function fulfils condition
(E). Murofushi et al. [4] defined the concept of Egoroff
condition and proved that it is a necessary and sufficient
condition for Egoroff’s theorem with respect to nonadditive
measures. Li and Yasuda [3] studied Egoroff’s theorem on
finite monotone nonadditive measure space by using con-
dition (E).

In nonadditive measure theory, Lusin’s theorem was
generalized by Wu and Ha [5] under the conditions of

continuity and autocontinuity. Further research on this
matter was performed by Jiang and Suzuki [6]. Kawabe [7]
investigated regularity and Lusin’s theorem for Riesz space-
valued fuzzy measures. Li and Mesiar [8] proved Lusin’s
theorem on monotone measure spaces, assuming that the
monotone measure fulfils condition (E) and has (p.g.p.) that
was introduced by Dobrakov and Farkova [9].

/e original motivation for studying nonlinear expec-
tation and g-expectation comes from expected utility theory,
which is the foundation of modern mathematical eco-
nomics. Chen and Epstein [10] gave an application of dy-
namically consistent nonlinear expectation to recursive
utility. Peng [11, 12] and Rosazza Gianin [13] investigated
some applications of dynamically consistent nonlinear ex-
pectations and g-expectations to static and dynamic pricing
mechanisms and risk measures. Hu et al. [14] studied
Fubini’s theorem for nonadditive measures in the frame-
work of g-expectation.

In this paper, we study Egoroff’s theorem and Lusin’s
theorem for capacities induced by g-expectation. We give
the sufficient conditions that provide Egoroff’s theorem and
Lusin’s theorem in the framework of g-expectation. /e
remainder of this paper is organized as follows: In Section 2,
we introduce some notations, assumptions, notions,
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lemmas, and propositions that are used in this paper. In
Section 3, we give Egoroff’s theorem, Lusin’s theorem, and
continuous function approximation theorem in the
framework of g-expectation including the proofs.

2. Preliminaries

In this section, we shall present some notations, assump-
tions, notions, lemmas, and propositions that are used in this
paper.

Let (Ω,F, P) be a complete probability space and
(Wt)t≥0 be a d-dimensional standard Brownian motion with
respect to filtration (Ft)t≥0 generated by the Brownian
motion and all P-null subsets, i.e.,

Ft � σ Ws; s≤ t􏼈 􏼉∨N, (1)

where N is the set of all P-null subsets. Fix a real number
T> 0.

Let us introduce the following spaces:

L2(Ω,FT, P) � ξ: ξ isFT − measurable randomvaria-􏼈

ble such that E[|ξ|2]<∞}

L2(0, T; P;Rd) � V: Vt isRd-valued andFt-􏽮

adapted process such that E[􏽒
T

0 |Vt|
2dt]<∞}

S2(0, T; P;R) � V: Vt is continuous process in􏼈

L2(0, T; P;R) such thatE[sup0≤t≤T|Vt|
2]<∞}

Now, we consider the following 1-dimensional backward
stochastic differential equation (BSDE):

yt � ξ + 􏽚
T

t
g t, ys, zs( 􏼁ds − 􏽚

T

t
zsdWs, t ∈ [0, T]. (2)

Let

g: Ω ×[0, T] × R × R
d⟼R, (3)

such that for any (y, z) ∈ R × Rd, g(·, y, z) is Ft-pro-
gressively measurable. We make the following assumptions:

(H1) E[􏽒
T

0 |g(t, 0, 0)|2dt]<∞.
(H2) /ere exists a constant μ> 0 such that for any
ω ∈ Ω, t ∈ [0, T], y1, y2 ∈ R and z1, z2 ∈ Rd,

g t, y1, z1( 􏼁 − g t, y2, z2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ μ y1 − y2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + z1 − z2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑.

(4)

(H3) For any ω ∈ Ω, t ∈ [0, T] and y ∈ R,
g(t, y, 0) � 0.
(H4) g is subadditive with respect to y and z, i.e., for any
ω ∈ Ω, t ∈ [0, T], y1, y2 ∈ R and z1, z2 ∈ Rd,

g t, y1 + y2, z1 + z2( 􏼁≤g t, y1, z1( 􏼁 + g t, y2, z2( 􏼁. (5)

Lemma 1 (see Pardoux and Peng [15]). Suppose that g

satisfies (H1) and (H2). "en, for any ξ ∈ L2(Ω,FT, P),

BSDE (2) has a unique pair of adapted processes
(yt, zt) ∈ S2(0, T; P;R) × L2(0, T; P;Rd).

Definition 1 (g-expectation, see Peng [16]). Suppose that g

satisfies (H2) and (H3). For any ξ ∈ L2(Ω,FT, P), let (yt, zt)

be the solution of BSDE (2) with terminal value ξ. Consider
the mapping εg[·] : L2(Ω,FT, P)⟼R, denoted by
εg[ξ] � y0. We call εg[ξ] the g-expectation of ξ.

From Peng [16], we know that that g-expectation keeps
many properties of mathematical expectation:

(i) εg[c] � c, if c is a constant
(ii) εg[ξ1]≥ εg[ξ2], if ξ1 ≥ ξ2
For more details of the properties of g-expectation, we

can see Briand et al. [17]; Chen et al. [18, 19]; Jiang [20]; He
et al. [21]; Hu [22]; Zong and Hu [23, 24]; and Zong et al.
[25].

Proposition 1 (see Briand et al. [17]). Suppose that g sat-
isfies (H2) and (H3). For any ξ, η ∈ L2(Ω,FT, P), there exists
a positive constant C such that

εg[ξ] − εg[η]
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
≤CE |ξ − η|

2
􏽨 􏽩. (6)

Definition 2 (see Choquet [26]). A capacity is a real-valued
set function V: F⟼ [0, 1] satisfying

(1) V(∅) � 0, V(Ω) � 1
(2) V(A)≤V(B), whenever and A, B ∈ F

Define the conjugate V of V by V(A):� 1 − V(Ω\A),
∀A ∈F. Obviously, V is also a capacity and V � V.

Definition 3. Suppose that V is a capacity. /en,

(i) Countably subadditive:

V ∪
∞

n�1
An􏼠 􏼡≤ 􏽘

∞

n�1
V An( 􏼁, ∀An ∈F. (7)

(ii) Continuity from above: for any An, A ∈ F
(n � 1, 2, . . .), lim

n⟶∞
V(An) � V(A), whenever

An↘A.
(iii) Continuity from below: for any An, A ∈ F

(n � 1, 2, . . .), lim
n⟶∞

V(An) � V(A), whenever
An↗A.

(iv) Continuity: V is continuous from below and above.

Definition 4 (see Wang and Klir [1]). Let F be the class of all
finite real-valuedmeasurable functions on (Ω,F, V), and let
f, fn ∈ F (n � 1, 2, . . .):

(i) fn􏼈 􏼉 converges almost everywhere to f on Ω
(fn⟶

a.e.
f): there is a set E ∈ F such that V(E) � 0

and fn⟶ f on Ω\E

(ii) fn􏼈 􏼉 converges pseudo almost everywhere to f on Ω
(fn⟶

p.a.e.
f): there is a set Q ∈F, such that

V(Ω\Q) � 1 and fn⟶ f on Ω\Q

(iii) fn􏼈 􏼉 converges almost uniformly to f on Ω
(fn⟶

a.u.
f): for any δ > 0, there is a set Eδ ∈F, such

that V(Ω\Eδ)< δ and fn converges to f uniformly
on Eδ

2 Mathematical Problems in Engineering



(iv) fn􏼈 􏼉 converges to f pseudo almost uniformly on Ω
(fn⟶

p.a.u.
f): there exists Qk􏼈 􏼉 ⊂ F with

limk⟶∞V(Ω\Qk) � 1 such that fn converges to f
on Ω\Qk uniformly for any fixed k � 1, 2, . . .

Remark 1. It is easy to prove that

(1) fn⟶
a.e.

f with respect to V if and only if fn⟶
p.a.e.

f

with respect to V

(2) fn⟶
a.u.

f with respect to V if and only if fn⟶
p.a.u.

f

with respect to V

Define

Vg(A) ≔ εg IA􏼂 􏼃, ∀A ∈ FT. (8)

It is easy to check that Vg is a capacity.

Remark 2. By Proposition 1, we can obtain that suppose g

satisfies (H2) and (H3), An, A ∈ FT (n � 1, 2, . . .); then

(1) Vg(An)↘Vg(A), whenever An↘A

(2) Vg(An)↗Vg(A), whenever An↗A

/us, Vg is a continuous capacity. Similarly, Vg is a
continuous capacity.

/e following proposition is a special case of Corollary
3.5 by Peng [12].

Proposition 2. Suppose that g satisfies (H2)–(H4). "en,
Vg(A1∪A2)≤Vg(A1) + Vg(A2) ∀A1, A2 ∈FT.

Remark 3. Suppose that g satisfies (H2)–(H4). By Remark 2
and Proposition 2, we have

Vg ∪
∞

k�1
Ak􏼠 􏼡 � lim

n⟶∞
Vg ∪

n

k�1
Ak􏼠 􏼡≤ lim

n⟶∞
􏽘

n

k�1
Vg Ak( 􏼁

� 􏽘
∞

k�1
Vg Ak( 􏼁.

(9)

/us, Vg is countably subadditive.

3. Main Results

In this section, we study Egoroff’s theorem, Lusin’s theorem,
and continuous function approximation theorem in the
framework of g-expectation.

Theorem 1 (Egoroff’s /eorem). Suppose that g satisfies
(H2)–(H4), fn and f are FT-measurable random variables.
"en,

(1) If fn⟶
a.e.

f with respect to Vg, then fn⟶
a.u.

f with
respect to Vg

(2) If fn⟶
p.a.e.

f with respect to Vg, then fn⟶
p.a.u.

f with
respect to Vg

Proof. Firstly, we prove /eorem 1 (1). Let D be the set of
these points ω at which fn􏼈 􏼉 does not converge to f. /en,

D �∪
∞

k�1
∩
∞

N�1
∪
∞

n�N
ω: fn(ω) − f(ω)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥

1
k

􏼚 􏼛. (10)

Since fn⟶
a.e.

f with respect to Vg, we have Vg(D) � 0.
/us, for any fixed positive integer k,

Vg ∩
∞

N�1
∪
∞

n�N
ω : fn(ω) − f(ω)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥

1
k

􏼚 􏼛􏼠 􏼡 � 0. (11)

Noting the fact that

∪
∞

n�N
ω: fn(ω) − f(ω)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥

1
k

􏼚 􏼛↘∩
∞

N�1
∪
∞

n�N
ω: fn(ω) − f(ω)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥

1
k

􏼚 􏼛,

(12)
and by Remark 2, we have

lim
N⟶∞

Vg ∪
∞

n�N
ω: fn(ω) − f(ω)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥

1
k

􏼚 􏼛􏼠 􏼡

� Vg ∩
∞

N�1
∪
∞

n�N
ω: fn(ω) − f(ω)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥

1
k

􏼚 􏼛􏼠 􏼡

� 0.

(13)

/erefore for any δ > 0 and any positive integer k, there
exists a positive integer Nk, such that

Vg ∪
∞

n�Nk

ω: fn(ω) − f(ω)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≥
1
k

􏼚 􏼛􏼠 􏼡<
δ
2k

. (14)

Let

Eδ ≔ ∩
∞

k�1
∩
∞

n�Nk

ω: fn(ω) − f(ω)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌<
1
k

􏼚 􏼛. (15)

By Remark 3, we have

Vg Ω\Eδ( 􏼁 � Vg ∪
∞

k�1
∪
∞

n�Nk

ω: fn(ω) − f(ω)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≥
1
k

􏼚 􏼛􏼠 􏼡

≤ 􏽘
∞

k�1
Vg ∪

∞

n�Nk

ω: fn(ω) − f(ω)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≥
1
k

􏼚 􏼛􏼠 􏼡

< 􏽘
∞

k�1

δ
2k

� δ.

(16)
/us, fn converges to f uniformly on Eδ. /e proof of

/eorem 1 (1) is complete.
From /eorem 1 (1) and by Remark 1, we can easily

obtain /eorem 1 (2).
From now on, for studying Lusin’s theorem, we consider

the following path spaces: Ω � Cd
0(R+) is the space of all

Rd-valued continuous paths (ωt)t≥0 with ω0 � 0, equipped
with the distance

ρ ω1
,ω2

􏼐 􏼑 ≔ 􏽘
∞

n�1
2−n max

t∈[0,n]
ω1

t − ω2
t

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼠 􏼡∧ 1􏼢 􏼣. (17)

We set ΩT:� ω·∧T : ω ∈ Ω􏼈 􏼉. It is clear that (Ω, ρ) and
(ΩT, ρ) are both complete separable metric spaces. LetO and
C be the classes of open sets and closed sets in (Ω, ρ), re-
spectively. Similarly, OT and CT are the classes of open sets
and closed sets in (ΩT, ρ), respectively.

Mathematical Problems in Engineering 3



We consider the canonical process: ωt � Wt(ω),

t ∈ [0,∞), for ω ∈ Ω. Let F be the smallest σ-algebra
containing O, and let FT be the smallest σ-algebra con-
tainingOT. We can choose a probability measure 􏽥P such that
(Wt)t≥0 is a d-dimensional standard Brownian motion
under (Cd

0(R+),F, 􏽥P). □

Definition 5 (see Wu and Ha [5]). A capacity V is called
regular, if for every A ∈F and δ > 0, there exists a closed set
Fδ and an open set Gδ of Ω, such that

Fδ ⊂ A ⊂ Gδ,

V Gδ\Fδ( 􏼁< δ.
(18)

Lemma 2. Suppose that g satisfies (H2)–(H4), then Vg is
regular on FT.

Proof. LetA be the class of all sets A ∈ FT such that for any
δ > 0, there exists a closed set Fδ and an open set Gδ of ΩT

satisfying

Fδ ⊂ A ⊂ Gδ,

Vg Gδ\Fδ( 􏼁< δ.
(19)

To prove this lemma, it is sufficient to show thatFT ⊂ A.
Firstly, we verify that A is an algebra. It is easy to know

that ΩT ∈ A. Suppose A, B ∈ A, then for any δ > 0, there
exist closed sets F1,δ, F2,δ ∈ ΩT and open sets G1,δ, G2,δ ∈ ΩT

such that

F1,δ ⊂ A ⊂ G1,δ,

Vg G1,δ\F1,δ􏼐 􏼑< δ;

F2,δ ⊂ B ⊂ G2,δ,

Vg G2,δ\F2,δ􏼐 􏼑< δ.

(20)

So we have

F1,δG
c
2,δ ⊂ A\B ⊂ G1,δF

c
2,δ. (21)

F1,δG
c
2,δ is a closed set of ΩT, G1,δF

c
2,δ is an open set of ΩT,

and

Vg G1,δF
c
2,δ\F1,δG

c
2,δ􏼐 􏼑 � Vg G1,δF

c
2,δF

c
1,δG2,δ􏼐 􏼑

� Vg G1,δ\F1,δ􏼐 􏼑∩ G2,δ\F2,δ􏼐 􏼑􏼐 􏼑

≤min Vg G1,δ\F1,δ􏼐 􏼑, Vg G2,δ\F2,δ􏼐 􏼑􏽮 􏽯

< δ.

(22)
/at is, A\B ⊂ A. So A is an algebra of ΩT.

Next, we prove thatA is closed under the formation of
pairwise disjoint countable unions. Let An􏼈 􏼉

∞
n�1 ⊂ A be the

sequence of pairwise disjoint set and δ > 0 be given. From
the definition of A and An ∈ A, we know that for each
given n, there exist an open set Gn and a closed set Fn ofΩT

such that

Fn ⊂ An ⊂ Gn,

Vg Gn\Fn( 􏼁<
δ

2n+1.

(23)

Noting the fact that

∪
∞

n�1
Fn\∪

k

n�1
Fn↘∅, (24)

and by Remark 2, we have

lim
k⟶∞

Vg ∪
∞

n�1
Fn\∪

k

n�1
Fn

⎛⎝ ⎞⎠ � 0. (25)

/us, there exists a positive integer k0 such that

Vg ∪
∞

n�1
Fn\∪

k

n�1
Fn

⎛⎝ ⎞⎠<
δ
2
. (26)

Denote Gδ:�∪∞n�1Gn and Fδ:�∪k0

n�1Fn; then, Gδ is an
open set of ΩT, Fδ is a closed set of ΩT, and

Fδ ⊂ ∪
∞

n�1
An ⊂ Gδ. (27)

By Remark 3, we have

Vg Gδ\Fδ( 􏼁 � Vg ∪
∞

n�1
Fn\∪

k0

n�1
Fn

⎛⎝ ⎞⎠

≤Vg ∪
∞

n�1
Gn\Fn( 􏼁􏼠 􏼡∪ ∪

∞

n�1
Fn\∪

k0

n�1
Fn

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

≤Vg ∪
∞

n�1
Gn\Fn( 􏼁􏼠 􏼡 + Vg ∪

∞

n�1
Fn\∪

k0

n�1
Fn

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

≤ 􏽘
∞

n�1
Vg Gn\Fn( 􏼁 + Vg ∪

∞

n�1
Fn\∪

k0

n�1
Fn

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

< δ.

(28)

/at is,

∪
∞

n�1
An ∈ A. (29)

So A is a σ-algebra of ΩT.
In real analysis theory, we know that for any closed set

F ∈ CT, there exists a sequence of open sets En􏼈 􏼉
∞
n�1 such

that

En\F↘∅, as n⟶∞. (30)

/erefore, by Remark 2, we have limn⟶∞Vg(En\F) � 0.

/us, CT ⊂ A. Since A is closed under the formation of
complements, we have OT ⊂ A. /is shows that A is a
σ-algebra containing OT. So FT ⊂ A. □

Remark 4. Suppose that g satisfies (H2)–(H4).

(1) By Lemma 2, we know that for any A ∈ FT, there
exist an increasing sequence Fn􏼈 􏼉

∞
n�1 of closed sets

4 Mathematical Problems in Engineering



and a decreasing sequence Gn􏼈 􏼉
∞
n�1 of open sets such

that for every n � 1, 2, . . ., Fn ⊂ A ⊂ Gm,

Vg Gn\A( 􏼁<
1
n

,

Vg A\Fn( 􏼁<
1
n

.

(31)

(2) By /eorem 1 (1) and Lemma 2, we know that if
fn⟶

a.e.
f with respect to Vg, then for any δ > 0, there

exists a closed set Fδ ∈ CT such that Vg(ΩT\Fδ)< δ
and fn converges to f uniformly on Fδ.

(3) By /eorem 1 (1) and Lemma 2, we know that if
fn⟶

a.e.
f with respect to Vg, then there exists an

increasing sequence of closed sets Hk􏼈 􏼉
∞
k�1 ⊂ FT

such that

Vg ΩT\∪
∞

k�1
Hk􏼠 􏼡 � 0, (32)

and fn converges to f on Hk uniformly for any fixed
k � 1, 2, . . ..

In the following, we present Lusin’s theorem in the
framework of g-expectation.

Theorem 2 (Lusin’s /eorem). Suppose that g satisfies
(H2)–(H4) and f is an FT-measurable random variable.
"en, for each δ > 0, there exists a closed set Fδ ∈ CT such that
Vg(ΩT\Fδ)< δ and f is continuous on Fδ.

Proof. We prove this theorem stepwise in the following two
situations.

(a) Suppose that f is a simple function, i.e., f � 􏽐
n
k�1 ckχEk

,
where χEk

is the characteristic function of Ek andΩT �

∪n

k�1Ek (a disjoint finite union). For any δ > 0, by
Lemma 2, we know that for each k, there exists a closed
set Fk of ΩT such that Fk ⊂ Ek and

Vg Ek\Fk( 􏼁<
δ
n

. (33)

Let

Fδ ≔ ∪
n

k�1
Fk. (34)

/en, Fδ is a closed set. By Remark 3, we have

Vg ΩT\Fδ( 􏼁 � Vg ∪
n

k�1
Ek\∪

n

k�1
Fk􏼠 􏼡

≤Vg ∪
n

k�1
Ek\Fk( 􏼁􏼠 􏼡

≤ 􏽘
n

k�1
Vg Ek\Fk( 􏼁

< δ.

(35)

Obviously, f is continuous on Fδ.

(b) Let f be an FT-measurable random variable. /en,
there exists a sequence φn􏼈 􏼉

∞
n�1 of simple functions such

that φn⟶ f on Ω, as n⟶∞. With the help of
Remark 4 (3), we know that there exists an increasing
sequence of closed sets Hk􏼈 􏼉

∞
k�1 ⊂ FT such that

Vg ΩT\∪
∞

k�1
Hk􏼠 􏼡 � 0, (36)

and φn converges to f on Hk uniformly for any fixed
k � 1, 2, . . .. Applying (a), we can prove that for any fixed n,
there exists a closed set F

(n)
k of ΩT satisfying that F

(n)
k ⊂ Hk

such that

Vg Hk\F
(n)
k􏼐 􏼑<

δ
2n+k

, k � 1, 2, . . . , (37)

and φn is continuous on F
(n)
k . Let

Fδ ≔ ∩
∞

k�1
∩
∞

n�1
F

(n)
k . (38)

/en, Fδ is a closed set. By Remark 3, we have

Vg ΩT\Fδ( 􏼁 � Vg ΩT\∪
∞

k�1
Hk􏼠 􏼡∪ ∪

∞

k�1
Hk\∩
∞

k�1
∩
∞

n�1
F

(n)
k􏼠 􏼡􏼠 􏼡

≤Vg ΩT\∪
∞

k�1
Hk􏼠 􏼡 + Vg ∪

∞

k�1
Hk\∩
∞

k�1
∩
∞

n�1
F

(n)
k􏼠 􏼡

≤Vg ∪
∞

n�1
∪
∞

k�1
Hk\F

(n)
k􏼐 􏼑􏼠 􏼡

≤ 􏽘

∞

n�1
􏽘

∞

k�1
Vg Hk\F

(n)
k􏼐 􏼑

< δ.

(39)

At last, we show that f is continuous on Fδ. In fact, φn is
continuous and converges to f uniformly on Fδ. So for any
ε> 0 and any ω,ω0 ∈ Fδ, there exist a positive integer no and
a positive constant ς such that

φn0
(ω) − f(ω)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌<
ε
3
,

φn0
(ω) − φn0

ω0( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌<
ε
3
,

(40)

when |ω − ω0|< ς. /us, we have

f(ω) − f ω0( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � f(ω) − φn0
(ω) + φn0

(ω) − φn0
ω0( 􏼁

􏼌􏼌􏼌􏼌􏼌

+ φn0
ω0( 􏼁 − f ω0( 􏼁

􏼌􏼌􏼌􏼌􏼌

≤ f(ω) − φn0
(ω)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + φn0
(ω) − φn0

ω0( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

+ φn0
ω0( 􏼁 − f ω0( 􏼁

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

< ε.
(41)

So f is continuous on Fδ. □
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Remark 5. Suppose that g satisfies (H2)–(H4). By /eorem
2 and Lemma 2, we know that for any fixed n � 1, 2, . . .,
there exists a closed sequence Fn􏼈 􏼉

∞
n�1 ⊂ FT such that f is

continuous on Fn and

Vg ΩT\Fn( 􏼁<
1
n

. (42)

At last, we show continuous function approximation
theorem in the framework of g-expectation.

Theorem 3 (Continuous Function Approximation
Theorem). Suppose that g satisfies (H2)–(H4) and f is an
FT-measurable random variable. "en, there exists a con-
tinuous function sequence ϕn􏼈 􏼉

∞
n�1 on Ω such that ϕn⟶

a.e.
f

with respect to Vg. Furthermore, if |f|≤M, then |ϕn|≤M

(n � 1, 2, . . .), where M is a positive constant.

Proof. By Remark 5, we know that for every k � 1, 2, . . .,
there exists a closed set Fk of ΩT such that f is continuous
on Fk and Vg(ΩT\Fk)< (1/k) By Tietze’s extension theo-
rem in Royden [27], for every k � 1, 2, . . ., there exists a
continuous function ψk on Ω such that ψk(ω) � f(ω), for
ω ∈ Fk. And if |f|≤M, then |ψk|≤M. /erefore, for any
ε> 0, we have

ω: ψk(ω) − f(ω)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≥ ε􏽮 􏽯 ⊂ ΩT\Fk, (43)

And, hence, for any k � 1, 2, . . .,

Vg ω: ψk(ω) − f(ω)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≥ ε􏽮 􏽯􏼐 􏼑≤Vg ΩT\Fk( 􏼁<
1
k

. (44)

/us, we have

lim
k⟶∞

Vg ω: ψk(ω) − f(ω)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≥ ε􏽮 􏽯􏼐 􏼑 � 0. (45)

From the above fact, we can choose a subsequence
ψkn

􏽮 􏽯
∞
n�1 of ψk􏼈 􏼉

∞
k�1 such that

Vg ω: ψkn
(ω) − f(ω)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≥
1
2n

􏼚 􏼛􏼒 􏼓<
1
2n

. (46)

Let

En ≔ ω: ψkn
(ω) − f(ω)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≥
1
2n

􏼚 􏼛. (47)

/en,

􏽘

∞

n�1
Vg En( 􏼁<∞. (48)

Next, we prove

Vg ∩
∞

n�1
∪
∞

v�1
ω: ψkn+v

(ω) − f(ω)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≥ ε􏼚 􏼛􏼠 􏼡 � 0. (49)

Indeed, for any ε> 0, there exists a positive integer n0
such that for any n≥ n0, (1\2n)< ε and

Vg ∩
∞

n�1
∪
∞

v�1
ω: ψkn+v

(ω) − f(ω)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≥ ε􏼚 􏼛􏼠 􏼡

≤ 􏽘
∞

m�n

Vg ω: ψkm
(ω) − f(ω)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≥ ε􏼚 􏼛􏼒 􏼓

≤ 􏽘
∞

m�n

Vg Em( 􏼁

⟶ 0, as n⟶∞.

(50)

/at is, ψkn⟶
a.e.

f with respect to Vg, we take ϕn � ψkn
,

n � 1, 2, . . .. □
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