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Measured load data play a crucial role in the fatigue durability analysis of mechanical structures. However, in the process of signal
acquisition, time domain load signals are easily contaminated by noise. In this paper, a signal denoising method based on
variational mode decomposition (VMD), wavelet threshold denoising (WTD), and singular spectrum analysis (SSA) is proposed.
Firstly, a simple criterion based on mutual information entropy (MIE) is designed to select the proper mode number for VMD.
Detrended fluctuation analysis (DFA) is adopted to obtain the noise level of the noisy signal, which can optimize the selection of
MIE threshold. Meanwhile, the noisy signal is adaptively decomposed into band-limited intrinsic mode functions (BLIMFs) by
using VMD. In addition, weighted-permutation entropy (WPE) is applied to divide the BLIMFs into signal-dominant BLIMFs
and noise-dominant BLIMFs. +en, the signal-dominant BLIMFs are reconstructed with the noise-dominant BLIMFs processed
by WTD. Finally, SSA is implemented for the reconstructed signal. Experimental results of synthetic signals demonstrate that the
presented method outperforms the conventional digital signal denoising methods and the related methods proposed recently.
Effectiveness of the proposed method is verified through experiments of the measured load signals.

1. Introduction

Fatigue failure is one of the main causes of mechanical
failure. +us, it is of great significance to analyze the fatigue
durability of the mechanical structure [1]. +e basis of
durability design of agricultural vehicles is to obtain time
domain load signals, which can reflect the real working
condition. Usually, measured signals are nonstationary and
contain a lot of noise due to the complex and changeable
working environment, which makes it meaningless to apply
measured signals directly to durability analysis. +erefore, it
is of great significance to effectively remove the noise in time
domain load signals for the durability analysis of agricultural
machinery.

+ere are many general signal denoising methods, whose
basic idea is to extract and reconstruct useful signal com-
ponents through some criteria [2, 3]. Common signal de-
composition methods include wavelet transform (WT),
empirical mode decomposition (EMD), and variational
mode decomposition (VMD). WTcan decompose the signal

into different frequencies through multiscale analysis and
have good time-frequency localization characteristics.
Donoho and Johnstone [4] proposed a threshold denoising
method based on WT and achieved good results. +erefore,
it has been applied in many fields, such as machinery [5],
biomedicine [6], and chemistry [7]. However, wavelet
threshold denoising (WTD) has poor denoising perfor-
mance on the signal with low signal-to-noise ratio. Because
the measured signal usually contains a lot of background
noise, the performance of WTD is not ideal [8]. EMD was
put forward by Huang et al. [9] in 1998. Compared withWT,
it can adaptively decompose the signal into a series of in-
trinsic mode functions (IMFs) without much prior infor-
mation. +erefore, it has been widely used in signal
denoising [10–12] and analysis [13, 14]. However, the defects
of EMD, such as mode aliasing [15] and end effect [16],
restrict its wide application. For this reason, scholars have
proposed improved methods of EMD, such as EEMD [17]
and CEEMD [18]. However, similar to EMD, the improved
methods based on EMD are all iterative algorithms, which
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will inevitably produce the error accumulation phenomenon
[19], and lack solid mathematical foundation [20].

In 2014, Dragomiretskiy and Zosso [21] proposed the
variational mode decomposition (VMD), which is a non-
iterative and adaptive signal processing method. Compared
with the method based on EMD, it has a solid mathematical
theoretical foundation, and it can avoid the error accu-
mulation phenomenon. VMD-based denoising methods
have been used in many fields, such as underwater acoustic
signal [22], ship-radiated noise [23], seismic signal [24], and
laser radar [25]. It is worth noting that the key problem of
signal denoising with VMD is the determination of themode
number K and relevant modes. If we use trial and error to get
the optimal mode number K, it will need dozens of oper-
ations and waste a lot of time. +erefore, the parameter
values are usually determined based on experience and
convenience, which seriously affects the denoising perfor-
mance of VMD. For this reason, researchers have proposed
many algorithms to select the mode number. For example,
Liu et al. [26] determined the mode number by detrend
fluctuation analysis (DFA) through a large number of
simulation experiments and finally achieved a good
denoising performance. Lei et al. [27] proposed a hybrid
algorithm combining VMD and WTD and selected the
mode number for VMD through the decomposition results
of EMD. In addition, the proposed denoising algorithm is
shown to be able to effectively recognize different cast
speeds. Li et al. [28] proposed an improved VMD (IVMD),
where the mode number is determined by a frequency-aided
method. IVMD as a novel algorithm combining SE was first
proposed for feature extraction of S-RN signals. At present,
the main methods of selecting relevant modes are correla-
tion coefficient [22], permutation entropy [29], approximate
entropy [30], Hausdorff distance [31], Euclidean distance
[32], etc. However, pure VMD denoising can not only
remove the high-frequency noise but also reduce the ef-
fective high-frequency information. Some scholars have
proposed to use the wavelet threshold method to remove
noise components from high-frequency components and
reconstruct the signal [27]. However, WTD cannot com-
pletely remove the high-frequency noise, and with the
change of operation conditions, the low-frequency signal
will be adulterated with low-frequency interharmonics [33],
so the performance of the abovementioned denoising
method is not ideal. Singular spectrum analysis (SSA)
proposed by Broomhead and King [34] can decompose
signals into a series of independent andmeaningful principal
components [35]. +erefore, SSA may be an effective
method to identify useful signals from noise [36].

In this paper, DFA is used to get the noise level of the noisy
signal, and mutual information entropy (MIE) is used to de-
termine the mode number for adaptive VMD denoising.
Meanwhile, the advantages of WTD and SSA are effectively
absorbed. Firstly, the noise level of the noisy signal is obtained
by using DFA [37], and the mode number for VMD is obtained
by usingMIE. At the same time, the noisy signal is decomposed
into a series of BLIMFs by VMD. Next, weighted-permutation
entropy (WPE) is adopted to distinguish between signal-
dominated BLIMFs and noise-dominated BLIMFs. +en, the

signal-dominant BLIMFs are reconstructed with the noise-
dominant BLIMFs, which have been denoised byWTD. Finally,
SSA is implemented for the reconstructed signal. Simulation
and experimental results show the effectiveness and superiority
of the proposed method.

+e rest of this paper is organized as follows. +e related
theories, including VMD, WPE, WTD, and SSA, are in-
troduced in Section 2. +e proposed denoising method is
presented in Section 3. In Section 4, the proposed method is
compared with other existing methods, and the superiority
of the proposedmethod is proved. In Section 5, the proposed
method is applied to measured load signals. Finally, con-
clusions are drawn in Section 6.

2. Methodology

2.1. Brief Description of the VMD Algorithm [21]. +e VMD
algorithm can decompose any signal into a series of BLIMFs
by iteratively searching the optimal solution of the varia-
tional model. Each mode is compact around its respective
center frequency ωk. In this algorithm, the intrinsic mode
function (IMF) is redefined as an amplitude-modulated-
frequency-modulated (AM-FM) signal, which can be written
as

uk(t) � Ak(t)cos ϕk(t)( 􏼁, (1)

where phase ϕk(t)> 0 is a nondecreasing function and Ak(t)

is the instantaneous amplitude of uk(t).
Both the instantaneous amplitude Ak(t) and the in-

stantaneous frequency ωk(t) � ϕk
′(t) vary slower than the

phase ϕk(t) so that pseudostationarity can be assumed. In
order to search for suitable uk(t) and ωk(t), VMD algorithm
is required to solve the following constrained variational
problem:

min
uk{ }, ωk{ }

􏽐
K

k�1
zt δ(t) +

j

πt
􏼒 􏼓∗ uk(t)􏼔 􏼕e− jωkt
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K

k�1
uk � f,

(2)

where uk􏼈 􏼉 and ωk􏼈 􏼉 are modes and their center frequency,
respectively, K is the mode number, zt represents the gra-
dient with respect to t, δ(t) denotes the unit impulse
function, ∗ is the convolution symbol, and f is the original
signal to be decomposed.

In order to render the problem unconstrained, a qua-
dratic penalty α and a Lagrangian multiplier λ are taken into
consideration. +e augmented Lagrangian is expressed as
follows:

L uk􏼈 􏼉, ωk􏼈 􏼉, λ( 􏼁 � α􏽘
K

zt δ(t) +
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+〈λ(t), f(t) − 􏽘
K

uk(t)〉.

(3)
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When the alternate direction method of multipliers
(ADMM) is used to solve the problem, un+1

k , ωn+1
k , and λn+1

are updated until the optimal solution of the variational
constrained problem is obtained. +e modal component
􏽢un+1

k in the frequency domain can be expressed as

􏽢u
n+1
k (w) �

􏽢f(ω) − 􏽐i≠k􏽢ui(ω) +(􏽢λ(ω)/2)

1 + 2α ω − ωk( 􏼁
2 , (4)

where 􏽢u is the Fourier transform of u. Equation (4) is the
Fourier representation of a Wiener filter with power spec-
trum prior 1/(ω − ωk)2. It ensures that the VMD algorithm
has a good noise robustness.

Similarly, the center frequency ωn+1
k can be expressed as

ωn+1
k (ω) �

􏽒
∞
0 ω 􏽢uk(ω)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dω

􏽒
∞
0 􏽢uk(ω)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dω

. (5)

+e stopping condition of the iteration is

􏽘

K

k�1

􏽢un+1
k − 􏽢un

k

����
����
2
2

􏽢un
k

����
����
2
2

< e, (6)

where e is a given value.

2.2. A Parameter-Adaptive VMD Method. Compared with
EMD and its improved algorithm, VMDhas solid theoretical
derivation and stronger robustness for data sampling and
noise. However, two crucial parameters in the decomposi-
tion algorithm need to be resolved, i.e., the decomposition
mode number K and the quadratic penalty α. A relatively
moderate value of α is recommended to be 2000 [21].

In order to avoid the impact of overbinning or under-
binning on the VMD denoising, the appropriate number K
must be selected. MIE [38] can be used to represent the
statistical dependence of two random variables, so as to
reflect the degree of correlation. +e expression is addressed
as follows:

MIE(X, Y) � 􏽘
r

i�1
􏽘

s

j�1
p xi, yj􏼐 􏼑lb

p xi, yj􏼐 􏼑

p xi( 􏼁p yj􏼐 􏼑
, (7)

where X and Y represent different random variables,
p(xi, yj) is the joint probability distribution, p(xi) and
p(yi) are the marginal probability distributions, r and s are
the length of X and Y, respectively, and lb denotes the binary
logarithm.

+e stronger the correlation betweenX andY, the greater
MIE will be obtained. In this paper, +e MIEs between
BLIMFl (l � 1, 2, . . . , K) and the noisy signal are designed
to select the number K. +e MIE can be normalized as

δl �
MIEl

max MIEl( 􏼁
, (8)

where MIEl is the MIE between BLIMFl (l � 1, 2, . . . , K)

and the noisy signal.

When the minimum of δl(l � 1, 2, . . . , K) is less than or
equal to a specified threshold value δ, it can be considered
that the decomposed mode does not contain important
information, and the number K will be taken as the optimal
mode number of VMD. However, the more noise in the
noisy signal, the greater the MIE between the noise-domi-
nant BLIMFs and the noisy signal. +erefore, a single
threshold cannot meet all signals with different noise levels.
In order to widen the application scope of this method, DFA
is introduced to optimize the selection of threshold through
a large number of simulation experiments.

+e scaling exponent α0 [39] provides a quantitative
measure of the temporal correlations that exists in the time
series. It can also be viewed as an indicator that describes the
“roughness” of the original time series: the larger the value of
α0, the smoother the time series [39]. In this paper, through a
large number of simulation experiments, the scaling expo-
nent α0 is used to represent the noise level of the noisy signal.
+e appropriate threshold value is selected to determine the
mode number of VMD, and the selection expression of the
threshold value proposed in this paper is described as
follows:

δ �

0.3, α0 < 0.6,

0.05, 0.6≤ α0 < 0.8,

0.02, 0.8≤ α0 < 1.2,

0.015, 1.2≤ α0 < 1.5,

0.01, 1.5≤ α0 < 1.8,

0.005, 1.8≤ α0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

2.3. Division of BLIMFs Based on WPE [40]. Permutation
entropy (PE), proposed by Bandt and Pompe [41], can
represent the complexity of time series. It is a nonlinear
dynamic method to analyze the complexity of the system. Its
algorithm is fast and easy to implement. However, PE simply
arranges the components in the phase space vector, which
results in the loss of amplitude information in the time
series. +e weighted-permutation entropy (WPE) proposed
by Fadlallah et al. [40] can consider the amplitude infor-
mation of time series on the basis of PE, which significantly
improves the robustness and antinoise performance of PE.
WPE can be described as follows:

(1) For a given time series zt􏼈 􏼉
n
t�1, the matrix of phase

space reconstruction can be expressed as

Z �

z1 z1+τ · · · z1+(m− 1)τ

z2 z2+τ · · · z2+(m− 1)τ

⋮ ⋮ ⋮ ⋮

zc zc+τ · · · zn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (10)

where τ is the time delay, m is the embedding di-
mension, and c is the number of phase space
components, c � n − (m − 1)τ.
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(2) +e weight of each row of Z is calculated as

wi �
1
m

􏽘

m

j�1
zi+(j− 1)τ − zi􏽨 􏽩

2
, i � 1, 2, . . . , c, (11)

where zi is the mean value of each row,
zi � (1/m) 􏽐

m
i�1 zi+(j− 1)τ .

(3) Each row of Z can be arranged in ascending order:

zi+ k1− 1( )τ ≤ zi+ k2− 1( )τ ≤ · · · ≤ zi+ kl − 1( )τ ≤ · · · ≤ zi+ km − 1( )τ,

(12)

where kl is the column index of each element in the
ith row.

(4) After that, each row is arranged in ascending order,
and a group of permutations can be obtained. Since
the embedding dimension is m, there will be m!
possible permutations. We calculated the appearing
number of every permutation na, 1≤ a ≤ m!, and the
weighted relative frequency of each permutation can
be expressed as

pw(a) �
wina

􏽐
c
i�1 ωi

. (13)

(5) +en, the WPE can be designated as follows:

Hw(m) � − 􏽘
m!

i�1
pw(a)lnpw(a), (14)

and the WPE of order can be normalized as

hw �
Hw(m)

ln(m!)
. (15)

+e range of hw is 0 to 1. Bandt and Pompe [41] rec-
ommended m� 3∼7 and τ � 1. Considering the computa-
tional efficiency,m� 3 is selected in this paper. Similar to PE
[42], WPE can also be used to distinguish between signal-
dominant BLIMFs and noise-dominant BLIMFs.

2.4.Wavelet;reshold DenoisingMethod [4]. +e essence of
WTD is to filter the signal in the wavelet domain. Firstly, the
signal is transformed into the wavelet domain. +en, the
noisy wavelet coefficients are threshold processed. Finally,
the denoised signal is reconstructed by wavelet coefficients.
+e primary steps of WTD are as follows:

(1) Decomposing the original signal by wavelet trans-
form (WT) with proper wavelet basis function and
decomposition level, and a group of wavelet de-
composition coefficients are obtained.

(2) Selecting the appropriate threshold value to process
the wavelet decomposition coefficient.

(3) +e wavelet coefficients are reconstructed to get the
denoised signal.

+e selection of the threshold has a crucial impact on
WTD.+ere are two common threshold denoising methods:
wavelet hard threshold denoising (WHSD) and wavelet soft
threshold denoising (WSTD) [4]. After WHSD, the signal is
discontinuous, and the reconstructed signal will produce
oscillation, while WSTD has better continuity. +erefore,
WSTD is adopted in this paper.

2.5. Singular Spectrum Analysis. SSA proposed by Broom-
head and King [34] is an effective method for analyzing and
predicting nonlinear time series, which is suitable for
nonlinear and nonstationary signal processing. For a given
one-dimensional time series qt􏼈 􏼉

N
t�1, after selecting the ap-

propriate window length L, L ∈ [2, N], the trajectory matrix
can be obtained by using the data embedding method, which
can be expressed as

Q �

q1 q2 · · · qM

q2 q3 · · · qM+1

⋮ ⋮ ⋮ ⋮

qL qL+1 · · · qN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (16)

where M � N − L + 1.
+en, the singular value decomposition (SVD) of

QQTcan be written as

Q � 􏽘

d

i�1
Qi � 􏽘

d

i�1

�
λ

√

iUiV
T
i , (17)

where d is the number of nonzero singular values ofQQT,Qi

is the elementary matrices, λ1, λ2, . . . , λd is the singular
values of QQT arranged in descending order, and Ui and Vi

are the ith left and right eigen vectors of QQT, respectively.
Based on the grouping principle, the set of indices

1, 2, . . . , d{ } are partitioned into G irrelevant subsets I1, I2,
. . ., IG. Let Ii � i1, i2, . . . , ic􏼈 􏼉 be the ith subset, the subset
matrix and the trajectory matrix can be expressed as

QIi
� Qi1

+ Qi2
+ · · · + Qic

,

Q � QI1
+ QI2

+ · · · + QIG
.

(18)

By applying the diagonal averaging method to
QIi

� (qij)(L×M), the bth element of signal reconstruction
components RCIi

is given by

RCb �

1
b

􏽘

b

m�1
q
∗
m,b− m+1, 1≤ b<L∗,

1
L∗

􏽘

L∗

m�1
q
∗
m,b− m+1, L∗ ≤ b<K∗,

1
N − b + 1

􏽘

N− K∗+1

m�b− K∗+1
q
∗
m,b− m+1, K∗ ≤ b<N,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

where L∗ � min(L, M), K∗ � max(L, M), and
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q
∗
ij �

qij, L<M,

qji, M≤L.

⎧⎨

⎩ (20)

It is worth noting that the window length L should be
carefully selected because it directly affects the decom-
position. However, there is no universal rule for the se-
lection of the window length L. +rough a large number of
simulation experiments, we find that when the window
length L is larger thanN/10, the denoising performance of
the proposed method is good enough. Considering the
computational efficiency, L � N/10 is adopted in this
paper.

Furthermore, the grouping principle is very important in
SSA. In this paper, the noisy signal is divided into signal-
dominant and noise-dominant components by singular
entropy increment [36], and its computational equation is
given by

Ii � −
λi

􏽐
d
j�1 λj

⎛⎝ ⎞⎠ln
λi

􏽐
d
j�1 λj

⎛⎝ ⎞⎠, i � 1, 2, . . . , d. (21)

3. VMD-WTD-SSA Denoising Procedure

+e process of the new efficient denoising method proposed
in this paper is shown in Figure 1. It consists of four main
steps explained as follows:

(1) +e noise level of the noisy signal is obtained by
using DFA.+en,MIE is used to determine themode
number for adaptive VMD denoising. At the same
time, the noisy signal is decomposed into a series of
BLIMFs by VMD, whose frequency increases
gradually. +e noise mainly concentrates in high
frequency, and the useful signal is mainly concen-
trated in the first few BLIMFs.

(2) +e WPE of each BLIMF is calculated. If the WPE is
less than 0.4, the corresponding BLIMF will be
regarded as the signal-dominant component. Oth-
erwise, the corresponding BLIMF will be regarded as
the noise-dominant component.

(3) +e denoised signal by VMD is obtained by
reconstructing the signal-dominant BLIMFs. +en,
the denoised signal by VMD-WTD is obtained by
reconstructing the signal-dominant BLIMFs and the
noise-dominant BLIMFs, which have been denoised
by WTD.

(4) +e SSA is carried out for the denoised signal by
VMD-WTD to obtain the denoised signal by VMD-
WTD-SSA.

4. Simulation Signal Denoising

4.1. Construction of Simulation Signal. In order to verify the
performance of the method proposed in this paper, the
simulation data are tested.+e equation of the noisy signal is
as follows:

x(t) � cos 2πf1t( 􏼁 + 0.3 cos 2πf2t( 􏼁 + 0.02 cos 2πf3t( 􏼁,

x′(t) � x(t) + n′,
􏼨

(22)

where f1 � 5, f2 � 20, and f3 � 150 represent the three
frequencies of noise-free signal x(t), and n′ is the Gaussian
white noise with a signal-to-noise ratio of 10 dB. +e
sampling frequency is 1000Hz. +e noisy and noise-free
signals are shown in Figure 2.

4.2. Denoising of Simulation Signal. +e scaling exponent α0
of the noisy signal is 1.22, and the normalizedMIE threshold
δ is 0.015 by formula (9). +en, the normalized MIE between
each BLIMF and the noisy signal (as defined in equation (8))
is obtained, as shown in Table 1.

It can be seen that the optimal mode number K is 10, and
VMD is carried out for the simulation signal, and the
BLIMFs are shown in Figure 3.

The noisy signal

Calculation of MIE δl between BLIMFl
(l = 1, 2, ..., K) and the noisy signal

Denoised signal by VMD-WTD-SSA

Division of BLIMFs by WPE

Signal-dominant BLIMFs Noise-dominant BLIMFs

BLIMF1 BLIMFi BLIMFi+1 BLIMFK

WTD

Denoised signal by VMD-WTD

SVD

Grouping by singular entropy increments

Time series reconstruction

Denoised signal by VMD

Data embedding, Q

Calculation of the scaling exponent α0

Selection of MIE threshold δ

K = 2

VMD

min(δl) ≤ δ

K = K + 1

Yes

No

Figure 1: Flow chart of the proposed denoising method.
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+eWPE of each BLIMF is shown in Table 2. Obviously,
BLIMF1 and BLIMF2 are signal-dominant BLIMFs, and the
rest of the BLIMFs are noise-dominant BLIMFs. +en, the
BLIMF1 and BLIMF2 are reconstructed to get the denoised
signal by VMD, as shown in Figure 4. It can be seen that after
VMD denoising, the signal appears with partial distortion
and oscillation.

WTD is conducted for the noise-dominant BLIMFs. In
this paper, the db3 wavelet is selected and the number of
decomposition levels is 3. Signal-dominant BLIMFs and
noise-dominant BLIMFs after WTD are combined for signal
reconstruction. VMD-WTD denoising performance is as
shown in Figure 5. Obviously, the partial distortion and
oscillation still exist, which demonstrates that the signal
denoising performance after VMD-WTD denoising is still
not ideal.

SSA is implemented for the denoised signal by VMD-
WTD, and Figure 6 shows singular entropy increments ΔE
of the signal. It is found that the information quantity of the
signal reaches the saturated state at order 4, so the first 4
elementary matrices are used for reconstruction. After di-
agonal averaging, the denoised signal by VMD-WTD-SSA is
obtained, as shown in Figure 7. It can be seen that the signal
waveform is well recovered after denoising. +rough the
comparison, it can be seen that VMD-WTD-SSA denoising
performance is superior to VMD and VMD-WTD denoising
performances obviously.

4.3. Comparison with Other Methods. In this paper, the
signal-to-noise ratio (SNR), root mean square error (RMSE),
and maximum absolute error (MAE) are used as the eval-
uation indexes of denoising performance. SNR reflects the
performance of the denoising method, and the larger the
value, the better the denoising performance; RMSE reflects
the similarity between the denoised signal and the noise-free
signal, and the smaller the value, the better the denoising
performance; MAE reflects the real error between the
denoised signal and the noise-free signal, and the smaller the
value, the better the denoising performance. +e three
evaluation indexes are defined as follows:

SNR � 10 log
􏽐

n
i�1 y2(t)

􏽐
n
i�1 [y(t) − y(t)]2

􏼠 􏼡,

RMSE �

����������������

1
n

􏽘

n

i�1
y(t) − y′(t)􏼂 􏼃

2

􏽶
􏽴

,

MAE �
1
n

􏽘

n

i�1
y(t) − y′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

(23)

where y (t) is the original signal, y′(t) is the denoised signal,
and n is the length of the original signal.

Six typical denoising methods are selected to compare
with VMD-WTD-SSA. +ey are wavelet soft threshold
denoising (WSTD) [4], EMD hard threshold denoising
(EMD-HT) [11], EMD partial reconstruction (EMD-PR)
[12], DFA-VMD [26], VMD-WTD [27], and VMD-AE [30].
Denoising results of different methods for the noisy signals
with SNRin values varying from − 10 dB to 20 dB are shown
in Figure 8. It can be seen that compared with the other
methods, VMD-WTD-SSA has higher SNRout and lower
RMSE and MAE.+erefore, the results show that the VMD-
WTD-SSA proposed in this paper has the best denoising
performances with different SNRin values. +e presented
method is better than the other methods on the whole, and
its performance on noisy signals with low SNR is more
prominent. Besides, as the SNRin values continuously in-
creases, the differences among these methods are narrowed.

5. Application to Load Signals

5.1. Acquisition of Load Signals. +e signal acquisition sys-
tem for the load test of a corn combine harvester is mainly
composed of sensors (strain gauges and strain rosettes), an
HBM data collecting instrument, and a computer, as shown
in Figure 9.

According to existing experience, positions with large
stress are determined as the measuring locations, of which
the strain signals are measured by sensors. +e layout of
measuring locations of the frame is shown in Figure 10.
+ere are six measuring locations in total.

+e sampling frequency of strain signals is 500Hz, which
can fully meet the engineering test. In order to study the
fatigue durability of the frame of a corn combine harvester, it
is necessary to obtain the load data of the frame under
multiple working conditions, such as cement road, field
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Figure 2: Simulation signal.

Table 1: Normalized MIE between each component and the noisy
signal.

VMD MIE
BLIMF1 1
BLIMF2 0.1336
BLIMF3 0.0119
BLIMF4 0.0223
BLIMF5 0.0224
BLIMF6 0.0333
BLIMF7 0.0187
BLIMF8 0.0178
BLIMF9 0.0180
BLIMF10 0.0257
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road, and gravel road. +e load data under the field working
condition is the most representative, which is used in the
following analysis. Besides, working sections of a corn

combine harvester under the field condition include
straight-line harvesting sections and turning sections.

5.2.Denoising ofMeasured Signals. +emethod, proposed in
this paper, is used to process the measured signal segment at
location 5 in the straight-line harvesting section, which is
shown in Figure 11. +e scaling exponent α0 of the noisy
signal is 1.49, and the normalized MIE threshold is 0.015 by
equation (9). It is determined that the mode number K is 6
by MIE, and VMD is carried out for the signal, as shown in
Figure 12.

+en, the first four BLIMFs are determined as the signal-
dominant BLIMFs by WPE. +erefore, the last two BLIMFs
after WTD processing are combined with the first four
BLIMFs to get the denoised signal by VMD-WTD. After
that, SSA is implemented for the denoised signal by VMD-
WTD, whose singular entropy increments ΔE are shown in
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Figure 3: Decomposition results of the noisy signal. (a) BLIMF1. (b) BLIMF2. (c) BLIMF3. (d) BLIMF4. (e) BLIMF5. (f ) BLIMF6. (g)
BLIMF7. (h) BLIMF8. (I) BLIMF9. (j) BLIMF10.

Table 2: WPE of BLIMFs.

VMD WPE
BLIMF1 0.3870
BLIMF2 0.3884
BLIMF3 0.4629
BLIMF4 0.5748
BLIMF5 0.7058
BLIMF6 0.8608
BLIMF7 0.9678
BLIMF8 0.9934
BLIMF9 0.8672
BLIMF10 0.7787
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Figure 14: Comparison before and after denoising of the measured signal in the working section of linear harvesting: (a) measured signal,
(b) spectra diagram of the measured signal, (c) denoised signal, and (d) spectra diagram of the denoised signal.
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Figure 15: Continued.
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Figure 13. It is found that the information quantity of the
signal reaches the saturated state at order 11, so the first 11
elementary matrices are used for reconstruction. After di-
agonal averaging, the denoised signal by VMD-WTD-SSA is
obtained, which is shown in Figure 14(a).

+e measured signals in different sections and their
spectra before and after denoising are compared, as shown in
Figures 14 and 15. It can be seen that the denoised signals by
VMD-WTD-SSA not only retain the low-frequency effective
components of the original signal but also eliminate the
interference of high-frequency noise, which fully shows the
superiority of the proposed method. +erefore, the
denoising method proposed in this paper has a significant
denoising performance on time domain load signals, which
lays the foundation for further analysis and processing.

6. Conclusion

In order to improve the denoising performance of time
domain load signals, an efficient denoising method based on
VMD, WTD, and SSA is proposed in this paper. Firstly, a
simple criterion including MIE and the scaling exponent α0,
which can be obtained by using DFA, is designed to select
the proper mode number K for VMD. In addition, the
BLIMFs are divided into the noise-dominate and signal-
dominate parts by using WPE, which can help identify the
useful information from the noisy signal. Furthermore, the
presented method takes full advantages of VMD, WTD, and
SSA, which can suppress noise and retain useful components
of the original signal. +e denoising performance of the
proposed method is quantitatively evaluated by using the
simulation signals, which are composed of different fre-
quency components and Gaussian white noise. Experi-
mental results of the presented simulation signals with
SNRin values varying from − 10 dB to 20 dB demonstrate that
the proposed method outperformsWSTD, EMD-HT, EMD-
PR, DFA-VMD, VMD-WTD, and VMD-AE. Moreover,
applied to measured load signals, the presented method can
not only effectively remove the noise component but also
retain the effective component of the original signal, which
proves its feasibility.

Although the effectiveness of the proposed method has
been verified by the denoising results of synthetic and
measured signals, its universality is worth investigating

further through a large number of simulation signals, which
are comprised of various original signals and noise. Besides,
the feasibility of the proposed method is qualitatively
evaluated by the spectra diagrams of denoisedmeasured load
signals. Nevertheless, the influence of the denoising process
on the fatigue durability analysis of mechanical structures
needs to be further studied. Further work will be carried out
to study the universality of the presented approach and apply
the denoised measured load signals to the fatigue durability
analysis of mechanical structures.
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