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Boundary pixel blur and category imbalance are common problems that occur during semantic segmentation of urban remote
sensing images. Inspired by DenseU-Net, this paper proposes a new end-to-end network—SiameseDenseU-Net. First, the
network simultaneously uses both true orthophoto (TOP) images and their corresponding normalized digital surface model
(nDSM) as the input of the network structure. ,e deep image features are extracted in parallel by downsampling blocks.
Information such as shallow textures and high-level abstract semantic features are fused throughout the connected channels. ,e
features extracted by the two parallel processing chains are then fused. Finally, a softmax layer is used to perform prediction to
generate dense label maps. Experiments on the Vaihingen dataset show that SiameseDenseU-Net improves the F1-score by 8.2%
and 7.63% compared with the Hourglass-ShapeNetwork (HSN) model and with the U-Net model. Regarding the boundary pixels,
when using the same focus loss function based on median frequency balance weighting, compared with the original DenseU-Net,
the small-target “car” category F1-score of SiameseDenseU-Net improved by 0.92%.,e overall accuracy and the average F1-score
also improved to varying degrees. ,e proposed SiameseDenseU-Net is better at identifying small-target categories and boundary
pixels, and it is numerically and visually superior to the contrast model.

1. Introduction

In the computer vision field, semantic segmentation is an
important issue. In the past few decades, many classic
traditional segmentation algorithms have emerged, in-
cluding region-based methods, watershed algorithms,
threshold methods, and cluster-based segmentation
methods. In practical applications, high-resolution images
are difficult to automate for two reasons: first, their spatial
resolution is higher, but their spectral resolution is lower;
second, the surface texture features of small targets become
visible. ,ese two factors lead to an increase in intraclass
variability in the image, while the differences between classes
decrease. Image semantic segmentation aims to determine
the most proposed class label for each pixel in an image
drawn from a set of predefined limited labels.

In 2012, the AlexNet network, proposed by Krizhevsky
et al. [1], caused a new upsurge in imaging applications in the
field of deep learning. Later, Tsogkas and Kokkinos [2]
combined a convolutional neural network (CNN) with a
fully connected conditional random field (CRF) approach to
learn the lost prior information. In the data fusion com-
petition in 2015, Lagrange et al. [3] used a pretrained CNN
model as a feature extractor to classify land cover. Pai-
sitkriangkrai et al. [4] used true orthophoto images, a
corresponding digital surface model image (DSM) and a
normalized digital surface model image to train a relatively
small set of CNN models. Finally, the results were further
optimized using CRF. Long et al. [5] proposed a fully
convolutional network (FCN) to classify images at the pixel
level. Unlike the classic CNN, FCN can accept an input
image of any size and restore it to the same size as the input
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image, thus generating a prediction for each pixel while
retaining the spatial information in the original input image.

In 2016, Volpi and Tuia [6] proposed a CNN-based
systemCNN-FPL.,is system relies on a downsample-then-
upsample architecture so that CNN learns to densely label
every pixel at the original resolution of the image. In 2017,
Nogueira et al. [7] compared several popular neural net-
works and training strategies. ,eir experimental results on
three remote sensing image datasets indicated that fine-
tuning networks is the best training strategy. Liu et al. [8]
used a composed inception module to replace common
convolutional layers, providing a multiscale receiving area
with rich context for the network. Badrinarayanan et al. [9]
proposed an architecture for semantic pixelwise segmen-
tation termed SegNet that eliminates the need to learn to
upsample. ,e upsampled maps are convolved with train-
able filters to produce dense feature maps. In 2018, Gao et al.
[10] proposed a weighted equilibrium function and a neural
network based on a multifeature pyramid structure. Chen
et al. [11] proposed the FCN-based model structures SNFCN
and SDFCN to process VHR remote sensing images. ,ey
designed the SNFCN and SDFCN frameworks with dense-
shortcut connection structures and SDFCN adds three ad-
ditional identity mapping shortcut connections between the
symmetrical encoder-decoder pairs. ,is approach ensures
that the gradient information can be passed directly to the
upper layers of the network. Zhang et al. [12] proposed the
novel supervised deep-CNN-based OBIC framework to deal
with segmented superpixels and introduced two mask
policies for network models. Chen et al. [13] proposed
DeepLabv3+, applied depthwise separable convolution to
both the decoder modules, and added Atrous Spatial Pyr-
amid Pooling, resulting in a faster and stronger encoder-
decoder network. ,e TreeUNet model proposed by Yu K
et al. [14] in 2019 was the first to use both an adaptive
hierarchy and deep neural networks in a unified deep
learning structure. TreeSegNet adopts an adaptive network
to increase the classification rate at the pixelwise level. ,e
experimental results of this algorithm on the ISPRS Potsdam
dataset achieved improved results.

In summary, deep learning has been widely used for
image preprocessing, target recognition tasks, high-level
semantic feature extraction, and remote sensing scene un-
derstanding, but how to improve the image semantic seg-
mentation accuracy and resolve interclass imbalance are
problems that remain challenging. ,e main contributions
of this paper are as follows:

(i) As technology has developed, the types of data
available in the field of image processing have also
become more diverse and include as true orthophoto
images, normalized digital surface models, RGB-D
images containing depth information, and even
three-dimensional image data.We consider data with
two different statistical characteristics and use them
as simultaneous model inputs, achieving parallel
processing of different remote sensing image data
types. Finally, the two parallel processing chains are
used to fuse the features to generate dense label maps.

(ii) We adopt a suitable loss function for semantic
segmentation of remote sensing images. ,is
function introduces a factor based on the traditional
cross-entropy function to suppress the dominant
position of large target categories in training and
focus the training process on small-target cate-
gories. ,is approach both guarantees the overall
accuracy and improves the segmentation effect for
small-target categories.

(iii) Because of complex textures and lighting, the
“building” category can easily be misclassified as an
“impervious surface” by other models. Based on the
visual maps of local results, our model achieves
excellent performance on incomplete phenomenon
of the “building” category and can segment the
“building” category almost completely. We consider
that this result is due to the model’s excellent feature
fusion capabilities.

However, the SiameseDenseU-Net model uses the max
pooling layer in the downsampling block to expand the
receptive field of the model, which causes some information
to be lost during the downsampling process. ,e idea of
Atrous convolution [15] can be borrowed to increase the
receptive field without losing information. ,is is also our
future research work.

2. Related Works

,rough extensive research on satellite remote sensing
images, researchers have found that high-resolution
remote sensing images have lower spectral resolution
than low-resolution remote sensing images. In most
cases, only the three RGB channels are available, and
category information is not fully captured. ,erefore, for
high-resolution remote sensing images, analyzing tex-
ture and spatial context is particularly important. Many
studies have focused on extracting features from pixel
spatial neighborhoods [16, 17]. ,e semantic segmen-
tation task for high-resolution remote sensing images is
designed to predict each pixel as a category from a
predefined set of semantic categories, such as buildings,
low vegetation, trees, or cars. Timely access to accurate
segmentation results is critical for tasks such as urban
planning, environmental monitoring, and economic
forecasting.

In the past few decades, a large number of statistical
methods based on spectral features, including the maxi-
mum likelihood method [18] and the K-means method
[19], as well as machine learning-based methods such as
neural networks (NN) [20], the support vector machine
(SVM) [21], object-oriented classification [22], and sparse
representation [23], have been widely used in remote
sensing image segmentation tasks. However, these shallow
network methods often fail to adequately consider the
interrelationships between global and local samples. In
recent years, deep learning methods, especially con-
volutional neural networks, have performed well on visual
learning tasks. A deep network takes the original image as
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input and transforms the graph through multiple pro-
cessing layers. By aggregating the features to the gradually
increasing context neighborhood, the information be-
comes more explicit, thus achieving a distinction between
different object categories [24]. ,e parameter set for the
entire network model is learned from the original data and
tags, including the underlying layer containing the
original features, the middle layer containing specific task
context information, and the high level that performs the
actual classification.

,e remote sensing image semantic segmentation task
can be described as follows: given a set of labeled training
data sets, the classifier learns predictive conditional prob-
ability arithmetic from the spectral features. ,e original
pixel intensity, a simple combination of raw values, and
various types of statistical information describing the local
image texture [25, 26] are typical choices for input features.
Another common method is to precalculate a large number
of redundant feature sets for training and then let the
classifier select the optimal subset [27, 28]. In this way, less
relevant information can be ignored during the feature
encoding process.

HSN [8] uses inception and residual modules. ,e in-
ception module enables the network to extract information
from multiscale receptive areas. Residual modules are
employed together with the skip connection, feeding in-
formation forward from the encoder directly to the decoder
to make more effective use of the spatial information. In
addition, the model uses overlap inference (OI) to mitigate
the boundary effects of the image. Finally, postprocessing
methods based on weighted belief propagation (WBP) vi-
sually enhance the classification results. HSN is superior to
the state-of-the-art FCN [5] and FPL [6] and SegNet models
in terms of overall accuracy and average F-score. ,e core
idea underlying DenseU-Net is to connect CNN features
through cascade operations and use the symmetric model
structure to fuse shallow information with high-level ab-
stract semantic features. DenseU-Net has made significant
progress in the segmentation accuracy for small-target
categories.

However, HSN and DenseU-Net simply add more
complex processing modules to the existing network
structure; they do not consider the problem of processing
different statistical feature images at the same time. In the
field of image semantic segmentation, it has been difficult
to make a large breakthrough in network structure since
the emergence of U-Net. More complex network struc-
tures not only require longer training times but also lead
to model overfitting. ,erefore, we focus on data pro-
cessing and utilization. SiameseDenseU-Net combines
two parallel DenseU-Net modules to process images with
different statistical characteristics simultaneously. ,e
resulting feature information is fused by the connected
channels, which improves the network’s ability to extract
image features.

,is study was inspired by DenseU-Net [29] and makes
improvements based on its work. We further explore the
potential of CNNs for end-to-end semantic segmentation of
high-resolution remote sensing images.

3. Proposed Methods

SiameseDenseU-Net uses two similar parallel DenseU-Nets,
each of which is composed of an encoder and a decoder. ,e
encoder consists of five consecutive sets of downsampled
blocks that double the number of feature dimensions, while
the decoder consists of five consecutive sets of upsampling
blocks that halve the number of feature dimensions. ,e
input feature extracts the context information through the
downsampling block to obtain a hierarchical feature and
then recovers the resolution of the extracted features via the
upsampling block, restoring the spatial position information
lost by the encoder. Simultaneously, each downsampling
block has a connection with its corresponding upsampling
block. ,e shallow texture, color, and other details are
combined with the high-level abstract semantic features to
form a single DenseU-Net network. SiameseDenseU-Net
fuses the features extracted from the two parallel processing
chains and uses a softmax layer to predict the output
characteristics to generate dense label maps.

3.1. SamplingBlocks. ,eD-dimensionalH×W feature map
is the input to the downsampling block structure. ,e input
features first pass through two convolutional layers with a
padding of 1, a stride of 1× 1, and a filter size of 3× 3. ,e
input x of the downsampling block and the output features
yd1 and yd2 of the two convolutional layers are subjected to a
cascade operation to obtain a 3D-dimensional feature map.
Finally, after the 1× 1 convolution and after dimensionality
reduction, the dimension z is obtained. On the one hand, it is
then passed to the corresponding upsampling block; on the
other hand, it forms the input to the max pooling layer.
Continuous downsampling blocks can extract CNN features,
providing a wider receptive field for the network and
generating more accurate classifications.

Figure 1 shows that the structures of the upsampling
blocks and downsampling blocks are similar. In the
upsampling block, the feature map of the D-dimensional
H×W is used as an input to obtain a 2H× 2W feature map
through the 2× 2 transposed convolution layer. ,en, fea-
ture fusion is performed using the same size feature map
from the downsampling block.,e dimensionality is further
reduced by a 1× 1 convolution. ,e inputs yu2 and yu3 to the
layer and the output yu4 from the second convolutional layer
are subjected to a cascade operation to obtain a 3D di-
mensional feature map. Finally, the feature map is reduced
to D dimensions by a 1× 1 convolution. After all the con-
volutional layers are complete, a batch normalization (BN)
operation and a rectified linear unit (ReLU) are performed.
In the extended path phase, the resolution of the image is
recovered layer by layer using successive upsampling blocks,
after which the model can obtain accurate positional
information.

,e model structure can be formalized as follows:
Model�<x, Wi, σ(·), yi, cascade, o, Wd, z, maxpool, x1,

WT
t >
,e meaning of each variable is described below:

(1) x: the input of the downsampling block
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(2) Wi: the i-th convolution operation: the filter size is
3× 3, and i� 1, 2

(3) σ(·): compound function, which denotes the ReLU
and BN operations

(4) yi: the output after the i-th convolution operation,
where i� 1, 2

(5) cascade: the cascade operation
(6) o: the output
(7) Wd: the convolutional dimension reduction oper-

ation: the filter size is 1× 1
(8) z: the features
(9) maxpool: the max pooling operation

(10) x1: the input of the upsampling block
(11) WT

t : the transposed convolution operation

,e output characteristic yd1 of the first convolution
layer is given by

yd1 � σ W1x( . (1)

,e output yd1 of the first convolution layer is connected
to the input x of the downsampling block by a cascade
operation; therefore, the output yd2 of the second convo-
lution layer is given by

yd2 � σ W2 σ W1x(  + x( ( 

� σ W2 yd1 + x( ( .
(2)

Similarly, the outputs yd1 and yd2 and the input of the
downsampling block are connected to form a 3D-dimen-
sional feature map; then a 1× 1 convolution is used for
dimensionality reduction, thus reducing the dimensions of
the feature map and improving the calculation efficiency.
,e characteristic z after dimensionality reduction is as
follows:

z � Wd σ W2 σ W1x(  + x( (  + σ W1x(  + x( 

� Wd yd2 + yd1 + x( .
(3)

,e dimensionally reduced feature z is passed as the
input to both the max pooling layer and the corresponding
upsampling block. x1 represents the D-dimensional feature
of the upsampling block input; consequently, the output
characteristic yu1 of the transposed convolutional layer is
given by

yu1 � σ W
T
t x1 . (4)

,e output feature yu1 of the transposed convolution
layer is cascaded with the feature z transmitted by the
corresponding downsampling block through the connection
channel, and the connected features are subjected to di-
mensional reduction by a 1× 1 convolution:

yu2 � Wd σ W
T
t x1  + z 

� Wd yu1 + z( .
(5)

,e dimensionally reduced feature yu2 is used as the
input to the two layers of densely concatenated convolu-
tional layers; thus, the output characteristic yu3 is given by

yu3 � σ W1yu2( . (6)

,e outputs yu3 and yu2 of the convolution layer are
connected by a cascade operation, and the output yu4 of the
second layer convolution layer is as follows:

yu4 � σ W2 yu3 + yu2( ( . (7)

Finally, yu3 and yu4 are connected to the input yu2 of
the densely concatenated convolution layer through the
cascade operation, and the connected feature map is
subjected to dimensionality reduction using a 1 × 1 con-
volution. ,e output o of the final upsampling block is
given by

z

o

Max pooling

x

Input

Output

Downsampling
block

Transposed conv + BN + ReLU

Conv + BN + ReLU Conv + BN + ReLU

Conv + BN + ReLUConv + BN + ReLU

Conv + BN + ReLU Conv + BN + ReLU

yu4

yu3yd1

yd2

Conv + BN + ReLU

o
Output

x1 Input

Upsampling
block

yu2

yu1

Connected channel
Feature Z

Maxpool 2 × 2
Conv 1 × 1 + BN + ReLU
Conv 3 × 3 + BN + ReLU

Transposed conv + BN + ReLU

Figure 1: Details of the sampling blocks.
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o � Wd yu4 + yu3 + yu2( . (8)

,emodel uses a jump layer to fuse the shallow color and
texture details with the high-level abstract semantic features,
which can effectively improve the segmentation accuracy for
relatively small classes.

3.2. Loss Function. Cross-entropy loss is a commonly ap-
plied function in image segmentation tasks. However, that
loss function is calculated by summing all the pixels, which
fails to consider category imbalance. Inspired by Eigen and
Fergus [30], the median frequency balance is used to weight
the loss of a class. ,e median frequency balance weights the
class loss based on the ratio of the median of the sample class
frequency in the training set to the target class frequency;
however, this approach is insufficient to distinguish easy
from difficult samples. To improve the segmentation ac-
curacy for the small-target categories in remote sensing
images, the idea of focal loss was introduced by Lin et al. [31].
By suppressing the leading role of the simple samples during
training, the training process can concentrate on complex
and difficult samples.

Here, N represents the number of samples in a mini-
batch, C represents the number of categories, l(n)

c represents
the true label of the one-hot encoding corresponding to
sample n, and p(n)

c is the softmax probability of sample n
being in class c. ,e cross-entropy loss function is defined as
follows:

CEloss � −
1
N



N

n�1


C

c�1
l
(n)
c · log p

(n)
c . (9)

,e focus loss functionMFB_Focalloss, which is based on
the median frequency balance, is defined as follows:

MFB Focalloss � −
1
N



N

n�1


C

c�1
wc · l

(n)
c · 1 − p

(n)
c 

2
· log p

(n)
c .

(10)

,e frequency of the category c pixel is denoted by fc,
median(fc) is the median of the pixel frequencies of each
category, and wc represents the weight value corresponding
to category c:

wc �
median fc( 

fc

. (11)

3.3. SiameseDenseU-Net. Inspired by DenseU-Net [29], this
paper proposes a new end-to-end neural network called
SiameseDenseU-Net. ,e network uses true orthophoto
images and their corresponding normalized digital surface
model images as the inputs to two DenseU-Net structures,
and the downsampling blocks extract deep image features in
parallel. Information is fused through the connected
channels. Finally, a softmax layer is used to predict the
output characteristics to generate dense label maps. ,e
model structure is shown in Figure 2.

,e dual-channel data input and the parallel model
structure used for feature extraction inevitably increase

model complexity, which will cause the model to spend
much time on training and prediction, making it unable to
quickly verify our ideas, and thus fail to improve the model.
Too many parameters can also cause the model to overfit.
Because the depth of the model is closely related to the
feature extraction capability of the model and the size of the
convolution kernel itself is already small, we cut the number
of channels of the original DenseU-Net model by half when
performing model clipping. Consequently, the Siamese-
DenseU-Net model does not add additional parameters or
calculation costs.

Table 1 gives the detailed parameters of each layer of
SiameseDenseU-Net. ,e experimental results on the Vai-
hingen dataset show that SiameseDenseU-Net still performs
better than does the original DenseU-Net without increasing
the complexity of the model.

4. Experiments and Analysis

,is experiment uses the MFB_Focalloss and the cross-en-
tropy loss function.,e effectiveness of the SiameseDenseU-
Net model was verified by comparing it with the original
DenseU-Net and U-Net models.,eHSN [8] model uses the
cross-entropy loss function MFB_CEloss based on the me-
dian frequency balance in this experiment; OI is used to
further improve the prediction accuracy, and finally, WBP is
performed during postprocessing to further improve the
overall accuracy.

4.1. Dataset. ,e experiment used the Vaihingen dataset
from the 23rd International Photogrammetry and Remote
Sensing Society 2D Semantic Annotation Competition in
2016 [32]. ,e dataset contains 33 high-resolution TOP
images and corresponding DSM images taken over a Ger-
man town of Vaihingen. Among the 33 images in the dataset
are 16 labeled images. ,e official ISPRS organizer also
provided 33 normalized digital surface model images
(nDSM) corresponding to the TOP image to limit the effects
of different ground heights. ,ere are two ground-truth
versions used in the evaluation: the original version (denoted
by GT) and the eroded version (indicated by erGT). Some
examples are shown in Figure 3.

,e experiment divided the 16 available GT images into
training and testing sample sets. ,e training set consists of
11 images (regions 1, 3, 5, 7, 13, 17, 21, 23, 26, 32, and 37),
and the test set includes 5 images (regions 11, 15, 28, 30, and
34).

,e Vaihingen dataset contains six categories: imper-
vious surfaces, low vegetation, cars, clutter/background,
buildings, and trees. In the dataset, the “car” category is
relatively small compared to the other categories; thus, it
belongs to the small-target category, as shown in Figure 4. At
the same time, in the image, the diversity of car colors also
leads to large intraclass differences.

In this experiment, we cut the 11 training set images and
the corresponding GT and nDSM images into 256× 256
pixel images, with a 50% overlap between adjacent images.
,en, each of the cut images and the corresponding GT
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image were rotated at four angles (0°, 90°, 180°, and 270°),
and each rotated image was horizontally mirrored. Fol-
lowing this approach, each picture is represented by 8 en-
hanced images, including itself. ,ese operations increased
the diversity of the data.

4.2. Evaluation Index. According to the 23rd International
Society for Photogrammetry and Remote Sensing 2D
Semantic Annotation Competition, the overall accuracy
evaluation standard is the percentage of pixels for which
the correct category is predicted, and the F1-score is used
as an evaluation criterion for measuring the segmentation
accuracy of each category. ,e effect parameters are all
between 0 and 1: the larger their values are, the higher the
accuracy is. ,e F1-score formula better balances the two
precision and recall parameters and thus better measures
model performance. ,e definition of the F1-score is as
follows:

F1 �
2 × precision(c) × recall(c)

precision(c) + recall(c)
× 100%. (12)

N represents the total number of predictions, M is the
number of correct prediction results, G is the sum of the
predicted correct results and the unpredicted correct results,
P represents the precision rate, and R represents the recall
rate, and P and R are defined as follows:

P �
M

N
× 100%,

R �
M

G
× 100%.

(13)

,e percentage of the correctly predicted pixels to the
total pixels is used as an evaluation criterion of the overall
accuracy, in which TP represents the number of correctly
predicted pixels, and AP represents the total number of all
pixels. ,is metric is defined as follows:

accuracy �
TP

AP
× 100%. (14)

4.3. Experimental Results. ,e experiment uses true
orthophoto images and the normalized digital surface model
as the input to SiameseDenseU-Net. ,ese are, respectively,
sent to the two parallel DenseU-Net models for training.
Finally, the features extracted by the two parallel DenseU-
Net models are fused, and the fused features are intensively
predicted using the softmax layer to generate dense label
maps. It is worth noting that the number of channels of the
two parallel DenseU-Nets in the SiameseDenseU-Net model
is half that of the original DenseU-Net model. Compared to
the original DenseU-Net, the SiameseDenseU-Net model
does not add additional parameters or computational costs.

As shown in Table 2, SiameseDenseU-Net+MFB_Focalloss
outperforms the original DenseU-Net+MFB_Focalloss model,
except on the “low vegetation” category. It also improves the
F1-score, overall accuracy, and average F1-score of the other
categories to varying degrees. When considering boundary
pixels, the overall accuracy and average F1-score increased by
0.57% and 0.58%, respectively. ,is experiment shows that the
SiameseDenseU-Net model outperforms the DenseU-Net
and U-Net models without requiring additional parameters
or increasing the computational cost. It is particularly

Input:
true orthophoto

Output:
segmentation map

Input:
normalized digital

surface model 

256 × 256 × 3

256 × 256 ×1

256 × 256 × 3

Upsampling block
Softmax

Downsampling block
Conv + BN + ReLU Connected channel

Transmission channel

Figure 2: SiameseDenseU-Net network architecture.
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noteworthy that when considering edge pixels, the newly
proposed SiameseDenseU-Net +MFB_Focalloss increases
the F1-score of the small-target “car” category by 0.92%
compared to the original DenseU-Net +MFB_Focalloss
model. ,at is, SiameseDenseU-Net +MFB_Focalloss ach-
ieves excellent performance at enhancing the semantic
segmentation of small-target categories.

It can also be seen from Table 2 that SiameseDenseU-
Net +MFB_Focalloss achieves a better overall accuracy than
does HSN+OI +WBP even without postprocessing,
reaching 86.2%.Moreover, its F1-scores on each category are
better than those of HSN+OI +WBP. Especially for the
small-target “car” category, SiameseDenseU-
Net +MFB_Focalloss’s F1-score increased by 8.2% over that
of HSN+OI +WBP.

When ignoring the boundary pixels (erGT), the per-
formances of all the networks are better than when the
boundary pixel are considered (GT) due to object boundary
ambiguity.

,e experiments on the Vaihingen dataset show that the
SiameseDenseU-Net model can better identify small-target

Table 1: Detailed parameters of SiameseDenseU-Net.

Layer name Kernel number Kernel size
Inconv 32 3× 3
TOP image

Down Conv0_1 32 3× 3
Conv0_2 32 3× 3

Block0 Conv0_3 32 1× 1
Maxpool0 32 2× 2

Down Conv1_1 64 3× 3
Conv1_2 64 3× 3

Block1 Conv1_3 64 1× 1
Maxpool1 64 2× 2

Down Conv2_1 128 3× 3
Conv2_2 128 3× 3

Block2 Conv2_3 128 1× 1
Maxpool2 128 2× 2

Down Conv3_1 256 3× 3
Conv3_2 256 3× 3

Block3 Conv3_3 256 1× 1
Maxpool3 256 2× 2

Down Conv4_1 256 3× 3
Conv4_2 256 3× 3

Block4 Conv4_3 256 1× 1
Maxpool4 256 2× 2

Up TransposedConv0 256 2× 2
Conv5_1 256 1× 1

Block0
Conv5_2 256 3× 3
Conv5_3 256 3× 3
Conv5_4 256 1× 1

Up TransposedConv1 256 2× 2
Conv6_1 128 1× 1

Block1
Conv6_2 128 3× 3
Conv6_3 128 3× 3
Conv6_4 128 1× 1

Up TransposedConv2 128 2× 2
Conv7_1 64 1× 1

Block2
Conv7_2 64 3× 3
Conv7_3 64 3× 3
Conv7_4 64 1× 1

Up TransposedConv3 64 2× 2
Conv8_1 32 1× 1

Block3
Conv8_2 32 3× 3
Conv8_3 32 3× 3
Conv8_4 32 1× 1

Up TransposedConv4 32 2× 2
Conv9_1 32 1× 1

Block4
Conv9_2 32 3× 3
Conv9_3 32 3× 3
Conv9_4 32 1× 1

nDSM

Down Conv0_1 32 3× 3
Conv0_2 32 3× 3

Block0 Conv0_3 32 1× 1
Maxpool0 32 2× 2

Down 64 3× 3
64 3× 3

Block1 64 1× 1
64 2× 2

Down Conv2_1 128 3× 3
Conv2_2 128 3× 3

Block2 Conv2_3 128 1× 1
Maxpool2 128 2× 2

Table 1: Continued.

Layer name Kernel number Kernel size
Inconv 32 3× 3

Down Conv3_1 256 3× 3
Conv3_2 256 3× 3

Block3 Conv3_3 256 1× 1
Maxpool3 256 2× 2

Down Conv4_1 256 3× 3
Conv4_2 256 3× 3

Block4 Conv4_3 256 1× 1
Maxpool4 256 2× 2

Up TransposedConv0 256 2× 2
Conv5_1 256 1× 1

Block0
Conv5_2 256 3× 3
Conv5_3 256 3× 3
Conv5_4 256 1× 1

Up TransposedConv1 256 2× 2
Conv6_1 128 1× 1

Block1
Conv6_2 128 3× 3
Conv6_3 128 3× 3
Conv6_4 128 1× 1

Up TransposedConv2 128 2× 2
Conv7_1 64 1× 1

Block2
Conv7_2 64 3× 3
Conv7_3 64 3× 3
Conv7_4 64 1× 1

Up TransposedConv3 64 2× 2
Conv8_1 32 1× 1

Block3
Conv8_2 32 3× 3
Conv8_3 32 3× 3
Conv8_4 32 1× 1

Up TransposedConv4 32 2× 2
Conv9_1 32 1× 1

Block4
Conv9_2 32 3× 3
Conv9_3 32 3× 3
Conv9_4 32 1× 1

Outconv (concatenata TOP
and nDSM feature) 6 3× 3
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(a) (b) (c) (d)

Figure 3: Vaihingen dataset samples. (a) TOP. (b) nDSM. (c) GT. (d) erGT.
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29.03% Building
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Low vegetation
20.06%Tree

22.08%

Car
1.21%
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0.93%

Impervious surfaces
Building

Low vegetation
Tree

Car
Clutter/background

Figure 4: Pixel ratio for each category in the training sample set.

Table 2: Performances of the different models.

Models Impervious surfaces Building Low vegetation Tree Car Ave. F1 Overall. Acc

GT

HSN 87.57 92.20 75.03 84.44 75.16 82.88 84.92
HSN+OI 88.01 92.37 75.83 84.86 76.50 83.51 85.38

HSN+OI +WBP 88.00 92.34 75.92 84.86 75.95 83.41 85.39
U-Net +CEloss 85.82 90.51 73.62 83.33 67.24 80.10 83.46

U-Net +MFB_Focalloss 85.64 90.31 72.86 83.25 76.52 81.72 83.21
DenseU-Net +CEloss 87.77 92.42 75.89 84.36 83.21 84.73 85.28

DenseU-Net+MFB_Focalloss 88.18 92.50 76.23 84.63 83.23 84.95 85.63
SiameseDenseU-Net +CEloss 88.31 92.49 76.22 84.76 82.77 84.91 85.76

SiameseDenseU-Net +MFB_Focalloss 88.93 93.48 76.08 85.03 84.15 85.53 86.20

erGT

HSN 90.89 94.51 78.83 87.84 81.87 86.79 88.32
HSN+OI 91.32 94.66 79.73 88.30 83.60 87.52 88.79

HSN+OI +WBP 91.34 94.67 79.83 88.31 83.59 87.55 88.82
U-Net +CEloss 88.92 92.62 77.45 86.70 75.54 84.24 86.75

U-Net +MFB_Focalloss 88.84 92.40 76.70 86.56 82.68 85.44 86.50
DenseU-Net +CEloss 90.89 94.57 79.77 87.74 90.83 88.76 88.57

DenseU-Net +MFB_Focalloss 91.30 94.64 80.17 87.99 90.96 89.01 88.92
SiameseDenseU-Net +CEloss 91.40 94.59 80.22 88.09 90.49 88.96 89.04

SiameseDenseU-Net +MFB_Focalloss 92.08 95.57 79.96 88.42 91.33 89.47 89.49
Note: bold font indicates the best results.
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(a) (b)
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Tree
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(c)
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Tree
Car

(d)

Impervious surfaces
Buildings
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Tree
Car

(e)

Impervious surfaces
Buildings
Low vegetations
Tree
Car

(f)

Impervious surfaces
Buildings
Low vegetations
Tree
Car

(g)

Impervious surfaces
Buildings
Low vegetations
Tree
Car

(h)

Figure 5: Continued.
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Impervious surfaces
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Car

(i)

Impervious surfaces
Buildings
Low vegetations
Tree
Car

(j)

Impervious surfaces
Buildings
Low vegetations
Tree
Car

(k)

Figure 5: Visual comparison of the global results of different models. (a) TOP. (b) nDSM. (c) GT. (d) erGT. (e) HSN+OI +WBP. (f ) U-
Net +CEloss. (g) U-Net +MFB_Focalloss. (h) DenseU-Net +CEloss. (i) DenseU-Net +MFB_Focalloss. (j) SiameseDenseU-Net +CEloss. (k)
SiameseDenseU-Net +MFB_Focalloss.

(a) (b) (c) (d)

(e) (f ) (g) (h)

(i) (j) (k)

Figure 6: Local comparison of the experimental results for the “car” category. (a) TOP. (b) nDSM. (c) GT. (d) erGT. (e) HSN+OI +WBP.
(f ) U-Net +CEloss. (g) U-Net +MFB_Focalloss. (h) DenseU-Net +CEloss. (i) DenseU-Net +MFB_Focalloss. (j) SiameseDenseU-Net +CEloss.
(k) SiameseDenseU-Net +MFB_Focalloss.
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“car” categories while maintaining its overall accuracy,
making it numerically and visually superior to the existing
DenseU-Net, U-Net, and HSN models.

Figure 5 shows the experimental results of different
models on the global image. It can be seen that Siamese-
DenseU-Net +MFB_Focalloss outperforms the other models
on the Vaihingen dataset.

Figure 6 shows a local comparison of the experimental
results on the “car” category. For the small-target “car”
category, the segmentation effect of the DenseU-
Net +MFB_Focalloss model is already excellent, but the new
SiameseDenseU-Net +MFB_Focalloss model performs even
better on “car” boundary pixels and defective “cars”.

Both Figures 7 and 8 show a partial segmentation visual
comparison of the “building” categories of different models.
In Figure 7, the SiameseDenseU-Net +MFB_Focalloss model
is optimal for semantic segmentation of the “building”
category. In the “buildings” category in the upper left corner

of the image, some pixels are misclassified by the other
models as “impervious surfaces” due to their complex
textures and lighting, which causes the “building” category
in the image to be incomplete. ,us, the SiameseDenseU-
Net +MFB_Focalloss model also solves the problem of de-
fective “buildings” and completely segments the “buildings”
category.

As shown in Figure 8, the SiameseDenseU-
Net +MFB_Focalloss model is optimal for performing se-
mantic segmentation of the “building” category boundary
pixels. ,e boundary pixels of the “building” category in the
image are jagged, and the other models fail to recognize
these boundary pixels. Some models predict that the
“building” category image is incomplete. In contrast, the
SiameseDenseU-Net +MFB_Focalloss model not only solves
the problem of the incomplete “building” image but also
accurately identifies the boundary pixels of the “building”
category.

(a) (b) (c) (d)

(e) (f ) (g) (h)

(i) (j) (k)

Figure 7: Visual comparison of the local results on the “buildings” category. (a) TOP. (b) nDSM. (c) GT. (d) erGT. (e) HSN+OI +WBP. (f )
U-Net +CEloss. (g) U-Net +MFB_Focalloss. (h) DenseU-Net +CEloss. (i) DenseU-Net +MFB_Focalloss. (j) SiameseDenseU-Net +CEloss. (k)
SiameseDenseU-Net +MFB_Focalloss.
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5. Conclusions

To solve the problems of blurred boundary pixels and un-
balanced categories in urban remote sensing image seg-
mentation tasks, this paper proposed an end-to-end
SiameseDenseU-Net model based on DenseU-Net. ,e
model uses two parallel DenseU-Net networks to extract
features from true orthophoto images and their corre-
sponding normalized digital surface model images. Two
parallel downsampling blocks extract image features at the
same time. ,e features of the downsampling blocks are
transmitted to the upsampling blocks for feature fusion
through the connected channel. Finally, a softmax layer is
used to perform prediction and generate dense label maps.
,e number of channels in the SiameseDenseU-Net model is
half that of the original DenseU-Net model. ,e experi-
mental results show that the SiameseDenseU-Net model is
better at identifying the small “car” category and the
“building” category without requiring additional parameters
or increasing the calculation cost, and it also better solves the

incomplete phenomenon of the “building” category. Si-
multaneously, it improves the overall accuracy and the
average F1-score and outperforms the compared models
with regard to both numerical and visual comparisons.

Data Availability

,e data used to support the results of this study can be
obtained by visiting http://www2.isprs.org/commissions/
comm3/wg4/2d-sem-label-vaihingen.html.
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