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)e traditional regression model usually simulates the influence of water pressure and rainfall in the early stage based on
experience, but it is not suitable. To solve this problem, the normal distribution curve is used to simulate the lagging effect of water
pressure and rainfall on dam seepage. In view of problem of slab cracks, the influence of cracks on seepage is analyzed. In this
paper, a safety monitoring model for concrete face rockfill dam (CFRD) seepage with cracks considering the lagging effect is
proposed, in which slab cracks are considered as an influencing factor. )e radial basis function neural network (RBFNN)
optimized by genetic algorithm (GA) is used to establish a safety monitoring model for a CFRD seepage. Seepage of the dam is
predicted by this model, whose results are similar to themonitoring data, which indicates that themethod has certain applicability.
)rough the analysis of the proportion of factors affecting CFRD seepage, it is found that the rainfall component has the greatest
impact on the total seepage, accounting for more than 50%, and the crack component accounts for about 10%. Finally, through the
cloud model, the monitoring index of CFRD seepage is worked out, which has certain guiding significance for the treatment of
abnormal seepage monitoring data.

1. Introduction

Seepage has been a major concern in dam engineering since
the face rockfill dam emerged. )e expansion of concrete
face slab cracks and the deterioration of joint water stop are
liable to lead to seepage failure of cushion, transition layer,
and rockfill body of CFRD, which has serious negative
impact on dam deformation, structure, and safety [1–3]. )e
deterioration of impervious state of concrete face slab and
cushion will increase the monitoring data of weir behind the
dam. It is important to establish a safety monitoring model
of seepage for CFRD considering cracks in the face slab and
draw up the monitoring index of seepage for timely grasping
the operation state of CFRD and ensuring the safety of the
dam [4–9].

)e influencing factors of seepage of CFRD are complex,
including water level, rainfall, aging, and temperature. In the

research of the safety monitoring model of seepage, experts
and scholars have carried out much research, including
statistical model, deterministic model, and mixed model [10].
Shen andWu [11] established the monitoring model of uplift
pressure of dam foundation by stepwise regression analysis
under different combinations of time-effect factors and water
level factors. Cen [12] studied the seepage field characteristics
of each part and the whole of CFRD. According to the dam
engineering theory, the mathematical expressions of reservoir
water level, rainfall, temperature, and time components were
deduced. )e statistical model of seepage monitoring for
CFRD was established, and a high precision was achieved in
the seepage safety monitoring of Nalan CFRD. However, the
monitoring data of dam seepage lag behind the changes in
water level and rainfall in the upstream reservoir, so the
lagging effect has to be taken into account in the construction
of seepage safety monitoring model.
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Zhang et al. [13] introduced the lagging effect function of
reservoir water level and rainfall, determined the lagging days
and the impact days, and then established the seepage lagging
monitoring model. Cai [14] studied the seepage statistical
model considering lagging effect based on the influence of the
change rate of reservoir water level on dam seepage. Chen
et al. [15] established a coupled model of unsteady seepage
and nonlinear displacement (modeling coupled processes of
nonsteady seepage flow and nonlinear deformation for
a CFRD). Xu et al. [16] applied the cloud adaptive genetic
algorithm in the field of constructing the seepage safety
monitoring model of CFRD considering the influence of
upstream water level and rainfall on seepage. )e fitting
accuracy and prediction effect of themodel are better than the
traditional seepage statistical model. Chen et al. [17] proposed
a spatiotemporal clustering and diagnosis method for con-
crete arch dams based on deformation monitoring data. In
recent years, artificial neural network, fuzzy mathematics,
genetic algorithm, and grey system have been applied to dam
safety monitoring field [18–22]. Tian et al. [23] established
a seepage safety monitoring model of earth-rock dam by
combining the monitoring data based on the principle of
artificial neural network; Zhang [24] used the optimization
ability of particle swarm and artificial bee colony algorithm to
establish the corresponding support vector machine seepage
monitoring model. Stojanovic et al. [25] proposed a self-
tuning system for dam behavior modeling based on evolving
artificial neural networks.

At present, the common monitoring index formulation
methods include confidence interval method, typical small
probability method, limit state method, simulation calcula-
tion method, mechanical calculation method, and structural
analysis method, among which the first two methods are
called the mathematical statistics method. In recent years, the
maximum entropy method, cloud model method, Monte
Carlomethod, projection pursuit method, and so on have also
appeared and achieved good results. Wu and Wu [26]
simulated the nonlinear characteristics of dam body, strata,
and bedrock, established a viscoelastic model of stress-
seepage coupling, and constructed a first-level monitoring
index of deformation; in addition, they established an elastic-
plastic model of seepage-stress coupling and a second-level
monitoring index. Guo et al. [27] established the viscoelastic
finite element model of seepage and stress coupling and
constructed the deformation monitoring index, which can
accurately reflect the seepage and deformation characteristics
of the dam after impoundment. Cong et al. [28] deduced the
maximum entropy probability density function model based
on information theory and applied it to the field of dam
monitoring index formulation. Zhu et al. [29] applied cloud
model theory to the formulation of dam deformation
monitoring index and achieved good results.

In view of the shortcomings of the traditional statistical
regression model of seepage [2, 30–33], considering the
lagging days of reservoir water level and rainfall, the lagging
effects of water level and rainfall on seepage, and the
cracking factors, the safety monitoring model of seepage of
a CFRD is established, which is optimized by using GA-
RBFNN. Based on the proposed model, the proportion of

factors affecting CFRD seepage is worked out, and the in-
fluence of the cracks on the seepage of CFRD is found,
accounting for about 10%. Considering that the monitoring
data of CFRD seepage is affected by many uncertainties, the
seepage safety monitoring index is formulated based on the
cloud model. )e dam managers can take effective measures
to reduce the influence of slab cracks on dam seepage to
ensure dam safety according to the monitoring index.

2. Materials and Methods

2.1. Traditional Seepage Safety Monitoring Model of CFRD

2.1.1. Principle of Statistical Model. )e seepage of CFRD is
mainly affected by rainfall, reservoir water level, tempera-
ture, and aging. )erefore, the following statistical model is
used in the analysis [10]:

P � PH + PT + PU + Pθ, (1)

where P is the seepage of dam and PH, PT, PU, and Pθ are the
water pressure component, temperature component, rainfall
component, and aging component, respectively.

(1) Water pressure component PH

)e change in upstream reservoir water level has a sig-
nificant effect on dam seepage. )e average values of 1–3
times of upstream water depth and average values of pre-
monitoring water depth (1 day before the monitoring day, 2-
3 days before the monitoring day, 4–7 days before the
monitoring day, and 8–15 days before the monitoring day)
are chosen as 7 factors in the model, namely,

PH � 
3

i�1
ai H

i
u − H

i
u0   + 

7

i�4
ai Hu(i−3) − Hu0  , (2)

where Hu is the upstream water level; Hu0 is the initial
monitoring data of upstream water level; Hu(i−3) is the water
level, average value of 1 day before monitoring day, average
value of 2-3 days beforemonitoring day, average value of 4–7
days before monitoring day, and average value of 8–15 days
before monitoring day (i � 4∼7); and ai is the regression
coefficient of water pressure component r (i � 4∼7).

(2) Temperature component PT

Factors of temperature components are selected as
follows:

PT � 
2

i�1
b1i sin

2πit

365
− sin

2πit0

365
 

+ b2i cos
2πit

365
− cos

2πit0

365
 ,

(3)

where t is the cumulative days from the initial monitoring
day to the monitoring day, t0 is the cumulative days from the
initial monitoring day to the first monitoring day of the data
sequence adopted in the model, and b1i and b2i are the
regression coefficients of temperature factor.

(3) Rainfall component PU
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Rainfall has a certain effect on the change in dam
seepage, which lags behind the rainfall for a certain time.
)erefore, the mean values of precipitation in half a month
before the dam seepage measurement can be selected as
rainfall factors, that is,

PU � 
5

i�1
ci Ui − U0i( , (4)

where Ui is the average rainfall on the monitoring day,
average value of 1 day before monitoring day, average value
of 2-3 days before monitoring day, average value of 4–7 days
before monitoring day, and average value of 8–15 days
before monitoring day (i � 1 − 5); U0i is the average pre-
cipitation of each period in the initial monitoring day
(i � 1 − 5); and ci is the regression coefficient of rainfall
factor (i � 1 − 5).

(4) Aging component Pθ

)e composition of aging component is complex and
closely related to dam body, lithology, fissures, structural
distribution, and occurrence. )e expression of aging
component is selected as follows:

Pθ � d1 θ − θ0(  + d2 ln θ − ln θ0( , (5)

where c1 and c2 are the regression coefficients of aging
component, θ is the cumulative day from the monitoring day
to the initial monitoring day divided by 100, and θ0 is the
cumulative day from the initial monitoring day to the first
monitoring day in the model divided by 100.

In summary, the statistical model of CFRD seepage is as
follows:
P � PH + PT + PU + Pθ

� a0 + 
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i
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(6)

where a0 is a constant, and the other symbolic meanings are
identical equations (2)–(5).

2.2. Seepage Safety Monitoring Model of CFRD with Cracks
considering Lagging Effect. )e seepage of CFRD will be
affected by the change in water level and temperature, as well
as by rainfall and aging, among which the effect of reservoir
water level and rainfall on seepage has lagging effect. )e
traditional statistical regression model fits and calculates on
the premise of given preterm, but each dam has its own
characteristics, and the lagging effect of water level and
rainfall is different, so the traditional regression model often
simulates the influence of prestage water level and rainfall
based on experience does not have good applicability. In

order to solve this problem, the normal distribution curve is
adopted in this paper. )e lagging effect of water level and
rainfall on seepage flow is simulated by line, and the seepage
safety monitoring model of CFRD is established.)e lagging
and influencing days of reservoir water level and rainfall on
seepage of CFRD can be determined, which is helpful to
analyze the evolution law of seepage control system of
CFRD.

2.2.1. Water Pressure Component PH. )e lagging effect of
reservoir water level on seepage is as follows:

Q(t) � F t, H(t), H t − τ1(t)( , H t − τ2(t)( , . . . ,

H t − τn(t)( ,
(7)

where τ is the lag time between reservoir water level and
monitoring seepage, τk(t)≥ 0, k � 1, 2, . . . , n, and H(t) and
H(t − τn(t)) are the reservoir water level.

Equation (7) reflects the lag relationship between res-
ervoir water level and monitoring seepage. In this paper, an
influence function is defined to express the lag effect caused
by the change in reservoir water level.

Considering the influence of the change in water level on
seepage n days before monitoring day, the equivalent water
level can be obtained as follows:

Hd � ϕ H1, H2, . . . , Hk, ζ1, ζ2, . . . , ζk( , (8)

where ζ i, i � 1, 2, . . . , k(k≤ n), is the weight of the ith water
level, ζ � [ζ1, ζ2, . . . , ζk], and 

k
i�1ζ i � 1, k≤ n, so equivalent

water level Hd can be obtained as follows:

Hd � 
k

i�1
ζ iHi. (9)

)e influence of upstream reservoir water level on dam
seepage is shown in Figure 1. )e study shows that ζ(t)

generally satisfied the normal distribution. If the lagging
days and the influence days are expressed separately as x1
and x2, the lag effect function can be expressed as follows:

ζ(t) �
1

���
2π

√
x2

e
− t−x1( )

2/2x2
2 . (10)

Suppose water storage began at time t0, for a fixed time
t1,


t1

t0

ζ(t)dt � 1. (11)

In a certain period of time, the lag days x1 and influence
days x1 of the samemonitoring point are fixed values. ζ(t) in
equation (11) is the lagging influence function of water level.
Suppose the equivalent reservoir water level of seepage
discharge at t1 time is Hd, then

Hd � 
t1

t0

ζ(t)H(t)dt � 
t1

t0

1
���
2π

√
x2

e
− t−x1( )

2/2x2
2H(t)dt,

(12)

where x1 is the day of water level lagging for seepage, x2 is
the standard deviation for seepage lagging, and H(t) is the
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reservoir water level at t time. )en, the water level com-
ponent is

QH � 
3

i�1
aiH

i
d. (13)

2.2.2. Rainfall Component. In order to consider the lag effect
of rainfall on seepage of CFRD reasonably, a lag function
reflecting the lag effect of rainfall is introduced in this paper
[34], which can be expressed as follows:

w(t) �
1

���
2π

√
x4t

e
− ln t−x3( )

2/2x2
4 , (14)

where x3 is the lagging days and x4 is the distribution
parameter of rainfall influence.

Suppose the fixed monitoring day t1, the starting date of
analysis is t0; generally, it can be taken as 1 to 2 months
before the starting date. )ere are


t1

t0

w(t)dt � 1. (15)

Using the exponential transformation method to cal-
culate the rainfall, it can be got that

Pd � 
t1

t0

w(t)[P(t)]
β
dt � 

t1

t0

1
���
2π

√
x4t

e
− lnt−x3( )

2/2x2
4[P(t)]

β
dt,

(16)

where P(t) is the rainfall at time t, Pd is the equivalent
rainfall at time t1, β is the infiltration transformation index,
0< β< 1, and the other symbols have the same meaning in
equation (14).

)us, the rainfall component can be obtained:

QP � bPd � b 
t1

t0

1
���
2π

√
x4t

e
− ln t−x3( )

2/2x2
4[P(t)]

β
dt, (17)

where QP is the rainfall component, x3 is the lagging days of
rainfall, x4 is the distribution parameter of rainfall influence,
Pd is the equivalent rainfall, b is the regression coefficient,
and P(t) is the rainfall at t time.

2.2.3. Cracks Component. In the existing CFRDs, there are
a lot of cracks in the face slabs of many dams. )e influence
of cracks on seepage cannot be neglected, but the traditional
seepage statistical model does not consider this factor. Based
on the principle of slot flow in parallel plates, the equivalent
slot width bei and roughness correction coefficient Ci are
introduced as cracks component [33–35]. )e expression is

Qk � k1 

m

i�1
Cib

3
eiliHi, (18)

where k1 is the regression coefficient, m is the number of
cracks before themonitoring date, li is the length of crack, and
the roughness correction coefficientCi is calculated according
to the following formula:Ci � 1/(1 + 8.8(Δ/2bei)

1.5), where Δ
is the absolute roughness of the crack on the face slab.

)e seepage safety monitoring model of CFRD with
cracks is established by studying the reservoir water level and
rainfall component, temperature component, aging com-
ponent, and cracks component:

Q � QH + QP + QT + QK

� a0 + 
3

i�1
aiH

i
d + bPd + 

n

i�1
c1i sin

2πit

365
+ c2i cos
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+ d1θ + d2 ln θ + k1 

m

i�1
Cib

3
eiliHi,

(19)

where a0 is a constant and the other parameters have the
same meaning as the above equations.

2.3. Seepage Safety Monitoring Model of CFRD Based on
GA-RBFNN

2.3.1. Genetic Algorithm (GA). Genetic Algorithms (GAs)
originated in the 1960s [36–39]. It is a global parallel,
random search optimization algorithm that simulates the
inheritance and evolution of organisms in the natural en-
vironment and makes the population converge globally.
Compared with other optimization algorithms, GA has the
following advantages: (1) the encoding of decision variables
is the object of operation. By coding decision variables, the
evolutionary methods such as genetic and mutation of or-
ganisms in a higher degree can be imitated learning from the
concepts of biological chromosomes and genes in the cal-
culation process. At the same time, the operation of coding is
more convenient. (2) Search information is the objective
function to be optimized. Traditional optimization methods
need not only objective function but also some other in-
formation to help determine the search direction. GA only
needs the objective function and finds the fitness function to
complete the search task, especially when the objective
function cannot be derived. (3) Using the multipoint search
method. Single-point search method is often used in con-
ventional optimization algorithms, but its search in-
formation is limited and it is easy to fall into local optimum.
GA often starts from the most adaptable part of the

Monitoring
date

x2 = σ x1

t

ζ

Figure 1: )e influence of upstream reservoir water level on dam
seepage.
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individual. )e new generation of population through ge-
netic operation still contains a lot of population information
and will not fall into search stagnation. (4) Using probability
search technology. Conventional optimization methods use
deterministic search, so it is difficult to get the optimal
solution. GA uses the probability method to search, and in
the process of genetic operation, crossover and mutation are
carried out in a certain probability way so that the optimal
solution can be easily obtained.

)e basic operations are as follows: ①chromosome
coding; ②fitness function design; ③selection; ④crossover
and mutation. )e steps are as follows:

Step 1: chromosome coding. Because of the need to
operate large real numbers, it is more convenient to use
real coding. Each parameter to be optimized represents
a gene. All parameters to be optimized are combined
into a chromosome, and each chromosome corre-
sponds to a complete RBFNN. Single chromosome can
be expressed as C11C21 . . . Cl1C12C22 . . . Cjk . . . Clm

σ1σ2 . . . σj . . . σlW11W21 . . . Wn1W12 . . . Wij . . . Wnl,
and there are N chromosomes.
Step 2: design of fitness function design. )e reciprocal
sum of the square error between the output value and
the predicted value of the network is taken as the
evaluation function of chromosome quality. )e fitness
values of all individuals are nonnegative. )e fitness of
a single chromosome is

F �
1


n
i�1 fi(X) − yi( 

2, (20)

where fi is the network output value and yi is the target
value.

Step 3: selection. Selection is to select good individuals
from the old population with a certain probability to
form a new population and to reproduce the next
generation, that is, to reproduce the operation
according to certain conditions. )e probability that
the first chromosome will be selected is

Pt �
Ft


p
1F

, (21)

where Ft is the fitness of the tth individual. )e selection
method of roulette is adopted. Firstly, Pt of each individual is
calculated, and then a number r ∈ [0, 1] is generated ran-
domly. If P1 + P2 + . . . + Pt−1 < r<P1 + P2 + . . . + Pt, then
Xt is selected. )e best preservation strategy can be used to
copy the excellent individuals from the population directly
to the next generation.

Step 4: cross andmutation. Crossing is the combination
of two individuals to produce new genotype in-
dividuals. Crossing is the main way to produce new
individuals. Because of the optimization of Cjk, σj, and
Wij, it is more appropriate to adopt the multipoint
crossover method. Two individuals are randomly se-
lected from the population according to the probability,
and one crossing point is generated for Cjk, σj, and Wij

according to the crossing probability, and the crossing
operation is carried out. )e crossover probability is
generally 0.65–0.9. Variation is a secondary means of
generating new individuals. )e specific operation is to
select a pair of individuals from the parent population
with a certain probability and then randomly change
the three types of gene values with a certain probability.
Variant manipulation can effectively prevent useful
genes from being lost in genetic manipulation. )e
probability of variation Pm is generally 0.01–0.1.

2.3.2. Radial Basis Function Neural Networks (RBFNNs).
RBFNN is a three-layer neural network, which consists of
input layer, hidden layer, and output layer [40, 41]. )e
number of units in each layer is set to m, l, and n, re-
spectively, and the RBFNN structure is shown in Figure 2.
Two neurons in adjacent layers can connect with each other
and transmit signals from lower layers to higher layers. Input
data are transformed from low-dimensional input layer to
high-dimensional hidden layer through a nonlinear function
and then linearly mapped from high-dimensional space to
output layer. In theory, the network can fit any continuous
function, and the accuracy can be arbitrary. )e topological
structure and parameters of RBFNN have a great influence
on the network performance. Generally speaking, m is de-
termined by the number of input variables, n is determined
by the number of output variables, and l is determined by the
problem setting. )e transfer function of hidden layer is
called radial basis function. )e commonly used transfer
functions are Gauss function, multiquadratic function, and
inverse multiquadratic function. In this paper, Gauss
function is chosen, and equation (22) is as follows:

ϕ(t) � exp −
t2

δ2i
 . (22)

)e principle of RBFNN can be described as follows: in
the hidden layer, the radial basis function such as Gauss
function is used as the basis, and the center of the basis
function is expressed as Cj. )e basis function conforms to
the centrosymmetric nonlinear distribution. )e hidden
layer responds to the input mode after Cj is determined
according to the basis function. If the weight Wij from the
hidden layer to the output layer is obtained, the whole
network structure is determined. )e principle can be
expressed in Figure 3.

P samples are selected, given input mode
Xk � (x1, x2, . . . xm), and then the output of hidden layer
unit is obtained by the following equation:

ϕj(X) � exp −
1
2



m

k�1

xk − Cjk

σj

 

2
⎡⎣ ⎤⎦, (23)

where ϕ(·) is the Gauss function, Cj � (Cj1, Cj2, . . . ,

Cjk, . . . , Cjm) is the central vector of the jth hidden layer
node, whose dimension is equal to the number of input
variables, and σj is the central width of the jth hidden layer
node.
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Output values are got from the hidden layer through the
following equation:

fi(X) � 

n

j�1
Wijϕj(X), (24)

where fi(X) is the output value of the ith output layer and
Wij is the connection weight.

In this study, in order to get better parameters of
RBFNN, GA is used to optimize Cjk, σj, and Wij.

2.3.3. GA Optimization of RBFNN. In order to better
simulate the service behavior of CFRD with RBFNN, GA is
used to optimize the parameters of RBFNN.)e basic idea is
to train Cjk, σj, and Wij of RBFNN with GA, to find a better
solution, and then train the RBFNN with the result as the
initial parameter. )e main steps are as follows:

Step 1: data normalization. )e original data are
normalized to facilitate subsequent operations, and the
appropriate data are selected as training samples.
Step 2: chromosome coding. Using real number coding,
a single chromosome contains m + n + l genes and
generates the initial population P(g). )e evolutionary
algebra is denoted as g � 0, and the maximum evo-
lutionary algebra G is determined.
Step 3: chromosome decoding. Cjk, σj, and Wij are got,
and the output layer value fi(X) is calculated by
equation (24).

Step 4: calculate fitness. )e fitness value F of each
individual is calculated by equation (20) to evaluate the
performance of the network. If g>G, it will end;
otherwise, go to next step.
Step 5: g � g + 1, and do genetic manipulation.

(a) According to the fitness F of individuals, in-
dividuals are selected to enter the next generation
population P(g + 1) by roulette gambling. In-
dividuals with high fitness can be directly copied to
their offspring and paired with other chromosomes.

(b) Cross-manipulation of paternal chromosomes with
probability Pc to obtain new chromosomes.

(c) )ree genes of selected chromosomes weremutated
by probability Pm to obtain new chromosomes.

Step 6: generate a new population through Step 5 and
transfer to Step 4 until D.

)e specific algorithm flow is shown in Figure 4.

2.4. Calculation of Component Proportion. According to the
monitoring data of seepage, the GA-RBFNN model is
established by using monitoring data and environmental
factors. )e input variables of model are water level, tem-
perature, aging, cracks, and so on. Seepage is the output of
the network. Assuming that the number of nodes in the
input layer is N and the number of nodes in the hidden layer
is M, considering the specific problems in this paper, the
number of nodes in the output layer is 1. Let Cij and σij be
the connection weight between the input layer and the
hidden layer and Wi1 the connection weight between the
hidden layer and the output layer. Steps are as follows: (1)
initialization of output node determination, the number of
output nodes is K0, and it is generally taken as Q0 � 1/K0; in
this paper, Q0 � 1. (2) Inversely find the determinacy of
hidden layer node; that is, the determinacy of output layer
node is propagated forward by weight function because the
determinacy of output node is 1, so the determinacy of
hidden layer node is 1× Wi1 � Wi1. (3) Find the degree of
certainty of the input layer. For each node i of the hidden
layer, each node j of the input layer and then pij can be
obtained:

pij �
xj − Cij/σi






m
j�1 xj − Cij/σi




· Wi1. (25)

Standardize pij and qij � pij/(
N
j�1pij). For each input

node j, sum qij to get the certainty of input layer and
Sj � 

M
i�1qij.

)en, the proportion of the influence of each input
variable on the output variable (seepage) is as follows:

RIj �
Sj


N
j�1Sj

× 100%. (26)

2.5. Calculation of Monitoring Indexes. Firstly, the noise is
eliminated by wavelet on the safety monitoring data, and
then the digital feature Ex, En, and He of the sample is

σ2

C2

C2, σ2, W2

C1, σ1, W1
Ci, σi, Wi

Cn, σn, Wn

Cn–1, σn–1, Wn–1

Figure 3: Principle of RBFNN.

Input layer Hidden layer Output layer
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Figure 2: Structure of RBFNN.
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obtained by the reverse cloud generator; then, n cloud
droplets are generated by the forward cloud generator, and
the corresponding determinacy μi is calculated according to
the following equation:

μi � exp
− xi − Ex( 

2

2En2′
i

. (27)

)rough the above operation, the monitoring effect of
unknown distribution of noise is transformed into known
probability density and determinacy cloud droplet group.
)e contribution of Δx to C can be obtained as follows:

ΔC �
μA(x)Δx

���
2π

√
En

. (28)

According to the “3En rule” of the forward cloud, it can
be found that the cloud droplets on the interval
[Ex − 3En, Ex + 3En] have a major contribution to C. In
addition, the contribution of cloud droplets on the interval
(−∞, Ex − 3En) and (Ex + 3En, +∞) to C is very small, and
the probability of occurrence is very small, so it can be
regarded as abnormal monitoring information:

1
���
2π

√
En


Ex+3En

Ex−3En
μT(x)dx � 99.74%. (29)

3. Case Study

3.1. Engineering Introduction. )e highest body of one
CFRD is 120.0m, and the elevation of its top is 760.00m; the
dam crest extends as long as 259.8m from east to west, and
the face is as thick as t� 0.3 + 0.00347H (m), which changes
linearly from up to down, that is, 0.3m at the top and 0.7m
at the bottom. )e upstream slope is 1 :1.4, whereas the
downstream slope is 1 :1.35. On February 6, 2004, the faces

were checked and 180 cracks were found. In 2012, a total of
206 cracks were found, and the distribution of face cracks is
shown in Figure 5.

On the basis of the landform and structure, the seepage
discharge at the two measuring weirs, namely, W1 and W2,
is mainly the abutment seepage. )e retaining wall set where
the plant meets the dam foot leads the seepage to a certain
location, where W3 was set. )e seepage discharge at W3 is
face, base, and W1 and W2 seepages. )e distribution of
measuring weirs is shown in Figure 6. )e seepage discharge
at W1 and W2 is relatively small, indicating that the anti-
seepage at the two banks is effective.

3.2. Determination of Each Component. )e hydraulic
component δH is expressed by the water depth in front of the
dam: Hd, H2

d, and H3
d. Temperature component δT is

expressed by multiple harmonic combinations: sin 2πit/365 −

sin 2πit0/365 and cos 2πit/365 − cos 2πit0/365. )e selected
data are annual periodic, so i � 1, and t is the cumulative days
from the start of the series to the monitoring day. Factors of
rainfall component δP is Pd. )e aging component δθ is
expressed by polynomials and logarithmic functions: θ − θ0,
ln θ − ln θ0, where θ � t/100, θ0 � t0/100, and t is the cu-
mulative day from the initial monitoring day to the moni-
toring day.

As for the cracks component, because it takes a huge
amount of manpower, material, and financial resources to
implement a complete crack detection, there are only two
times of crack detection, which belongs to short time series
monitoring data. In view of the characteristics of small
sample and poor information such as face cracks, this paper
regards the dam as a grey system and regards the short
monitoring data of measured cracks as a discrete random
sequence. From 2000 to 2004, most of the cracks were caused
by construction and concrete quality, which had great un-
certainty and randomness. )erefore, this paper assumes
that 180 cracks were randomly generated during the first
inspection. From 2004 to 2012, the number of cracks in-
creased by 26 and tended to converge. At this time, tem-
perature component is the main cause for cracks occurring
in the upper part of face slab. Most cracks occur at low
temperature, and the expression of cracks component is


m
i�1Cib

3
eiliHi.

3.3. Seepage Safety Monitoring Model Based on GA-RBFNN.
)e historical monitoring upstream water level and rainfall
are shown in Figure 7, and the monitoring seepage after
noise reduction is shown in Figure 8. Table 1 only lists 26
cracks on the largest fracture surface relative to the distri-
bution height zi, equivalent width bei, and relative
roughness Δ/2bei of the dam base.

9 factors of water pressure, temperature, rainfall, aging,
and cracks are selected as input variables and seepage as
output variables. RBFNN with input layer 9, output layer 1,
and hidden layer 10 is constructed. GA is used to optimize
Cjk, σj, and Wij, and the optimized Cjk, σj, and Wij is used
as the initial value of RBFNN for training and prediction.
FromDecember 11, 2000, to August 15, 2013, there were 600

Start

Process data

Initialization
population

Decoding chromosomes to 
construct RBFNN

Calculate fitness and output
value 

End

Selection

Termination condition

Cross

Variation

GA

No

Yes

Figure 4: Algorithm flow of GA-RBFNN.
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groups of monitoring data in the seepage safety monitoring
model. 450 groups of data were selected as training samples,
and 150 groups of data were selected as test samples.
)rough continuous experiments and comprehensive con-
sideration, the parameters of GA are set in Table 2. )e
standard RBFNNmodel and GA-RBFNNmodel are used for
training and prediction, respectively. )e results are shown
in Figure 9, and the error curve is shown in Figure 10.

By comparing the mean square error (MSE) and cor-
relation coefficient (R) of the two models, the advantages

and disadvantages of the two models are determined. )e
mean square error is calculated according to the following
equation:

MSE �
1
n



n

1
(f − y)

2
, (30)

where f is the output value and y is the monitoring data.)e
mean square error (MSE) and correlation coefficient (R) are
shown in Table 3.

From Figures 9 and 10, it can be seen that the GA-
RBFNN model is better than the standard RBFNN model in

Location distribution graph of concrete slab cracks
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Figure 5: Distribution of face cracks.

Drain

Drain

Measuring weir W1

647m

760m

Axis

P1

P2

P3

P4

Measuring weir W2

Measuring weir W3

Figure 6: Distribution of measuring weirs.

8 Mathematical Problems in Engineering



fitting and forecast dam seepage, and the GA-RBFNNmodel
is closer to the monitoring data than the standard RBFNN
model. Table 3 shows that, in the fitting part, the MSE of the
GA-RBFNN model is better than that of the RBFNN model,
as well as in the prediction part; in addition, the R of GA-
RBFNN model is also better than that of the RBFNN model.
Based on the analysis of MSE and R, it can be shown that the
fitting and prediction accuracy of RBFNN can be improved
by using GA. )e model can be applied to the seepage
monitoring of long-term service of dams.

3.4.CalculationofComponentProportion. )e proportion of
each component can be obtained by summing the pro-
portions of the factors included in the water pressure
component, the temperature component, rainfall compo-
nent, the aging component, and cracks component, re-
spectively. )e results are shown in Table 4.

It can be seen from Table 4 that the monitoring data of
seepage are mainly affected by rainfall, about 50%; the
water pressure component is the second factor, about
20%, and the effect of aging component is smaller, which is
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Figure 7: )e historical monitoring upstream water level and rainfall.
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Figure 8: )e monitoring seepage after noise reduction.

Table 1: Parameters of cracks.

i zi(m) bei(mm) li Δ/2bei i zi(m) bei(mm) Δ/2bei li

1 7.98 0.05 3.53 0.30 14 48.89 0.31 0.31 10.33
2 8.51 0.22 7.98 0.34 15 53.01 0.37 0.24 6.28
3 12.89 0.17 6.11 0.29 16 56.64 0.41 0.43 6.36
4 13.15 0.16 6.23 0.34 17 56.81 0.29 0.31 6.36
5 14.47 0.12 6.68 0.21 18 77.42 0.28 0.34 12.72
6 17.96 0.24 3.49 0.27 19 77.53 0.07 0.29 8.03
7 26.39 0.33 2.94 0.23 20 86.77 0.40 0.28 5.28
8 29.90 0.37 7.73 0.27 21 86.96 0.35 0.31 5.58
9 30.62 0.48 9.92 0.24 22 87.42 0.28 0.18 4.50
10 34.21 0.23 7.60 0.46 23 90.34 0.38 0.26 1.79
11 34.60 0.46 6.64 0.33 24 90.85 0.26 0.29 3.92
12 40.55 0.43 5.44 0.21 25 95.11 0.16 0.44 6.61
13 43.93 0.05 8.37 0.30 26 106.75 0.13 0.27 0.43
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basically consistent with the conclusion of the statistical
model. In addition, the influence of the crack component
introduced in this paper is about 10%, which cannot be

ignored. It shows that the introduction of crack compo-
nent has a certain practical significance for safety
monitoring.

Table 2: )e parameters of GA.

Total samples Population size p Samples for forecast Crossover probability Pc Mutation probability Pm Training generations G

600 450 150 0.70 0.05 1000
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Figure 10: Error of fitting value and forecast value with monitoring data (RBFNN and GA-RBFNN) in WE-3 (L/s).
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Figure 9: Comparison of fitting value and prediction value with monitoring data (RBFNN and GA-RBFNN) in WE-3 (L/s).

Table 3: MSE and R of two models.

Model Forecast R
MSE

Fitting Forecast Total samples
RBFNN 0.924 1.23 0.28 0.78
GA-RBFNN 0.951 1.08 0.17 0.67

Table 4: Component proportion.

Model Water pressure (%) Temperature (%) Rainfall (%) Aging (%) Cracks (%)
Stepwise regression 23 10 54 8 5
RBFNN 21 11 55 5 8
GA-RBFNN 19 12 52 7 10
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3.5. Calculation of Monitoring Indexes. From December 11,
2000, to August 15, 2013, a total of 600 groups of seepage
monitoring data were processed by wavelet denoising.
Firstly, the inverse cloud generator is used to get the ste-
reotype concept C (Ex, En, and He) of denoising data, and
then, 600 cloud droplets satisfying the requirements are
generated according to Ex, En, and He forward cloud
models. According to the “3En rule,” the safe interval values
of CFRD’s seepage are obtained.)e cloud images are shown
in Figure 11. )e results are as follows:

(Ex, En, He) � (4.0194, 1.6926, 0.8917),

[Ex − 3En, Ex + 3En] � [−1.0584, 9.0971].
(31)

It can be seen from Figure 11 that when the monitoring
data of seepage are greater than 9.0971 L/s, component
analysis is needed to exclude the possibility of abrupt change
in measured value caused by structural variation.

4. Conclusions

Aiming at the problem that the traditional regression model
does not have good applicability to simulate the influence of
water level and rainfall in the early stage based on experi-
ence, the normal distribution curve is used to simulate the
lagging effect of water level and rainfall on seepage in this
paper. Considering the influence of face cracks on seepage,
the face crack is regarded as an influencing factor. A seepage
safety monitoring model of CFRD with cracks considering
the lagging effect is proposed. )e seepage monitoring
model is optimized by using GA-RBFNN, and the seepage is
predicted by using this model. )e prediction results are not
much different from the monitoring data, and the prediction
results obtained by the GA-RBFNN model are better than
those obtained by the traditional RBFNN model, which
shows that the prediction results proposed in this paper are
better than those obtained by the traditional method. )e
method has certain applicability. )rough the analysis of the
component proportion of each factor, it can be seen that the
rainfall component has the greatest influence on the total
seepage, accounting for 52%, which may be caused by the
distance between the weir and the dam site, and the rainfall
flowing into the weir through the mountain body; the crack
component accounts for about 10% of the total seepage, so
the influence of the crack component on the total seepage
flow cannot be ignored. Finally, through the cloud model,
the seepage monitoring index of the CFRD is worked out,

which has certain guiding significance for the treatment of
abnormal seepage monitoring data.

)e seepage safety monitoring model of CFRD with slab
cracks is based on monitoring data, and using the finite
element method to simulate and calculate the proportion of
each component is the future work. Analyzing the differ-
ences between the proposed model in this paper and FEM
model will be an interesting work.
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