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,is work presents the results of the global existence for fractional differential equations involving generalized Caputo derivative
with the case of the fractional order derivative α ∈ (1, 2). In addition, the Ulam–Hyers–Mittag-Leffler stability of the given
problems is also established.

1. Introduction

In recent years, there are a vast number of various concepts
for fractional integrals and derivatives, such as Rie-
mann–Liouville, Riesz, Grünwald–Letnikov, Hadamard,
and Caputo derivatives and/or integrals. One can notice that
most of the research results on the topics of fractional
differential equations involving Riemann–Liouville and
Hadamard fractional derivatives have been paid more and
more attention by a large number of mathematicians be-
cause of the interesting and their applications. For more
details on fractional calculus theory and interesting appli-
cations, one can see the monographs and the interesting
papers in [1–6] and the references cited therein. However,
both of the definitions of Hadamard and Riemann–Liouville
fractional derivatives have their own disadvantages as well;
one of which is that the derivative of a constant is not equal
to zero. ,en, to overcome the disadvantage of two types of
these fractional derivatives, the Caputo and Capu-
to–Hadamard fractional derivatives were proposed. In the
past decade, in [7, 8], Katagampola has proposed a new
generalized concept of the fractional derivative, the so-called
Caputo–Katugampola, that unifies the definitions of Caputo

and Caputo-Hadamard fractional derivatives into a single
form. ,e parameter family ρ of Caputo–Katugampola
fractional derivative, CD

α,ρ
a+ , of the noninteger order α allows

one to interpolate two types of the Caputo and Capu-
to–Hadamard fractional derivatives. Other approaches of
fractional operators based on using very general kernel
functions have been also proposed in [1, 9]. ,ese ap-
proaches relate to the various real data corresponding to
different complex systems requiring different kernel func-
tions. For more details, on Caputo–Katugampola fractional
derivative and interesting applications, one can see the
papers [1, 2, 10–15] and the references cited therein. Very
recently, the motivation behind the approach of Capu-
to–Katugampola fractional operator relates to the chaos
problems in fractional dynamical systems suggested in the
security of image encryption [16, 17] and in quantum
mechanics [12].

During the past two decades, a large number of math-
ematicians have paid great attention to the studies of the
concepts of Ulam’s stability because of its usefulness in many
applications such as numerical analysis and optimization,
where finding the exact solutions is quite difficult. In fact, it
is not easy to get exact solutions to most of the problems of
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fractional differential equations. ,erefore, it is vital to
develop the concepts of Ulam’s stability for these problems
because we need not obtain the exact solutions of the given
problems when we study the properties of Ulam’s stability.
,is theory helps us getting an efficient and reliable tech-
nique for approximately solving fractional differential
equations because there exists a close exact solution when
the given problem is Ulam stable. More details from his-
torical point of view and recent developments of such sta-
bilities are reported in [9, 17–30] and the references cited
therein. So, the motivation for the elaboration of this paper is
the investigation of some kinds of the Ulam–Hyers stability
for the following problem involving the concept of Capu-
to–Katugampola fractional derivative with the case of the
α ∈ (1, 2):

C
D

α,ρ
a+ ψ(t) � f(t,ψ(t)),

ψ(a) � ψ1,

ψ′(a) � ψ2,

t ∈ [a, b],

(1)

where α ∈ (1, 2), ρ> 0 is a real parameter,
f: [a, b] × Rd⟶ Rd is a nonlinear continuous function,
and CD

α,ρ
a+ is the Caputo–Katugampola fractional derivative.

Based on (1), the parameter ρ allows one to get the initial
value problem involving the Caputo fractional derivative if ρ
tends to 1, and the initial value problem with the concept of
Caputo–Hadamard fractional derivative if ρ tends to 0+. Our
aim in this paper is to discuss the global existence of so-
lutions of problem (1) by using Schauder’s and Weissinger’s
fixed point theorem. In addition, some kinds of the
Ulam–Hyers stability of problem (1) are also established.,e
rest of this paper is arranged as follows: some fundamental
theories of Caputo–Katugampola fractional calculus are
introduced in Section 2. Section 3 is devoted to discuss the
global existence of solutions of problem (1), and the stability
of problem (1) is presented in Section 4.

2. Fundamental Theorems of
Fractional Analysis

In this section, some definitions and basic results will be
briefly presented which will be used throughout the paper.
Let C([a, b],Rd) be the space of vector-valued continuous
functions ψ from [a, b]⟶ Rd endowed with the norm ψ0 �

supt∈[a.b]‖ψ(t)‖, where ‖·‖ is the vector norm in the d-di-
mensional Euclidean space. Denote by Cc([a, b],Rd) the
weighted space of continuous functions given by

Cc [a, b],R
d

􏼐 􏼑 � ψ: (a, b]⟶ R
d
:

tρ − aρ

ρ
􏼠 􏼡

c

ψ(t) ∈ C [a, b],R
d

􏼐 􏼑􏼨 􏼩, (2)

where c ∈ (0, 1].
Let α> 0, then the Riemann–Liouville generalized

fractional integral of ψ is defined by (see [7])

ψα,ρ(t) ≔ I
α,ρ
a+ ψ( 􏼁(t) �

ρ1− α

Γ(α)
􏽚

t

a
s
ρ− 1

t
ρ

− s
ρ

( 􏼁
α− 1ψ(s)ds.

(3)

Let α> 0, then the Riemann–Liouville generalized de-
rivative of ψ is defined by (see [7])

RL
D

α,ρ
a+ ψ􏼐 􏼑(t) � t

1− p d
dt

􏼠 􏼡

n

I
n− α,ρ
a+ ψ(t) �

ρα− n+1

Γ(n − α)
t
1− p d

dt
􏼠 􏼡

n

􏽚
t

a
s
ρ− 1

t
ρ

− s
ρ

( 􏼁
n− α− 1ψ(s)ds, t> a, (4)

where n � α.

Let α> 0, then the Caputo-generalized fractional de-
rivative of ψ denoted by (CD

α,ρ
a+ ψ) is defined by

C
D

α,ρ
a+ ψ􏼐 􏼑(t) �

RL
D

α,ρ
a+ ψ(t) − 􏽘

n− 1

k�0

tρ − aρ( )k

ρkk!
t
1− p d

dt
􏼠 􏼡

k

ψ(t)⎡⎣ ⎤⎦

t�a

⎡⎣ ⎤⎦.

(5)

By putting ψ(p,k)(t) ≔ (t1− p(d/dt))kψ(t), we have that

C
D

α,ρ
a+ ψ􏼐 􏼑(t) �

RL
D

α,ρ
a+ ψ(t) − 􏽘

n− 1

k�0

ψ(p,k)(a)

ρkk!

RL
D

α,ρ
a+ t

ρ
− a

ρ
( 􏼁

k

�
RL

D
α,ρ
a+ ψ(t) − 􏽘

n− 1

k�0

ψ(p,k)(a)

Γ(k − α + 1)

tρ − aρ

ρ
􏼠 􏼡

k− α

,

(6)

where ψ(ρ,k)(a) ≔ [(t1− p(d/dt))kψ(t)]t�a. If ψ ∈ Cn

([a, b],Rd), then we have that (see [7])
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C
D

α,ρ
a+ ψ􏼐 􏼑(t) �

ρα− n+1

Γ(n − α)
􏽚

t

a
s

(ρ− 1)(1− n)
t
ρ

− s
ρ

( 􏼁
n− α− 1dnψ

dsn
(s)ds, t≥ a. (7)

We observe that

ψα,ρ

�����

�����0
≔ sup

t∈[a,b]

ψα,ρ(t)
�����

�����≤ ‖ψ‖0
ρ1− α

Γ(α)
􏽚

t

a
s
ρ− 1

t
ρ

− s
ρ

( 􏼁
α− 1ds

≤
‖ψ‖0

ραΓ(α + 1)
b
ρ

− a
ρ

( 􏼁
α
.

(8)

Remark 1 (see [7]). Let α, β, ρ> 0, then the following
properties are satisfied:

(i) I
α,ρ
a+ (ψ + ξ)(t) � I

α,ρ
a+ ψ(t) + I

α,ρ
a+ ξ(t).

(ii) I
α,ρ
a+ I

β,ρ
a+ ψ(t) � I

(α+β),ρ
a+ ψ(t).

(iii) For 0< α< β, we have

RL
D

α,ρ
a+ I

α,ρ
a+ ψ􏼐 􏼑(t) � ψ(t), t ∈ (a, b],

RL
D

α,ρ
a+ I

β,ρ
a+ ψ􏼐 􏼑(t) � I

(β− α),ρ
a+ ψ􏼐 􏼑(t), t ∈ (a, b].

(9)

Remark 2. Let n − 1< α≤ n ∈ N and ψ(1− α),ρ ∈ Cn

([a, b],Rd), then we have, for t ∈ (a, b],

I
α,ρ
a+

RL
D

α,ρ
a+ ψ(t) � ψ(t) − 􏽘

n

k�1

ψ(n− k)
(n− α),ρ(a)

Γ(α − k + 1)

tρ − aρ

ρ
􏼠 􏼡

α− k

.

(10)

Remark 3. Let n − 1< α≤ n ∈ N and ψ ∈ Cn([a, b],Rd), then
we have that, for t ∈ (a, b],

( I
α,ρ
a+

C
D

α,ρ
a+ ψ􏼁(t) � ψ(t) − 􏽘

n− 1

k�0

ψ(p,k)(a)

k!

tρ − aρ

ρ
􏼠 􏼡

k

,

C
D

α,ρ
a+ I

α,ρ
a+ ψ)(t) � ψ(t),􏼐 (11)

where n � α.

Theorem 1 (see Theorem 8 in [10]). Let p(t), q(t) be two
integrable functions and r(t) be a continuous function on
[a, b]. Assume that p and q are nonnegative, and r is non-
negative and nondecreasing. If

p(t)≤ q(t) + r(t)ρ1− α
􏽚

t

a
s
ρ− 1

t
ρ

− s
ρ

( 􏼁
α− 1

p(s)ds, ∀t ∈ [a, b],

(12)

then

p(t)≤ q(t) + 􏽚
t

a
􏽘

∞

k�1

ρ1− kα(r(t)Γ(α))k

Γ(kα)
s
ρ− 1

· t
ρ

− s
ρ

( 􏼁
kα− 1

q(s)ds, ∀t ∈ [a, b].

(13)

Furthermore, if the function q is nondecreasing, then

p(t)≤ q(t)Eα,1 r(t)Γ(α)
tρ − aρ

ρ
􏼠 􏼡

α

􏼢 􏼣, ∀t ∈ [a, b].

(14)

,e existence and uniqueness results are proved
according to the following Schauder’s andWeissinger’s fixed
point theorem [31].

Theorem 2. Assume that (X, d) is a complete metric space,
and let S be a closed convex subset of X. Furthermore, let
P: S⟶ S be the map such that the set Px: x ∈ S{ } is rel-
atively compact in X. �en, the operator P has at least one
fixed point x∗ ∈ S such that Px∗ � x∗.

Theorem 3. Assume that (X, d) is a nonempty complete
metric space and let λn ≥ 0 for every n ∈ N0 such that the series
􏽐
∞
n�0λn converges. Furthermore, let the mapping P: X⟶ X

satisfy the inequality

d P
n
x,P

n
y( 􏼁≤ λnd(x, y), (15)

for every n ∈ N and for any x, y ∈ X. �en, the operator P has
a unique fixed point x0. Moreover, for any x∗ ∈ X, the se-
quence (Pnx∗)n≥ 1 converges to the fixed point x0.

3. The Existence andUniqueness of the Solution

In this section, we reconsider the following fractional dif-
ferential equations:

C
D

α,ρ
a+ ψ(t) � f(t,ψ(t)),

ψ(a) � ψ1,

ψ′(a) � ψ2,

t ∈ [a, b].

(16)

A function ψ: [a, b]⟶ Rd is said to be a solution of
problem (16); if ψ is continuous, ψ(a) � ψ1, ψ′(a) � ψ2, and
CD

α,ρ
a+ ψ(t) � f(t,ψ).

Theorem 4. Let the function f(t,ψ) belong to
Cc([a, b],Rd), where c ∈ [0, 1). �en, problem (16) is
equivalent to the fractional integral equation:
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ψ(t) � ψ0 +
tρ − aρ( )

ρ
ψ(ρ,1)

(a) +
1
Γ(α)

􏽚
t

a
s
ρ− 1 tρ − sρ

ρ
􏼠 􏼡

α− 1

f(s,ψ(s))ds, t ∈ [a, b], (17)

where ψ(ρ,1)(a) ≔ [(t1− pd/dt)ψ(t)]t�a.

Proof. Let ψ ∈ C1([a, b],Rd) be a solution of (16), then from
(16) and Remark 3 we have that, for α ∈ (1, 2),

( I
α,ρ
a+

C
D

α,ρ
a+ ψ􏼁(t) � ψ(t) − ψ(a) −

tρ − aρ( )

ρ
ψ(ρ,1)

(a), (18)

for t ∈ [a, b]. Because of the continuous hypotheses of the
function f and from (16), it yields that

I
α,ρ
a+

C
D

α,ρ
a+ ψ􏼐 􏼑(t) � I

α,ρ
a+ f(t,ψ(t)) �

1
Γ(α)

􏽚
t

a
s
ρ− 1

·
tρ − sρ

ρ
􏼠 􏼡

α− 1

f(s,ψ(s))ds, t ∈ (a, b].

(19)
Consequently, by (18) and (3) we get the necessity

condition. Conversely, let ψ ∈ C1([a, b],Rd) satisfy the in-
tegral equation (17). Using the continuity of f yields that
t⟼fα,ρ(t, u) ≔ I

α,ρ
a+ f(t, u) is continuous on (a, b] and

fα,ρ(a, u(a)) � limt⟶a+ fα,ρ(t, u) � 0. Indeed, it follows
from the hypothesis f ∈ Cc([a, b],Rd) that
((tρ − aρ)/ρ)cf(t, u) ∈ C([a, b],Rd) and, for all t ∈ (a, b],

there exists a positive constant C such that

tρ − aρ

ρ
􏼠 􏼡

c

f(t, u)

��������

��������
≤C, or f(t, u)≤C

tρ − aρ

ρ
􏼠 􏼡

− c

.

(20)
,is infers that

I
α,ρ
a+ f(t, u)

����
����≤ I

α,ρ
a+ ‖f(t, u)≤CI‖

α,ρ
a+

tρ − aρ

ρ
􏼠 􏼡

− c

� C
Γ(1 − c)

Γ(α − c + 1)

tρ − aρ

ρ
􏼠 􏼡

α− c

.

(21)

Taking the limit when t⟶ a+, we observe that the
right-hand side of (21) tends to 0. Furthermore, ψ(a) � ψ1
and ψ′(a) � ψ2. Next, by taking the Caputo–Katugampola
fractional derivative, RLD

α,ρ
a+ , on the two sides of (17) and by

Remark 1 one has that
C

D
α,ρ
a+ ψ(t) � f(t,ψ(t)), t ∈ (a, b]. (22)

□

In the below theorems, we will present the existence and
uniqueness of the local solution to problem (16) by using the
Schauder fixed point theorem. We set
I(t) ≔ ψ0 + ψ(ρ,1)(a)((tρ − aρ)/ρ). Let r> 0 be a given
constant, and define. Ω ≔ (t,ψ) ∈􏼈 [a, b] × C

([a, b],Rd): supt∈[a,b]||ψ(t) − I(t)||≤ r}.

Theorem 5. Let f: [a, b] × Rd⟶ Rd be a continuous
function and sup(t,ψ)∈Ω‖f(t,ψ)‖≤M. �en, problem (16) has
at least one solution on [a, b]. Furthermore, if the following
Lipschitz condition is held,

‖f(t,ψ) − f(t, ξ)‖≤L‖ψ − ξ‖, (23)

where L is a positive constant, then problem (16) has a unique
solution on [a, b].

Proof. Let

ΩT � ψ: ψ ∈ C [a, T],R
d

􏼐 􏼑, sup
t∈[a,T]

‖ψ(t) − I(t)‖≤ r􏼨 􏼩,

(24)

where

T � min b, r
ραΓ(1 + α)

M
􏼠 􏼡

1/α

+ a
ρ⎛⎝ ⎞⎠

1/ρ⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (25)

We observe that ΩT ⊆C([a, T],Rd) is nonempty,
bounded, closed, and convex subset. Define the operator
T : ΩT⟶ [ψ |ψ ∈ C([a, T],Rd)] by

(Tψ)(t) � I(t) +
1
Γ(α)

􏽚
t

a
s
ρ− 1 tρ − sρ

ρ
􏼠 􏼡

α− 1

f(s,ψ(s))ds.

(26)

,eproof of this theorem is divided into two steps. In the
first step, we shall prove that the operator T has at least one
fixed point by using Schauder’s fixed point principle and in
the second one we also verify that the operator T has a
unique solution by using Weissinger’s fixed point theorem.

Step 1. We shall show that the conditions of ,eorem 2 are
satisfied.

We show that TΩT ⊂ ΩT. For any ψ ∈ ΩT, we obtain

‖(Tψ)(t) − I(t)‖≤
1
Γ(α)

􏽚
t

a
s
ρ− 1 tρ − sρ

ρ
􏼠 􏼡

α− 1

‖f(s,ψ(s))‖ds

≤
M

Γ(α + 1)

tρ − aρ

ρ
􏼠 􏼡

α

≤ r.

(27)

On the other hand, let ψ, ψn ∈ ΩT such that ψn⟶ ψ in
C([a, T],Rd) as n⟶∞. By the continuity of the function f
one has f(t,ψn)⟶ f(t,ψ) in C([a, T],Rd) as n⟶∞.
Since

Tψn( 􏼁(t) − (Tψ)(t)
����

����≤
1
Γ(α)

􏽚
t

a
s
ρ− 1 tρ − sρ

ρ
􏼠 􏼡

α− 1

· sup
s∈[a,t]

f s,ψn(s)( 􏼁 − f(s,ψ(s))
����

����ds,

(28)

we have supt∈[a,T]‖(Tψn)(t) − (Tψ)(t)‖≤
(ρ− α/Γ(α + 1))(tρ − aρ)αsups∈[a,t]‖f(s,ψn(s)) − f(s,ψ(s))‖.
,en, (Tψn)(t) tends to (Tψ)(t) in ΩT as n⟶∞. ,is
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yields T is continuous. ,us, we infer that Tψ ∈ ΩT, for
ψ ∈ ΩT, i.e., TΩT⊆ΩT.

Next, we show that TΩT � (Tψ)(t): ψ ∈ ΩT􏼈 􏼉 is a rel-
atively compact set. For Tψ ∈ TΩT and t ∈ [a, T], since

‖(Tψ)(t)‖≤ ‖I(t)‖ +
M

Γ(α + 1)

tρ − aρ

ρ
􏼠 􏼡

α

≤ sup
t∈[a,T]

‖I(t)‖ + r,

(29)

we conclude that the set TΩT is uniformly boundedness.
Furthermore, for a≤ t1 ≤ t2 ≤T

(Tψ) t1( 􏼁 − (Tψ) t2( 􏼁 + I t2( 􏼁 − I t1( 􏼁
����

����≤
Mρ− α

Γ(α + 1)
t
ρ
2 − t

ρ
1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
α

+
Mρ− α

Γ(α + 1)
t
pα
2 − t

pα
1 | − |t

ρ
2 − t

ρ
1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
α

􏼐 􏼑≤
Mρ− α

Γ(α + 1)
t
ρ
2 − t

ρ
1( 􏼁

α
+ t

pα
2 − t

pα
1􏼐 􏼑􏼐 􏼑.

(30)

Applying the mean value theorem, one obtains

(Tψ) t1( 􏼁 − (Tψ) t2( 􏼁
����

����≤ t2 − t1( 􏼁τρ− 1
+

Mρ− α

Γ(α + 1)
τα(ρ− 1) t2 − t1

ρ
􏼠 􏼡

α

+ ατρα− 1 t2 − t1

ρ
􏼠 􏼡􏼠 􏼡, (31)

for some τ ∈ [t1, t2]⊆ [a, T]. ,erefore, if |t2 − t1|< δ, we
have

(Tψ) t1( 􏼁 − (Tψ) t2( 􏼁
����

����≤M
δτρ− 1

Γ(α + 1)
τα(ρ− 1)δα + ρ1− αατρα− 1δ􏼐 􏼑≤max a

ρ− 1
, T

ρ− 1
􏽮 􏽯δ +

M

Γ(α + 1)
max a

α(ρ− 1)
, T

α(ρ− 1)
􏽮 􏽯δα􏼐

+ ρ1− ααmax a
ρα− 1

, T
ρα− 1

􏽮 􏽯δ􏼑,

(32)

where a> 0, ρ> 0 is fixed, and α ∈ (1, 2). ,is shows that
TΩT is equicontinuous. Hence, by Arzela–Ascoli theorem
(see ,eorem 1.8 in [5]), this yields that TΩT is relatively
compact. So, according to the conditions of ,eorem 2, we
can conclude that the operator T has a fixed point.

Step 2. For the uniqueness of solution, we suppose that
ξ(·): [a, T]⟶ C([a, T],Rd) is another solution for
problem (16) on [a, T] and ξ(a) � ψ(a), ξ′(a) � ψ′(a).
,en, we obtain

‖(Tψ)(t) − (Tξ)(t)‖≤
L

Γ(α)
􏽚

t

a
s
ρ− 1 tρ − sρ

ρ
􏼠 􏼡

α− 1

‖ψ(s) − ξ(s)‖ds.

(33)

,us, it follows that

sup
t∈[a,T]

‖(Tψ)(t) − (Tξ)(t)‖ ≤
L

Γ(α + 1)

tρ − aρ

ρ
􏼠 􏼡

α

· sup
t∈[a,T]

‖ψ(s) − ξ(s)‖.

(34)

By the induction method, we will verify that

sup
t∈[a,T]

T
nψ( 􏼁(t) − T

nξ( 􏼁(t)
����

����≤
Ln

Γ(nα + 1)

tρ − aρ

ρ
􏼠 􏼡

nα

· sup
t∈[a,T]

‖ψ(t) − ξ(t)‖,

(35)

where

T
nψ( 􏼁(t) � I(t) +

1
Γ(α)

􏽚
t

a
s
ρ− 1 tρ − sρ

ρ
􏼠 􏼡

α− 1

· f s, T
n− 1ψ􏼐 􏼑(s)􏼐 􏼑ds,

(36)

for n ∈ N. Indeed, we assume that (35) is satisfied for the case
of (n − 1) ∈ N, and for n ∈ N, one has that
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sup
t∈[a,T]

T
nψ( 􏼁(t) − T

nξ( 􏼁(t)
����

���� � sup
t∈[a,T]

T T
n− 1ψ􏼐 􏼑􏼐 􏼑(t) − T T

n− 1ξ􏼐 􏼑􏼐􏼐 􏼑(t)
�����

�����

≤
L

Γ(α + 1)
􏽚

t

a
s
ρ− 1 tρ − sρ

ρ
􏼠 􏼡

α− 1

sup
s∈[a,T]

T
n− 1ψ􏼐 􏼑(s) − T

n− 1ξ􏼐 􏼑(s)
�����

�����ds

≤
ρ1− nαLn

Γ((n − 1)α + 1)
sup

t∈[a,T]

‖ψ(t) − ξ(t)‖
1
Γ(α + 1)

􏽚
t

a
s
ρ+ρα(n− 1)− 1

t
ρ

− s
ρ

( 􏼁
α− 1ds

�
Ln

Γ(nα + 1)

tρ − aρ

ρ
􏼠 􏼡

nα

sup
t∈[a,T]

‖ψ(t) − ξ(t)‖.

(37)

Setting Kn ≔ (Ln/Γ(nα + 1))((tρ − aρ)/ρ)nα, we observe
that the series 􏽐

∞
n�0Kn converges to the Mittag-Leffler

function Eα,1(L((tρ − aρ)/ρ)α). So, we can conclude that the
series Kn is convergent. Based on,eorem 3, the operator T
has a unique fixed point according to the conditions of
Weissinger’s fixed point theorem. □

Theorem 6. Assume that the function f: [a, b]× Rd⟶ Rd

is a continuous function and sup(t,ψ)∈Ω‖f(t,ψ)‖≤M. Let
ψ(t) be a solution of problem (16) on [a, β). If ψ(t) is bounded
on [η, β) for some η> a, then β � +∞.

Proof. ,is assertion will be divided into two steps. First of
all, we verify limt⟶β− ψ(t) exists. It means there exists
η ∈ (a, β) such that, for t ∈ (η, β), ‖ψ(t) − ψ∗‖< ε, for any
given ε> 0, i.e.,

lim
t⟶β−

ψ(t) � ψ∗. (38)

Since ψ(t) is bounded on [η, β), there exists a sequence
tk􏼈 􏼉 and a positive constant K> 0 such that tk < tk+1, k ∈ N,
limk⟶∞tk � β, and ‖ψ(tk)‖≤K. In addition, as ψ(tk)􏼈 􏼉 is a
bounded convergent subsequence, it follows that
limk⟶∞ψ(tk) � ψ∗. ,is implies that there exists k0 such
that tk0
> η, and for k≥ k0, we have

ψ tk( 􏼁 − ψ∗
����

����≤
ε
2
. (39)

If (38) is not true, then for k≥ k0, there exists τk ∈ (tk, β)

such that ‖ψ(τk) − ψ∗‖≥ ε and ‖ψ(t) − ψ∗‖< ε, t ∈ (tk, τk).

,en, from (39) and triangle inequality one has

ε≤ ψ tk( 􏼁 − ψ∗
����

���� + ψ τk( 􏼁 − ψ tk( 􏼁
����

����

≤
ε
2

+
ψ(ρ,1)(a)

ρ
τρk − t

ρ
k􏼐 􏼑

��������

��������
+

1
Γ(α)

􏽚
tk

a
s
ρ− 1 τρk − sρ

ρ
􏼠 􏼡

α− 1

−
t
ρ
k − sρ

ρ
􏼠 􏼡

α− 1
⎡⎣ ⎤⎦‖f(s,ψ(s))‖ds

+
1
Γ(α)

􏽚
τk

tk

s
ρ− 1 t

ρ
k − sρ

ρ
􏼠 􏼡

α− 1

‖f(s,ψ(s))‖ds

≤
ε
2

+
ψ(ρ,1)(a)

ρ
τρk − t

ρ
k􏼐 􏼑

��������

��������
+

M

ραΓ(α + 1)
τρk − t

ρ
k􏼐 􏼑

α
+ τpα

k − t
pα
k􏼐 􏼑􏼐 􏼑.

(40)

,en, for sufficiently large k≥ k0, we have

ε≤ ψ τk( 􏼁 − ψ∗
����

����<(ε/2) +(ε/2) � ε. (41)

,is implies the contradiction that limt⟶β− ψ(t) exists.
For the next step, we show that ψ(t) is continuable. Define
ψ(β) � limt⟶β− ψ(t). ,en, ψ(t) is continuous on [a, β].

Consider the operator T as follows:

(Tψ)(t) � I(t) +
1
Γ(α)

􏽚
β

a
s
ρ− 1 tρ − sρ

ρ
􏼠 􏼡

α− 1

f(s,ψ(s))ds

+
1
Γ(α)

􏽚
t

β
s
ρ− 1 tρ − sρ

ρ
􏼠 􏼡

α− 1

f(s,ψ(s))ds,

(42)
where ψ ∈ C([β, β + 1],Rd), t ∈ [β, β + 1]. As a result of
,eorem 5, since on the interval [a, β], equation (42)
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possesses a solution, and we can rewrite equation (42) as
follows:

(Tψ)(t) � ψ1(t) +
1
Γ(α)

􏽚
t

β
s
ρ− 1 tρ − sρ

ρ
􏼠 􏼡

α− 1

f(s,ψ(s))ds,

(43)

where

ψ1(t) � I(t) +
1
Γ(α)

􏽚
β

a
s
ρ− 1 tρ − sρ

ρ
􏼠 􏼡

α− 1

f(s,ψ(s))ds,

(44)

is the known function. Let Ω∗ � (t,ψ): β≤􏼈

t≤ β + 1, ||ψ||≤ supt∈[β,β+1]||ψ1(t)|| + ρ1}. Because of the
continuation of f on Ω∗, denote M∗ � max(t,ψ)∈Ω∗ ||f(t,ψ)||.

Again let

Ωh � ψ: ψ ∈ C [β, β + 1],R
d

􏼐 􏼑, sup
t∈[β,β+h]

ψ(t) − ψ1(t)
����

����
⎧⎨

⎩

≤ ρ1,ψ(β) � ψ1(β)􏼩,

(45)

where

h � min 1, ρ1
ραΓ(1 + α)

M∗
􏼠 􏼡

1/α

+ βρ⎛⎝ ⎞⎠

1/p⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (46)

By the same argument as in ,eorem 5, we show that T
has a fixed point. Let ψn􏼈 􏼉⊆C([β, β + h],Rd), such that
ψn⟶ ψ in C([β, β + h],Rd) as n⟶∞. By the continuity
hypothesis of the function f we have f(t,ψn)⟶ f(t,ψ) in
C([β, β + h],Rd) as n⟶∞. Since

Tψn( 􏼁(t) − (Tψ)(t)
����

����≤
hpα

ραΓ(α + 1)
sup

s∈[β,β+h]

f s,ψn(s)( 􏼁
����

− f(s,ψ(s))
����,

(47)
we have supt∈[β,β+h]‖(Tψn)(t) − (Tψ)(t)‖⟶ 0 as n⟶∞,
which yields that operator T is continuous. Next, it follows
that TΩh � (Tψ)(t): ψ ∈ Ωh􏼈 􏼉 is relatively compact. For
Tψ ∈ TΩh and t ∈ [β, β + h], we have

(Tψ)(t) − ψ1
����

����≤
M1 tρ − βρ( 􏼁

α

ραΓ(α + 1)
≤ ρ1. (48)

,us, TΩh ⊂ Ωh. Furthermore, for
ψ ∈ Ωh, β≤ t1 ≤ t2 ≤ β + h, one has

(Tψ) t1( 􏼁 − (Tψ) t2( 􏼁 + ψ1 t2( 􏼁 − ψ1 t1( 􏼁
����

����≤
ρ1− α

Γ(α)
􏽚

t1

β
s
ρ− 1

t
ρ
2 − s

ρ
( 􏼁

α− 1
− t

ρ
1 − s

ρ
( 􏼁

α− 1
􏼐 􏼑‖f(s,ψ(s))‖ds

+
ρ1− α

Γ(α)
􏽚

t2

t1

s
ρ− 1

t
ρ
2 − s

ρ
( 􏼁

α− 1
‖f(s,ψ(s))‖ds

≤
M∗ρ− α

Γ(α + 1)
t
ρ
2 − t

ρ
1( 􏼁

α
+ t

pα
2 − t

pα
1􏼐 􏼑􏼐 􏼑.

(49)

With the same argument as in the proof of ,eorem 5, since
ψ1(t) is continuous on [β, β + 1], it follows that TΩh is
equicontinuous. Hence, by Arzela–Ascoli theorem, we deduce
that TΩh is relatively compact. ,erefore, by the Schauder’s
fixed point theorem, operator T has a fixed point 􏽢ψ(t) ∈ Ωh, i.e.,

􏽢ψ(t) � ψ1(t) +
1
Γ(α)

􏽚
t

β
s
ρ− 1 tρ − sρ

ρ
􏼠 􏼡

α− 1

f(s, 􏽢ψ(s))ds

� I(t) +
1
Γ(α)

􏽚
t

a
s
ρ− 1 tρ − sρ

ρ
􏼠 􏼡

α− 1

f(s, 􏽢ψ(s))ds,

(50)
t ∈ [β, β + h], where

􏽢ψ(t) �
ψ(t), t ∈ (a, β],

􏽢ψ(t), t ∈ [β, β + h].
􏼨 (51)

According to ,eorem 4, we conclude that 􏽢ψ(t) is a
solution of problem (16) on (a, β + h]. By the assumption of
this theorem again, it follows that ψ(t) can be extended
beyond β. So, the solution of problem (16) exists on [a,∞)

and so β � +∞. □

Theorem 7. Let f: [a, +∞)Rd⟶ Rd be a continuous
function and there exists a continuous function
q(t): [a, +∞)⟶ [0, +∞) such that ||f(t,ψ)||≤
M||ψ|| + q(t), where M> 0 is a constant. �en, problem (16)
has at least one solution on [a, +∞). Furthermore, if the
following Lipschitz condition is satisfied,

‖f(t,ψ) − f(t, ξ)‖≤ L‖ψ − ξ‖, ∀t ∈ [a, +∞), (52)

then problem (16) has a unique solution on [a, +∞).

Proof. It follows from the assertion of ,eorem 5 that
there exists a solution ψ(t) of problem (16). By ,eorem 4,
ψ(t) satisfies the following integral equation

ψ(t) � ψ0 +
tρ − aρ( )

ρ
ψ(ρ,1)

(a) +
1
Γ(α)

􏽚
t

a
s
ρ− 1 tρ − sρ

ρ
􏼠 􏼡

α− 1

· f(s,ψ(s))ds.

(53)

Step 3 (the existence of solution). Suppose that the solution
ψ admits a maximal existence interval, denoted by [a, β)
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(β< +∞). By the condition of the function f, one has the
estimate

‖ψ(t)‖≤ ψ0 +
ψ(ρ,1)(a)

ρ
t
ρ

− a
ρ

( 􏼁

��������

��������
+

1
Γ(α)

􏽚
t

a
s
ρ− 1

·
tρ − sρ

ρ
􏼠 􏼡

α− 1

(M‖ψ(s)‖ + q(s))ds.

(54)

By putting v(t) � ‖ψ0 + (ψ(ρ,1)(a)/ρ)

(tρ − aρ)‖ + (ρ1− α/Γ(α)) 􏽒
t

a
sρ− 1(tρ − sρ)α− 1q(s)ds., then

(54) leads to

‖ψ(t)‖≤ v(t) +
Mρ1− α

Γ(α)
􏽚

t

a
s
ρ− 1

t
ρ

− s
ρ

( 􏼁
α− 1

‖ψ(s)‖ds.

(55)

We now prove that w(t) ≔ ||ψ(t)|| is bounded on [a, β).
Define the functional

Fw(t) �
Mρ1− α

Γ(α)
􏽚

t

a
s
ρ− 1

t
ρ

− s
ρ

( 􏼁
α− 1

w(s)ds. (56)

,en, one has that w(t)≤ v(t) + Fw(t), and by iterating
consecutively, we also obtain for n ∈ N,

w(t)≤ 􏽘
n− 1

i�0
F

i
v(t) + F

n
w(t). (57)

In addition, by mathematical induction and v(t) > 0 for
t ∈ [a, β), then (56) leads to the following estimation:

F
i
v(t)≤

Mi

Γ(iα)
􏽚

t

a
s
ρ− 1 tρ − sρ

ρ
􏼠 􏼡

iα− 1

v(s)ds, i ∈ N.

(58)

Indeed, for i � 1, (58) is obvious. If (58) is valid for i ∈ N,
then by using Dirichlet’s formula, we obtain

F
i+1

v(t) � FF
i
v(t)≤

Mρ1− α

Γ(α)
􏽚

t

a
s
ρ− 1

t
ρ

− s
ρ

( 􏼁
α− 1 Mi

Γ(iα)
􏽚

s

a
τp− 1 sρ − τρ

ρ
􏼠 􏼡

iα− 1

v(τ)dτ⎛⎝ ⎞⎠ds

�
Mi+1ρ2− (i+1)α

Γ(α)Γ(iα)
􏽚

t

a
􏽚

s

a
s
ρ− 1

t
ρ

− s
ρ

( 􏼁
α− 1τp− 1

s
ρ

− τρ( 􏼁
iα− 1

v(τ)dτds

�
Mi+1ρ2− (i+1)α

Γ(α)Γ(iα)
􏽚

t

a
s
ρ− 1

v(s) 􏽚
t

s
τp− 1

t
ρ

− τρ( 􏼁
α− 1 τρ − s

ρ
( 􏼁

iα− 1dτds.

(59)

With the change of variables z � (sρ − aρ)/(tρ − aρ), we
obtain

F
i+1

v(t)≤
Mi+1

Γ(iα + α)
􏽚

t

a
s
ρ− 1 tρ − sρ

ρ
􏼠 􏼡

(i+1)α− 1

v(s)ds.

(60)

,us, (58) is valid for i + 1. Besides, we observe that
Fnw(t)⟶ 0 as n⟶∞. Hence, from (57), we have

w(t)≤ 􏽘
∞

i�0
F

i
v(t)≤ v(t) + 􏽚

t

a
􏽘

∞

i�1

Mi

Γ(iα)
s
ρ− 1 tρ − sρ

ρ
􏼠 􏼡

iα− 1

v(s)ds.

(61)

Furthermore, if the function v is nondecreasing, then for
all s ∈ [a, t], we have v(s)≤ v(t) and so

w(t)≤ v(t) 1 + 􏽘
∞

i�1

Mi

Γ(iα)
􏽚

t

a
s
ρ− 1 tρ − sρ

ρ
􏼠 􏼡

iα− 1

ds⎡⎣ ⎤⎦

� v(t)Eα,1 M
tρ − aρ

ρ
􏼠 􏼡

α

􏼠 􏼡.

(62)

,erefore, we deduce that ψ(t) is bounded on [a, β). It
follows from ,eorem 6 that the solution ψ(t) can be ex-
tended to the right side of β. ,is obviously contradicts the
assumption that [a, β) is the maximal existence interval.,is
consequently implies that β � +∞.

Step 4 (the uniqueness of solution). By the Lipschitz con-
dition and inequality (62) the uniqueness of solution can be
proved. Indeed, let us assume that ξ(t) is another solution
for problem (16) and ξ(a) � ψ(a), ξ′(a) � ψ′(a). ,en, one
has that

‖ψ(t) − ξ(t)‖≤ ψ0(t) − ξ0(t)
����

���� +
L

Γ(α)
􏽚

t

a
s
ρ− 1 tρ − sρ

ρ
􏼠 􏼡

α− 1

· ‖ψ(s) − ξ(s)‖ds,

(63)

where ψ0(t) ≔ ψ(a) + ψ(ρ,1)(a)((tρ − aρ)/ρ). Define k(t) �

||ψ(t) − ξ(t)||, and note that since ξ(a) �

ψ(a), ξ′(a) � ψ′(a), we have ‖ψ0(t) − ξ0(t)‖ � 0. Applying
,eorem 1, we get k(t)≤ 0. ,is implies that ψ(t) � ξ(t),

which completes the proof.

4. The Stability of Problem (16)

In the sequel, some kinds of the Ulam–Hyers–Mittag-Leffler
stability for problem (16) will be investigated. Denote
J ≔ [a, b]. Let α ∈ (1, 2), ρ> 0, ε> 0, and φ ∈ C([a, b],R+).
We consider the inequalities as follows:

����
C

D
α,ρ
a+ ξ(t) − f(t, ξ(t))

����≤ ε, (64)

����
C

D
α,ρ
a+ ξ(t) − f(t, ξ(t))

����≤ εφ(t). (65)
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Remark 4. From inequalities (64) and (65), we observe that

(i) If a function ξ is a solution of (64), then there exists a
function δ1 ∈ C(J,Rd) such that ‖δ1‖≤ ε, for all
t ∈ J, and CD

α,ρ
a+ ξ(t) � f(t, ξ(t)) + δ1(t)

(ii) If a function ξ is a solution of (65), then there exists a
function δ2 ∈ C(J,Rd) such that ‖δ2‖≤ εφ(t), for all
t ∈ J, and CD

α,ρ
a+ ξ(t) � f(t, ξ(t)) + δ2(t)

Definition 1. Let βf ≥ 0. roblem (16) is said to be

(i) Ulam–Hyers–Mittag-Leffler stable if there is a con-
stant Cf > 0 such that, for each ε> 0 and for each
solution ξ of (64), there exists a solution ψ of problem
(16) satisfying the estimate

‖ψ(t) − ξ(t)‖≤ εCfEα,1 βf

tρ − aρ

ρ
􏼠 􏼡

α

􏼠 􏼡, t ∈ [a, b].

(66)

(ii) Ulam–Hyers–Rassias–Mittag-Leffler stable with re-
spect to (φ, η) if there is a constant Cφ > 0 such that,
for each ε> 0 and for each solution ξ of (65), there
exists a solution ψ of problem (16) satisfying the
estimate

‖ψ(t) − ξ(t)‖≤ εCf,φEα,1 βf

tρ − aρ

ρ
􏼠 􏼡

α

􏼠 􏼡(φ(t) + η), t ∈ [a, b].

(67)

In the following theorem, the Ulam–Hyers–Mittag-
Leffler stability for problem (16) is presented.

Theorem 8. Let f: J × Rd⟶ Rd be a continuous function
which satisfies the assumption as follows. �ere exists a
positive constant L such that, for all w, z ∈ Rd, one has

‖f(t, w) − f(t, z)‖≤L‖w − z‖. (68)

,en, we have the following assertions:

(A1) For every ε> 0, if a function ξ satisfies (64) for all
t ∈ J, then there exists a unique solution ψ of problem
(16) with initial conditions ψ(a) �

ξ(a), ψ′(a) � ξ′(a), which satisfies

‖ψ(t) − ξ(t)‖≤
ε
L

Eα,1 L
tρ − aρ

ρ
􏼠 􏼡

α

􏼠 􏼡, ∀t ∈ J. (69)

Furthermore, this yields that problem (16) is
Ulam–Hyers–Mittag-Leffler stable.

(A2) Assume that the following hypothesis holds: Let
φ: J⟶ R+ in the inequality (65) be a nondecreasing
function for all t ∈ J. We assume that there exists a
positive constant Kφ which satisfies KφL< 1, and for
t ∈ J,

ρ1− α

Γ(α)
􏽚

t

a
s
ρ− 1

t
ρ

− s
ρ

( 􏼁
α− 1φ(s)ds≤Kφφ(t). (70)

,en, for every ε> 0, if a function ξ satisfies (65), for all
t ∈ J, there exists a unique solution ψ of problem (16) with
initial conditions ψ(a) � ξ(a), ψ′(a) � ξ′(a), and problem
(16) is Ulam–Hyers–Rassias–Mittag-Leffler stable.

Proof. In the view of Remark 4 and ,eorem 4, we notice
that if functions ξ and 􏽢ξ satisfy inequalities (64) and (65),
respectively, then there exists δ1(t), δ2(t) ∈ C(J,Rd), re-
spectively, such that ξ(a) � ψ(a), 􏽢ξ(a) � ψ(a), ξ′
(a) � ψ′(a), and 􏽢ξ′(a) � ψ′(a), and for t ∈ (a, b],

ξ(t) − ξ(a) −
tρ − aρ( )

ρ
ξ(ρ,1)

(a) �
1
Γ(α)

􏽚
t

a
s
ρ− 1 tρ − sρ

ρ
􏼠 􏼡

α− 1

f(s, ξ(s)) + δ1(s)􏼂 􏼃ds, (71)

􏽢ξ(t) − 􏽢ξ(a) −
tρ − aρ( )

ρ
􏽢ξ

(ρ,1)
(a) �

1
Γ(α)

􏽚
t

a
s
ρ− 1 tρ − sρ

ρ
􏼠 􏼡

α− 1

f(s, 􏽢ξ(s)) + δ2(s)􏽨 􏽩ds, (72)

respectively, where ‖δ1(t)‖≤ ε and ||δ2(t)||≤ εφ(t). To show
the results of this theorem, the method of successive ap-
proximations will be used.

Prove the assertion (A1): we define
ψ0(t) � ξ(t), t ∈ [a, b], and we consider the sequence
ψn􏼈 􏼉n≥ 1 ∈ C(J,Rd) which is defined as follows:

ψn(t) − ξ(a) −
tρ − aρ( )

ρ
ξ(ρ,1)

(a) �
ρ1− α

Γ(α)
􏽚

t

a
s
ρ− 1 tρ − sρ

ρ
􏼠 􏼡

α− 1

f s,ψn− 1(s)( 􏼁ds, ∀t ∈ J. (73)
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By the abovementioned definition of successive ap-
proximations, for n � 1 and from (71), one has

ψ1(t) − ψ0(t)
����

���� � ψ1(t) − ξ(a) −
tρ − aρ( )

ρ
ξ(ρ,1)

(a)􏼠 􏼡

��������

− ξ(t) − ξ(a) −
tρ − aρ( )

ρ
ξ(ρ,1)

(a)􏼠 􏼡

��������

≤
ρ1− α

Γ(α)
􏽚

t

a
s
ρ− 1 tρ − sρ

ρ
􏼠 􏼡

α− 1

δ1(s)ds

≤ ε
tρ − aρ( )α

ραΓ(α + 1)
.

(74)

By the Lipschitz condition of the function f, for any t ∈ J

and n � 2, 3, 4, . . ., one has

ψn(t) − ψn− 1(t)
����

���� � ψn(t) − ξ(a) −
tρ − aρ( )

ρ
ξ(ρ,1)

(a)􏼠 􏼡

��������

− ψn− 1(t) − ξ(a) −
tρ − aρ( )

ρ
ξ(ρ,1)

(a)􏼠 􏼡

��������

≤
Lρ1− α

Γ(α)
􏽚

t

a
s
ρ− 1

t
ρ

− s
ρ

( 􏼁
α− 1

· ψn− 1(s) − ψn− 2(s)
����

����ds.

(75)

So, from (74) and for n � 2, one obtains

ψ2(t) − ψ1(t)
����

����≤
ε
L

L2 tρ − aρ( )2α

ρ2αΓ(2α + 1)
, (76)

and for n � 3, we also obtain

ψ3(t) − ψ2(t)
����

����≤
ε
L

L3 tρ − aρ( )3α

ρ3αΓ(3α + 1)
. (77)

By using the mathematical induction method, for n≥ 4,
we have

ψn(t) − ψn− 1(t)
����

����≤
ε
L

Ln tρ − aρ( )nα

ρnαΓ(nα + 1)
. (78)

Now, if we assume that (78) holds for n � k, then by (4)
one obtains

ψk+1(t) − ψk(t)
����

����≤
L

Γ(α)
􏽚

t

a
s
ρ− 1 tρ − sρ

ρ
􏼠 􏼡

α− 1

· ψk(s) − ψk− 1(s)
����

����ds

≤
Lρ1− α

Γ(α)
􏽚

t

a
s
ρ− 1

t
ρ

− s
ρ

( 􏼁
α− 1 ε

L

Lk sρ − aρ( )kα

ρkαΓ(kα + 1)
ds

≤
ε
L

Lk+1

Γ((k + 1)α + 1)

tρ − aρ

ρ
􏼠 􏼡

(k+1)α

.

(79)

which is the inequality (78) for n � k + 1. ,is yields that the
inequality (78) is satisfied for all n≥ 1. ,en, one has

􏽘

∞

n�1
ψn(t) − ψn− 1(t)

����
����≤

ε
L

􏽘

∞

n�1

L tρ − aρ( )α[ ]
n

ραnΓ(nα + 1)
≤
ε
L

Eα,1 L
tρ − aρ

ρ
􏼠 􏼡

α

􏼠 􏼡 − 1􏼢 􏼣. (80)

Since the series of the right-hand side of the above in-
equality is convergent to

ε
L

Eα,1 L
tρ − aρ

ρ
􏼠 􏼡

α

􏼠 􏼡 − 1􏼢 􏼣, (81)

that is,

􏽘

∞

n�1
ψn(t) − ψn− 1(t)

����
����≤

ε
L

Eα,1 L
tρ − aρ

ρ
􏼠 􏼡

α

􏼠 􏼡 − 1􏼢 􏼣. (82)

,is yields that the series ψ0(t) + 􏽐
∞
n�1[ψn(t) − ψn− 1(t)]

is uniformly convergent on J with respect to the norm ‖·‖.
Now, assume that

ψ(t) � ψ0(t) + 􏽘
∞

n�1
ψn(t) − ψn− 1(t)􏼂 􏼃. (83)

,en, we take ψk(t) which is the kth partial of series (83)
of the form

ψk(t) � ψ0(t) + 􏽘

k

n�1
ψn(t) − ψn− 1(t)􏼂 􏼃, ∀t ∈ J. (84)

By (83) and (84), we notice

lim
k⟶∞

ψk(t) − ψ(t)
����

���� � 0, ∀t ∈ J. (85)

Set ψ(t) � ψ(t) for t ∈ J. We prove that the limit
function ψ is a solution of the following integral equation on
J:

ψ(t) − ξ(a) −
tρ − aρ( )

ρ
ξ(ρ,1)

(a) �
ρ1− α

Γ(α)
􏽚

t

a
s
ρ− 1

t
ρ

− s
ρ

( 􏼁
α− 1

f(s,ψ(s))ds. (86)
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By using definition of successive approximation for any
t ∈ J and by the Lipschitz condition of f, we have

ψ(t) − ξ(a) −
tρ − aρ( )

ρ
ξ(ρ,1)

(a) −
ρ1− α

Γ(α)
􏽚

t

a
s
ρ− 1

t
ρ

− s
ρ

( 􏼁
α− 1

f(s,ψ(s))ds

��������

��������

≤ ψ(t) − ψk(t) +
ρ1− α

Γ(α)
􏽚

t

a
s
ρ− 1

t
ρ

− s
ρ

( 􏼁
α− 1

f s,ψk− 1(s)( 􏼁ds −
ρ1− α

Γ(α)
􏽚

t

a
s
ρ− 1

t
ρ

− s
ρ

( 􏼁
α− 1

f(s,ψ(s))ds

��������

��������

≤ ψ(t) − ψk(t)
����

���� +
Lρ1− α

Γ(α)
􏽚

t

a
s
ρ− 1

t
ρ

− s
ρ

( 􏼁
α− 1 ψ(s) − ψk− 1(s)

����
����ds.

(87)

On the other hand, (83) and (84) yield

ψ(t) − ψk(t)
����

���� � 􏽘
∞

n�k+1
ψn(t) − ψn− 1(t)􏼂 􏼃

���������

���������

≤ 􏽘

∞

n�k+1
ψn(t) − ψn− 1(t)

����
����.

(88)

,erefore, we obtain for t ∈ J

ψ(t) − ψk(t)
����

���� � ψ(t) − ψk(t)
����

����≤
ε
L

􏽘

∞

n�k+1

L tρ − aρ( )α[ ]
n

ραnΓ(nα + 1)
.

(89)

So, it follows from (87) that, for t ∈ J,

ψ(t) − ξ(a) −
tρ − aρ( )

ρ
ξ(ρ,1)

(a) −
ρ1− α

Γ(α)
􏽚

t

a
s
ρ− 1 tρ − sρ

ρ
􏼠 􏼡

α− 1

f(s,ψ(s))ds

���������

���������

≤
ε
L

􏽘

∞

n�k+1

L tρ − aρ( )α[ ]
n

ραnΓ(nα + 1)
+
ε
L

L

Γ(α)
􏽚

t

a
s
ρ− 1

t
ρ

− s
ρ

( 􏼁
α− 1

􏽘

∞

n�k+1

L sρ − aρ( )α[ ]
n

ραnΓ(nα + 1)
ds

�
ε
L

􏽘

∞

n�k+1

L tρ − aρ( )α[ ]
n

ραnΓ(nα + 1)
+
ε
L

􏽘

∞

n�k+1

L tρ − aρ( )α[ ]
n+1

ρα(n+1)Γ((n + 1)α + 1)
.

(90)

,en, by taking limit k⟶∞, the right-hand side of
(90) tends to 0. ,is yields (86) is a solution of problem (16)
with initial conditions ψ(a) � ξ(a), ψ′(a) � ξ′(a). In

addition, from (82) and (83), we also get the following es-
timation between the solution of problem (16) ψ(t) and the
solution of inequality (64):

‖ψ(t) − ξ(t)‖≤
ε
L

Eα,1 L
tρ − aρ

ρ
􏼠 􏼡

α

􏼠 􏼡 − 1􏼢 􏼣≤
ε
L

Eα,1 L
tρ − aρ

ρ
􏼠 􏼡

α

􏼠 􏼡, ∀t ∈ J. (91)

,en, by Definition 1-(i) we can deduce problem (16) is
Ulam–Hyers–Mittag-Leffler stable, where Cf ≔ 1/L and
βf ≔ L.

Prove the assertion (A2): similar to the proof of the assertion
(I), we also consider the sequence ψn􏼈 􏼉n≥ 0 ∈ C([a, b],Rd)

given by ψ0(t) � 􏽢ξ(t), t ∈ [a, b], and for n≥ 1,

ψn(t) − 􏽢ξ(a) −
tρ − aρ( )

ρ
􏽢ξ

(ρ,1)
(a) �

ρ1− α

Γ(α)
􏽚

t

a
s
ρ− 1

t
ρ

− s
ρ

( 􏼁
α− 1

f s,ψn− 1(s)( 􏼁ds, ∀t ∈ [a, b]. (92)
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By similar processing as the case of (A1), we get for n≥ 1
and for t ∈ J,

ψn(t) − ψn− 1(t)
����

����≤
ε
L

KφL􏼐 􏼑
n
φ(t). (93)

In order to check the validity of (93), for n � 1, from (72)
and by using the definition of successive approximations
(92), one obtains

ψ1(t) − ψ0(t)
����

���� � ψ1(t) − 􏽢ξ(a) −
tρ − aρ( )

ρ
􏽢ξ

(ρ,1)
(a)􏼠 􏼡 − 􏽢ξ(t) − 􏽢ξ(a) −

tρ − aρ( )

ρ
􏽢ξ

(ρ,1)
(a)􏼠 􏼡

��������

��������

≤
ρ1− α

Γ(α)
􏽚

t

a
s
ρ− 1

t
ρ

− s
ρ

( 􏼁
α− 1 δ2(s)

����
����ds

≤ εKφφ(t).

(94)

Suppose that (93) is true for n � k ∈ N, that is,

ψk(t) − ψk− 1(t)
����

����≤
ε
L

KφL􏼐 􏼑
k
φ(t). (95)

,en, by the Lipschitz condition of f and the hypothesis
of the assertion (A2), we obtain

ψk+1(t) − ψk(t)
����

���� � ψk+1(t) − 􏽢ξ(a) −
tρ − aρ( )

ρ
􏽢ξ

(ρ,1)
(a)􏼠 􏼡 − ψk(t) − 􏽢ξ(a) −

tρ − aρ( )

ρ
􏽢ξ

(ρ,1)
(a)􏼠 􏼡

��������

��������

≤
Lρ1− α

Γ(α)
􏽚

t

a
s
ρ− 1

t
ρ

− s
ρ

( 􏼁
α− 1 ψk(s) − ψk− 1(s)

����
����ds

≤
Lρ1− α

Γ(α)
􏽚

t

a
s
ρ− 1

t
ρ

− s
p

( 􏼁
α− 1 ε

L
KφL􏼐 􏼑

k
φ(s)ds

≤
ε
L

KφL􏼐 􏼑
k+1

φ(t).

(96)

,is proves inequality (93) is valid for all n≥ 1. On the
other hand, by the hypothesis KφL ∈ (0, 1) and from (93) we
have that, for t ∈ J,

􏽘

∞

n�1
ψn(t) − ψn− 1(t)

����
����≤ εφ(t) 􏽘

∞

n�1
KφL􏼐 􏼑

n
≤ ε

Kφ

1 − KφL
φ(t).

(97)

Since the function φ(t) is continuous on J, it is bounded.
So, inequality (97) yields that the series ψ0(t) + 􏽐

∞
n�1[ψn(t) −

ψn− 1(t)] is absolutely and uniformly convergent on J with
respect to the distance ‖ · ‖. ,erefore, we set, for t ∈ J,

ψ(t) � ψ0(t) + 􏽘
∞

n�0
ψn+1(t) − ψn(t)􏼂 􏼃. (98)

,en, similar to the proof of (A1) we also get the esti-
mation between the solution of problem (16) ψ(t) and the
solution of inequality (65) 􏽢ξ(t) as follows:

‖ψ(t) − 􏽢ξ(t)‖≤ ε
Kφ

1 − KφL
φ(t), t ∈ [a, b]. (99)

Taking the integral I
α,ρ
a+ on [a, b] of the order α ∈ (1, 2)

on both sides of (99) and using hypothesis (H3), one obtains

p1− α

Γ(α)
􏽚

t

a
s
ρ− 1

t
ρ

− s
ρ

( 􏼁
α− 1

‖ψ(s) − ξ(s)‖ds≤ ε
Kφ

1 − KφL

ρ1− α

Γ(α)
􏽚

t

a
s
ρ− 1

t
ρ

− s
ρ

( 􏼁
α− 1φ(s)ds

≤ ε
K2

φ

1 − KφL
φ(t).

(100)
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,is yields that

‖ψ(t) − ξ(t)‖ +
ρ1− α

Γ(α)
􏽚

t

a
s
ρ− 1

t
ρ

− s
ρ

( 􏼁
α− 1

‖ψ(s) − ξ(s)‖ds

≤ ε
Kφ + K2

φ

1 − KφL
φ(t).

(101)

,erefore, we have

‖ψ(t) − ξ(t)‖≤ ε
Kφ + K2

φ

1 − KφL
φ(t) +

ρ1− α

Γ(α)
􏽚

t

a
s
ρ− 1

t
ρ

− s
ρ

( 􏼁
α− 1

· ‖ψ(s) − ξ(s)‖ds.

(102)

Set p(t) � ‖ψ(t) − ξ(t)‖, q(t) � εKφ + K2
φ/1 − KφLφ(t),

r(t) � 1/(Γ(α)). ,en, equation (102) becomes

p(t)≤ q(t) + r(t)ρ1− α
􏽚

t

a
s
ρ− 1

t
ρ

− s
ρ

( 􏼁
α− 1

p(s)ds. (103)

By using the Gronwall inequality in 1, (103) yields that

p(t)≤ q(t) + 􏽚
t

a
􏽘

∞

i�1

(r(t)Γ(α))i

Γ(iα)
s
ρ− 1

t
ρ

− s
ρ

( 􏼁
iα− 1

q(s)ds.

(104)

Furthermore, since the function q(t) is nondecreasing
on [a, b], we obtain

p(t)≤ q(t)Eα,1 r(t)Γ(α)
tρ − aρ

ρ
􏼠 􏼡

α

􏼠 􏼡. (105)

Consequently, we obtain

‖ψ(t) − ξ(t)‖≤ ε
Kφ + K2

φ

1 − KφL
φ(t)Eα,1

tρ − aρ

ρ
􏼠 􏼡

α

􏼠 􏼡, ∀t ∈ [a, b].

(106)

,en, by Definition 1-(iii) we can deduce problem (16) is
Ulam–Hyers–Rassias–Mittag-Leffler stable, where
Cf,φ ≔ (Kφ + K2

φ/1 − KφL)(φ(t)) and βf ≔ 1. □

5. Conclusion

In this work, the global existence and uniqueness of the
solution to the Caputo-generalized fractional differential
equation are investigated. We discussed the stability in
various Ulam–Hyers–Mittag-Leffler’s types via the succes-
sive approximation method.
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