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In this paper, zero prime factorizations for matrices over a unique factorization domain are studied. We prove that zero prime
factorizations for a class of matrices exist. Also, we give an algorithm to directly compute zero left prime factorizations for this
class of matrices.

1. Introduction

Multidimensional linear systems theory has a wide range of
applications in circuits, systems, control of networked sys-
tems, signal processing, and other areas (see, e.g., [1, 2]).
Multivariate polynomial matrix theory is a well-established
tool for these systems, since many problems in the analysis
and synthesis of control systems can be well solved using
multivariate polynomial matrix techniques [1–3].

In recent years, n-D polynomial matrix factorizations have
been widely studied [4–10]. In [11, 12], the zero left prime
factorization problemwas raised.-is problem has been solved
in [4–6]. -e minor left prime factorization problem has been
solved in [7, 10]. In the algorithms given in [7, 10], a fitting ideal
of some module over the multivariate (n-D) polynomial ring
needs to be computed. It is a little complicated.

It is well known that a multivariate polynomial ring over
a field is a unique factorization domain. -en, the following
problem is interesting.

Problem 1. How to decide if a matrix with full row rank over a
unique factorization domain has a zero left prime factorization?

In this paper, we will give a partial solution to this problem.

2. Preliminaries

Let R be a unique factorization domain. -e set of all l × m

matrices with entries from R is denoted by Rl×m. Let

F ∈ Rl×m(l<m). We denote the greatest common divisor of
all l × l minors of F by d(F). Let C ∈ Rl×l be a submatrix of F.
By deleting C from F, we get a submatrix of F. -is sub-
matrix is denoted by F\C.

Let C ∈ Rm×m. adj(C) denotes the adjoint matrix of C.
acof ij(C) denotes the i, jth algebraic cofactor of C.

Definition 1. Let F ∈ Rl×m(l<m), and let C ∈ Rl×l be a
submatrix of F. A minor of F consisting of l − 1 columns
from C and one column from F\C is said to be a related
minor of C.

-e following definition is from the multidimensional
systems theory [13].

Definition 2. Let F ∈ Rl×m be of full row rank.-en, F is said
to be zero left prime (ZLP) if the l × l minors of F generate
the unit ideal R. Suppose F has a factorization F � CF1,
where C ∈ Rl×l andF1 ∈ Rl×m. If F1 is ZLP, then this fac-
torization is said to be a zero left prime factorization.

3. Main Results

First, we need a lemma.

Lemma 1. Let F � (C, C) ∈ Rl×m(l<m), where
C ∈ Rl×l andC ∈ Rl×(m− l). *en, the elements of adjC · C are
just all related minors of C (up to a sign).
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Proof. Let C � (cij)l×l ​ and C � (cij)l×(m−l). Let adjC · C �

(bij)l×(m−l). -en,

bij � acof1i(C)c1j + · · · + acof li(C)clj

� det

c11 · · · c1i−1 c1j c1i+1 · · · c1l

⋮ ⋮ ⋮ ⋮ ⋮

cl1 · · · cli−1 clj cli+1 · · · cll

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

(1)

by Laplace-eorem.-us, bij is a related minor of C (up to a
sign). It is clear that they are just all related minors of C (up
to a sign).

Now, we prove the main theorem of this paper. □

Theorem 1. Let F ∈ Rl×m(l<m). If there exists an l × l

submatrix C of F such that detC is a common factor of all
related minors of C, then there exists F1 ∈ Rl×m such that F �

CF1 and F1 is ZLP; i.e., F has a ZLP factorization.

Proof. We can change the order of the columns of F such
that the submatrix C consists of the left l columns of F. -us,
there exists an invertible matrix Q ∈ Rm×m such that
FQ � (C, C), where C ∈ Rl×l and C ∈ Rl×(m− l). Since detC
is a common factor of all related minors of C, by Lemma 1,
we have C−1C � adjC · C/detC ∈ Rl×(m−l). Let

Q1 �
Il −C−1C

0 Im−l

⎛⎝ ⎞⎠. (2)

-en, Q1 ∈ Rm×m. We have

FQQ1 � (C, C)Q1

� (C, C)
Il −C−1C

0 Im−l

⎛⎝ ⎞⎠

� (C, O).

(3)

-en,

F � (C, O)Q
−1
1 Q

−1
(by(3))

� C Il, O( 􏼁Q
−1
1 Q

−1
.

(4)

Let F1 � (Il, O)Q−1
1 Q−1 ∈ Rl×m. -en, F � CF1. Since F1

consists of the upper l rows of invertible matrix Q−1
1 Q−1, we

have F1 is ZLP. □

Corollary 1. Let F ∈ Rl×m(l<m). If there exists an l × l

submatrix C of F such that detC is a common factor of all
related minors of C, then detC � d(F).

Proof. Clearly, d(F) | detC. By -eorem 1, there exists
F1 ∈ Rl×m such that F � CF1. By Cauchy–Binet formula, we
have detC | d(F). -erefore, detC � d(F). □

Corollary 2. Let F ∈ Rl×m(l<m). If there exists an l × l

submatrix C of F such that detC is a common factor of all
related minors of C, then F is equivalent to (C, O).

Proof. By -eorem 1, there exists F1 ∈ Rl×m such that F �

CF1 and F1 is ZLP. By Quillen–Suslin theorem, there exists

F2 ∈ R(m−l)×m such that (FT
1 , FT

2 )T is an invertible matrix.
Since F � CF1 � (C, O)(FT

1 , FT
2 )T, we have F being equiv-

alent to (C, O).
Now, let F ∈ Rl×m(l<m). Suppose there exists an l × l

submatrix C of F such that detC � d(F). We can give an
algorithm to directly compute the ZLP factorization of F. □

Algorithm 1

(i) Compute all l × l minors of F and d(F).
(ii) Find an l × l submatrix C of F such that

detC � d(F).
(iii) Compute invertible matrix Q such that

FQ � (C, C).

(iv) Let Q1 �
Il −C−1C

0 Im−l

􏼠 􏼡 and F1 � (Il, O)Q−1
1 Q−1.

-en, F � CF1.

Now, we give an example to illustrate this algorithm.

Example 1. Let R � Z[x, y], and let

F �
6x2y + 2xy 2x 2xy

6x2y2 + 6x2y + 2xy2 + 5xy 2xy + 2x 2xy2 + 2xy + y
􏼠 􏼡.

(5)

-en, d(F) � 2xy. Let

C �
2x 2xy

2xy + 2x 2xy2 + 2xy + y
􏼠 􏼡. (6)

-en, C is a 2 × 2 submatrix of F and detC � d(F). Let

Q �

0 0 1

1 0 0

0 1 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (7)

-en, FQ � (C, C), where

C �
6x2y + 2xy

6x2y2 + 6x2y + 2xy2 + 5xy
􏼠 􏼡. (8)

-us, −C− 1C �
−y

−3x
􏼠 􏼡. Let

Q1 �

1 0 −y

0 1 −3x

0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (9)

-en,

Q
−1
1 Q

− 1
�

y 1 0

3x 0 1

1 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (10)

Let

F1 �
y 1 0

3x 0 1
􏼠 􏼡. (11)

-en, F � CF1.
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