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In the structural earthquake engineering, a single parameter is often not sufficient enough to depict the severity of ground
motions, and it is thus necessary to use multiple ones. In this sense, the correlation among multiple parameters is generally
considered as an importance issue.,e conventional approach for developing the correlation is based on regression analysis, along
with simple pair copula approaches proposed in recent years. In this study, an innovative mathematical technique—vine
copula—is firstly introduced to develop the empirical model for the multivariate dependence of pseudospectral accelerations
(PSAs), which are the most commonly used earthquake ground motion parameters. ,is advancement not only offers a more
flexible way of describing nonlinear dependence among multivariate PSAs from the marginal distribution functions but also
highlights the extreme dependence. ,e results can be conventionally acquired in the ground motion selection and seismic risk
and loss assessment based on multivariate parameters.

1. Introduction

In the structural earthquake engineering, a single ground
motion parameter (GMP) is often not sufficient enough to
characterize the severity of earthquake ground motions,
and it is necessary to use multiple ones. Consequently, it is
critical to evaluate the correlation among multiple GMPs
when they are used to select ground motions [1, 2] or to
calculate aggregated seismic losses of distributed infra-
structures and portfolios [3, 4]. Attempts have been paid
to study the correlation during the past few years [5–7]. As
pseudospectral accelerations (PSAs) play an important
role in antiearthquake design of structures, their corre-
lation at different vibration periods is widely investigated
[8, 9].

,e correlation is computed based on the residuals of
ground motion prediction equations (GMPEs) (e.g.,
[10–13]) derived from large number of ground motion

records. Conventionally, the correlation model of earth-
quake parameters (such as PSAs at various vibration
periods) is developed using regression analysis (such as
[6–8]) on Pearson product-moment correlation coeffi-
cients which are derived from the residuals of the GMPEs.
In recent years, copula techniques have been more and
more widely applied in engineering [14–18] due to the
advantages in the probabilistic analysis [19, 20]. A simple
bivariate copula technique is introduced by Goda and
Atkinson [21] to model the PSA interperiod dependence.
It demonstrates that PSAs are marginally lognormal
distributed. It also validates that the conventional two-
step approach is appropriate to develop the correlation
model. However, these techniques can only describe a
linear correlation and take a bivariate interperiod de-
pendence of parameters into account. In addition, the
study of Weatherill et al. [3] shows that the interperiod
dependence of PSA results in a larger difference of losses
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at lower annual probabilities of exceedance. Given the
detail dependence has significant impacts on the low
probability of risk, the detail dependence of PSAs should
be highlighted in the risk assessment.

Multivariate elliptical copulas, such as normal copula
and t copula, have been used for modeling multivariate
dependence [22–24], including for earthquake GMPs
[21, 25]. However, multivariate normal copula is unable to
capture extreme dependence because of its independent
property in the tail region. In the meanwhile, the multi-
variate t copula has been criticized for using only a single
parameter, i.e., degree of freedom, to determine tail de-
pendence. ,us, it has limited abilities to describe the
complicated tail dependence in the multivariate context.
Furthermore, the vine copula approach, which is based on
the decomposition of different bivariate copulas, can per-
form better in high-dimensional cases since it can embrace
heterogeneous dependence structures among variables and
can use a series of pair copulas to capture a complex rela-
tionship [26–29].

,erefore, this study aims to develop a multivariate
joint probability function of PSAs using vine copula
technique. Instead of using pairwise interperiod depen-
dence, we develop a multivariate dependence structure
among PSAs at different periods. We also investigate the
tail dependence. In this paper, firstly, we introduce the vine
copula. ,en, multivariate dependence structure of PSAs is
derived from a ground motion record database. Since there
are two orthogonal horizontal components for each ground
motion record, we use the geometric mean of two com-
ponents at different periods to calculate the interperiod
dependence.

2. Vine Copula Dependence

In this section, we will provide an in-depth discussion about
vine copula. We will review some basic concepts of vine
copula methodology, namely, the definitions, the properties
(i.e., tail dependence), and some widely used bivariate copula
families which are nested in trees of vine copula.

2.1. Vine Copula Construction. A K-dimensional copula
C: [0, 1]K⟶ [0, 1] is a cumulative distribution function
on [0, 1]K with uniform margins on [0, 1]. Let F be a
K-dimensional distribution function with marginal distri-
butions F1, F2,. . ., FK. According to Sklar’s theorem [30],
there exists a K-dimensional copula C, such that
∀(x1, x2, . . . , xK) ∈ RK:

F x1, x2, ..., xK( 􏼁 � C F1 x1( 􏼁, F2 x2( 􏼁, . . . , FK xK( 􏼁( 􏼁. (1)

If Fi, i � 1, . . . , K, are continuous, copula C is unique. In
a continuous case, after taking derivatives on both sides of
equation (1), we obtain the joint density representation of X

as follows:

f x1, x2, . . . , xK( 􏼁 �
zKF x1, ..., xK( 􏼁

zx1 · · · zxN

�
zKC F1 x1( 􏼁, . . . , FK xK( 􏼁( 􏼁

zF1 x1( 􏼁 · · · zFN xN( 􏼁
× f1 x1( 􏼁

× · · · × fK xK( 􏼁

� c F1 x1( 􏼁, . . . , FK xK( 􏼁( 􏼁 × 􏽙
K

i�1
fi xi( 􏼁.

(2)

Joe [26] noticed that a K-dimensional copula can be
represented by K(K − 1)/2 different bivariate copulas
through the decomposition method. Studies [28, 29] in-
troduced the vine copula method on the basis of decom-
position approaches. ,is method builds multivariate
copulas based on the product of a series of simple pair
copulas. Aas et al. [31] applied this PCC (pair copula
construction) method to model the multiple dependence
structure of returns and produced an entire algorithm re-
lating to model estimation and simulation.

Vine copula approach allows us to combine different
families of bivariate copulas for different pairs of margins
and higher order dependencies. Fischer et al. [27] compared
this approach with other methods and found that the vine
copula method performed better in high-dimensional cases.
Other studies [32–34] pointed out the same conclusion.

,rough vine copula decomposition, a multivariate
density f(x1, x2, . . . , xK) can be represented as a product of
pair copula densities and marginal densities. For this reason,
appropriate bivariate copulas can capture the variant de-
pendence relationship of different pairs of margins instead of
using only one multidimensional copula to describe the
whole dependence structure of the multivariate density.

In general, an K-dimensional vine structure is repre-
sented by (K − 1) trees. ,e j-th tree Tj has (K + 1 − j)

nodes and (K − j) edges, with each edge corresponding to a
pair copula density. ,e edges in Tj are the nodes in Tj+1.
For a K-dimensional multivariate distribution, the de-
composition is not unique. Bedford and Cooke [28] pre-
sented the multivariate density in terms of a regular vine,
termed an R-vine, as follows:

f x1, . . . , xK( 􏼁 � 􏽙
K

k�1
f xk( 􏼁 · 􏽙

K− 1

j�1
􏽙
e∈Ej

ce|De
Fea |De

, Feb |De
􏼒 􏼓, (3)

where Ej is a set of edges associated with tree Tj; e � a, b{ };
and the edge connecting variables denoted with ea and eb in
Tj gave the variable labeled by De, and De denotes condi-
tioning set for the edge e; see Corollary 1 in the study of
Bedford and Cooke [28] for full representation and more
details. ,is is a general representation, and it does not
restrict the vine structure to a particular pattern. ,e se-
lection of the vine structure depends on the observed data.
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Aas et al. [31] identified two types of vines with particular
structures, namely, D-vine and C-vine. As shown in equation
(4), each tree of D-vine is a path, and each node is connected
to no more than two other nodes in each tree. Meanwhile,
C-vine shows a star structure. In each tree, there exists one
unique node connecting with all other nodes (equation (5)):

f x1, . . . , xK( 􏼁 � 􏽙
K

k�1
f xk( 􏼁 􏽙

K− 1

j�1
􏽙

K− j

i�1
ci,j+i|i+1,...,i+j− 1

· F xi

􏼌􏼌􏼌􏼌 xi+1, . . . , xi+j− 1􏼒 􏼓, F􏼒

· xj+i

􏼌􏼌􏼌􏼌􏼌 xi+1, . . . , xi+j− 1􏼒 􏼓􏼓,

(4)

f x1, . . . , xK( 􏼁 � 􏽙
K

k�1
f xk( 􏼁 􏽙

K− 1

j�1
􏽙

K− j

i�1
cj,j+i|1,...,j− 1

· F xj

􏼌􏼌􏼌􏼌􏼌 x1, . . . , xj− 1􏼒 􏼓, F􏼒

· xj+i

􏼌􏼌􏼌􏼌􏼌 x1, . . . , xj− 1􏼒 􏼓􏼓.

(5)

It has been shown that vine copula decomposition offers
a great deal of flexibility in modeling a complex dependence
structure, especially in relation to the tail dependence,
compared with the traditional multivariate copula (see
[27, 35, 36] for details). In high-dimensional cases (K≥ 3),
various pairs of variables may exhibit heterogeneous de-
pendence patterns that traditional multivariate copulas are
unable to capture. Vine copulas can solve this problem and
provide good fit for high-dimensional data. We can fit the
standardized residuals with an appropriate vine structure
and select a suitable bivariate copula to describe the de-
pendence patterns for each pair of margins.

In this paper, we fit the margins of the PSA residuals εk

with normal distributions and select the vine structure and
the pair copula families using the Akaike information cri-
terion. Finally, the parameters of the overall model are es-
timated using the maximum likelihood method:

ε1, ε2, ..., εK( 􏼁 ∼ VC VS, B VS( 􏼁, θ(B)( 􏼁, (6)

where VS denotes the vine structure, B(VS) is a collection
of pair copula families, and θ(B) denotes the parameters of
the copulas, respectively.

2.2. Tail-Dependence Coefficients. Venter [37] investigated
the tail concentration functions for different copula families
and suggested to select copulas for a given dataset using the
tail concentration characteristic. ,e tail dependence is
expressed in terms of a conditional probability that one
variable X1 will incur a large loss (or gain), given that an-
other variable X2 also experiences a large loss (or gain).
Considering two random variables X1 and X2, with joint
continuous cumulative distribution function F, copula C,
and margins FX1

andFX2
, the lower tail-dependence coef-

ficient is defined as

λL � lim
u⟶0+

P FX1
x1( 􏼁≤ u | FX2

x2( 􏼁≤ u􏼐 􏼑. (7)

,e upper tail-dependence coefficient is defined as

λU � lim
u⟶1−

P FX1
x1( 􏼁 > u | FX1

x1( 􏼁> u􏼐 􏼑. (8)

If FX1
and FX2

are continuous, λL and λU can be
expressed in terms of a copula representation. For a lower
tail-dependence coefficient, formula (7) can be rewritten as

λL � lim
u⟶0+

P FX1
x1( 􏼁≤ u, FX2

x2( 􏼁≤ u􏼐 􏼑

P FX2
x2( 􏼁≤ u􏼐 􏼑

� lim
u⟶0+

C(u, u)

u
.

(9)

Analogously, for an upper tail-dependence coefficient,
we have

λU � lim
u⟶1−

P FX1
x1( 􏼁> u, FX2

x2( 􏼁> u􏼐 􏼑

P FX2
x2( 􏼁> u􏼐 􏼑

� lim
u⟶1−

1 − 2u + C(u, u)

1 − u
.

(10)

If C is radially symmetric, λL � λU (see [20] for the
proof). Intuitively, if λL and λU exist and fall in (0, 1], X1 and
X2 show lower or upper tail-dependence. If λL and λU are
equal to 0, one can say that the two variables are independent
in the tails; hence, extreme events seem to occur indepen-
dently. We can describe different tail-dependent behavior by
choosing an appropriate copula model.

In the aggregated seismic losses assessment of distrib-
uted infrastructures and portfolios, the differences between
the losses considering and without considering the depen-
dence of pseudospectral accelerations (PSAs) tend to be
increasing with decreasing annual probability of exceedance
[3]. Hence, the tail dependence among pseudospectral ac-
celerations (PSAs) should be paid more attention to the loss
estimation at extreme events. Herein, we can use the tail-
dependence coefficient to measure the concordance between
the extreme events of different random parameters.

2.3. Bivariate Copula Families. In this paper, we use the vine
copula approach to measure the interperiod dependence
structure of PSAs. Vine copula is a “pair copula construc-
tion” method; hence, we focus on the selectable two-di-
mensional copula families. ,e elliptical copulas related to
an elliptical distribution are the most widely used in many
research fields, (see [21]).

2.3.1. Gaussian Copula. In the bivariate case, the Gaussian
copula is defined by the following expression:

C
G
ρ (u, v) � Φρ Φ

− 1
(u),Φ− 1

(v)􏼐 􏼑

�
1

2π
�����
1 − ρ2

􏽰 􏽚
Φ− 1(u)

− ∞
􏽚
Φ− 1(v)

− ∞

· exp
− s2 − 2ρst + t2( 􏼁

2 1 − ρ2( 􏼁
􏼠 􏼡dsdt,

(11)
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where Φρ is the bivariate normal cumulative distribution
function with linear correlation coefficient ρ ∈ [0, 1] and Φ
is the standard normal cumulative distribution function and
Φ− 1 is its inverse function. We can see that the bivariate
Gaussian copula density is symmetric, and it has weak ca-
pability to capture skewness in the dependence structure. If
we go far into the tail, the extreme events tend to be in-
dependent, even though we choose a very high correlation.
Actually, the Gaussian copula shows asymptotical inde-
pendence in the tail regions, more details can be found in
[20].

2.3.2. t Copula. ,e t copula corresponds to a Student t-
distribution. It is defined as

C
t
],ρ(u, v) � t],ρ t

− 1
] (u), t

− 1
] (v)􏼐 􏼑 �

Γ(]/2 + 1)

Γ(]/2)π]
�����
1 − ρ2

􏽰

· 􏽚
t− 1
] (u)

− ∞
􏽚

t− 1
] (v)

− ∞
+

− s2 − 2ρst + t2( 􏼁

2 1 − ρ2( 􏼁
􏼠 􏼡ds dt,

(12)

where t],ρ is the cumulative distribution function of a two-
dimensional t distribution, ] are the degrees of freedom, and
ρ is a measure of dependence. ,e t copula also has sym-
metric shape, upper and lower tail dependences are identical,
and they are completely determined by ] and ρ. When ] gets
large, the t copula decays to a Gaussian copula. ,e ex-
pression of λL and λU is as follows:

λL � λU � 2t]+1 −

������������
(] + 1)(1 − ρ)

􏽰

����
ρ + 1

􏽰􏼠 􏼡, (13)

where t]+1 is the cumulative distribution function of a
univariate t distribution with ] + 1 degrees of freedom [20].

Archimedean copulas, defined by their generator
functions, are also used intensively. Generally, if a function
φ: [0, 1]⟶ [0,∞] with a continuously decreasing and
convex derivative, it can be considered as a generator
function of an Archimedean copula. By definition, a n-di-
mensional Archimedean copula has the following
expression:

C u1, u2, . . . , uK( 􏼁 � φ− 1 φ u1( 􏼁 + φ u2( 􏼁 + · · · + φ uK( 􏼁( 􏼁,

(14)

Different generator functions create different Archi-
medean copulas. More details about the generator function
can be found in the studies of Joe [38] and Nelsen [39]. In the
bivariate case, the copula function is defined by

C(u, v) � φ− 1
(φ(u) + φ(v)), if φ(u) + φ(v)≤φ(0),

(15)

where φ(u) is a C2 function with φ(1) � 0, φ′ < 0 and φ″ > 0.

2.3.3. Frank Copula. ,e Frank copula is defined by

C
F
(u, v; θ) � −

1
θ
ln

e− θu − 1( 􏼁 e− θv − 1( 􏼁

e− θ − 1
+ 1􏼠 􏼡,

θ ∈ (− ∞, 0)∪ (0, +∞).

(16)

,e generator function is φθ(t) � − ln((e− θt − 1)/
(e− θ − 1)).

Similar to the Gaussian copula, the Frank copula is
symmetric in both tails and it is not sensitive to the rela-
tionship between the extreme values in both upper and lower
tails. It shows asymptotic independence in the tails, whereas
it has a strong dependence in the center of the distribution.
,is means that the Frank copula fails to capture tail-de-
pendence behavior; hence, it is suitable to use the Frank
copula when the tail dependence of a given dataset is rel-
atively weak. If θ⟶ 0, the Frank copula will decay to an
independent copula as a special case.

Joe [38] provided some examples of two-parameter
bivariate copulas, such as Joe’s BB1, BB4, and BB8 copula.
Two-parameter copulas are distinguished from other bi-
variate copula families mentioned above. ,ey show a high
flexibility in modeling bivariate dependence structures
through two parameters, especially in modeling an asym-
metric tail-dependence behavior. More details about these
copulas can be found in the study of Joe et al. [40, 41].

2.3.4. Joe’s BB1 Copula. ,e BB1 copula is defined as

C
BB1

(u, v; θ, δ) � 1 + u
− θ

− 1􏼐 􏼑
δ

+ v
− θ

− 1􏼐 􏼑
δ

􏼔 􏼕
1/δ

􏼨 􏼩

− (1/θ)

,

(17)

where θ> 0 and δ ≥ 1. ,e lower tail-dependence coefficient
λL is 2− (1/δθ), and the upper tail-dependence coefficient λU is
equal to 2 − 21/δ which is independent of θ. ,e concordance
of two variables increases as θ increases. ,e Gumbel copula
is the limiting case of BB1 copula as θ⟶ 0. Obviously, BB1
copula decays to the Clayton copula when δ is equal to 1 and
decays to independent copula as θ⟶ 0 and δ⟶ 1.

2.3.5. Joe’s BB8 Copula. ,e BB8 copula is defined as

C
BB8

(u, v; θ, δ) � δ− 1 1 − 1 − 1 − (1 − δ)
θ

􏽨 􏽩
− 1

1 − (1 − δu)
θ

􏽨 􏽩 1 − (1 − δv)
θ

􏽨 􏽩􏼚 􏼛
(1/θ)

􏼢 􏼣, (18)

where θ≥ 1 and 0≤ δ ≤ 1. ,e independent copula is ob-
tained as θ⟶ 1 or δ⟶ 0. BB8 copula decays to the Joe
copula when δ is equal to 1, while the Frank copula is

obtained as θ⟶∞, and the single parameter can be
calculated by using the formula 1 − (1 − δ)θ. BB8 copula
dose not exhibit tail dependence except when δ is equal to 1.
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2.3.6. Tawn Copula. ,e Tawn copula has been introduced
by Tawn [42], regarded as an extension of the Gumbel copula
with three parameters, and it can be expressed by

C
Ta

u, v; θ, δ1, δ2( 􏼁 � 1 − δ1( 􏼁t − 1 − δ2( 􏼁(1 − t)

+ δ1(1 − t)( 􏼁
θ

+ δ2t( 􏼁
θ

􏽨 􏽩
(1/θ)

,
(19)

where t � log(v)/log(uv), 0≤ δ1, δ2 ≤ 1, and θ ∈ [1, +∞). If
δ1 � δ2, the Gumbel copula is obtained from the Tawn
copula. δ1 and δ2 can be interpreted as skewness parameters.
Hence, the Tawn copula can be divided into two types, and
each type has one of the asymmetry parameters fixed to 1 so
that the corresponding copula density is either left or right
skewed (i.e., δ1 � 1 or δ2 � 1). And the upper tail-depen-
dence coefficient has following expression:

λU � δ1 + 1 − δθ1 + 1􏼐 􏼑
(1/θ)

or λU � δ2 + 1 − δθ2 + 1􏼐 􏼑
(1/θ)

.

(20)

3. Multivariate Dependence Structure of
Ground Motion Parameters

3.1. Ground Motion Data and Residuals. In this section, we
investigate the multivariate dependence of pseudospectral
accelerations (PSAs) using vine copula technique. ,e re-
siduals of PSAs calibrated with equation (21) are used to
model the multivariate dependence structure based on vine
copula:

rPSA � ln PSAobs( 􏼁 − f(M, R, θ), (21)

where rPSA represents the residual values of pseudospectral
accelerations (PSAs); PSAobs is the observed PSAs; and
f(M, R, θ) is the predicted median PSA values in loga-
rithmic space calculated through ground motion prediction
equations (GMPEs) [10] as the function of magnitude M,
fault-to-site distance R, and other sets of variables θ. To
illustrate, this study only focuses on the 5%-damped
pseudospectral accelerations (PSAs) at vibration periods of
0.1, 0.2, 1.0, 2.0, and 4.0 sec. But the conclusion drawn in the
paper can also be applied to the PSAs at other different
vibration periods. We use the same set of ground motion
record data for the analysis as that used for the development
of ground motion prediction equations (GMPEs) used by
Campell and Bozorgnia [10]. It consists of 1550 pairs of
components of accelerograms, which are used to calculate
PSAobs. f(M, R, θ) is computed using the GMPEs proposed
by Campell and Bozorgnia [10].

3.2. Vine Copula-Based Multivariate Dependence Structure

3.2.1. Multivariate Copula Calibration. ,e lognormality of
parameter PSAs has been well documented in many liter-
atures (see [21] for more details).

First, we use the empirical cumulative distribution
function to transform residual values of PSA into the so-
called pseudoobservations in the domain of [0, 1] by the
following formula:

uki rki( 􏼁 �
1

N + 1
􏽘

N

i�1
1 rk· ≤ rki{ },

k � 1, . . . , 5,

i � 1, . . . , N,

(22)

where 1 ·{ } denotes the indicator function which takes value
of 1 if rk· ≤ rki and value of 0 otherwise and r1 , r2 , r3 , r4 , and
r5 denote residuals of PSAs at vibration periods of 0.1, 0.2,
1.0, 2.0, and 4.0 sec, respectively. ,en, the residuals rk are
transformed to uniform data uk in domain [0, 1], and the
pure dependence structure among the residuals at five vi-
bration periods can be captured by the copula model using
these uniform data, eliminating the effect of margins at each
period. Figure 1 displays the bivariate dependence feature
for each pair of u1 , u2 , u3 , u4 , and u5.,e histograms on the
diagonal panel indicate that transformed data are perfectly
uniformly distributed. In the meanwhile, the bivariate
contour plots and scatter plots reveal that different pairs of
variables show heterogeneous relationship characters, i.e.,
asymmetry and dependence in tail regions. Notice that the
traditional multivariate normal copula and t copula fail to
handle these complex dependence patterns.

In order to check whether vine copula shows a more
flexibility for modeling multiple dependences than elliptical
copula in the high-dimensional case, we fit the residuals with
the normal copula, t copula, and D-vine copula, respectively.
,e estimation results of five-dimensional normal copula
and t copula are reported in Table 1. We can observe that all
parameters are highly significant, and the off-diagonal ele-
ments ρ of correlation matrix are similar between these two
multivariate elliptical copulas. We then fit the residuals with
a five-dimensional D-vine copula. ,e structure of D-vine is
defined by using equation (4), and the pair copula families
have been restricted to the bivariate t copula for the reason of
comparison. Since the five-dimensional t copula is nested in
the D-vine copula structure, the likelihood ratio test can be
performed between these two copulas [22]. ,e results of
D-vine copula are reported in Table 2. In each tree, the
residuals of PSAs are connected as a path from the shorter
period to longer period. And for each pair, tail-dependence
coefficients can also be calculated.

,en, we calculate quantitative measure, i.e., Akaike
information criterion (AIC) and Bayesian information
criterion (BIC). ,e three fitted multivariate copula models
for residuals of PSAs are compared based on two criterions:
(1) the lower values of AIC and BIC mean better level of
goodness of fit; (2) the greater log-likelihood value indicates
the better level of goodness of fit. ,e results are displayed in
Table 3. ,e five-dimensional D-vine copula shows the
lowest AIC and BIC values and the biggest log-likelihood
value. We also perform the likelihood ratio test between two
nested models, i.e., t copula and D-vine copula. ,e statistic
equals to 25.978 (2922.2330–2896.2550) with degree of
freedom 9 (20–11), and the associated p value is almost zero.
It implies that five-dimensional t copula can be rejected in
favor of D-vine copula for our data.
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We restrict the structure of vine copula to a D-vine
structure and limit the pair copula to bivariate t copula in
order to compare three di
erent copulas in the previous

section. �en we �t transformed residual data with vine
copula without restrictions. �e selection of vine structure
and the choice of pair copula families are data oriented.
We choose the best vine copula model associated with the
smallest AIC value. �e suitability for selecting vine
copula model has been shown (see [41]). And the inde-
pendent test for bivariate copula has also been performed.
�e independent test for bivariate copula
T �

����������������
9n(n − 1)/2(2n + 5)
√

|τ̂|, where n is the number of
observations and τ̂ is the empirical Kendall’s τ of the data
u and v. �e test statistic T is asymptotic normal dis-
tributed under the null hypothesis that the bivariate
variable is independent (see [43]). Figure 2 illustrates the
intuitive graphs for four trees of the vine structure. �e
nodes denote the margins, and the edges denote the bi-
variate copula between two linked nodes. Furthermore,
the labels on the edges are the families and Kendall’s τ of
corresponding pair copulas. Figure 2 also indicates that
the �tted vine is D-vine structure and no node plays a
major role in the whole structure. However, its nested pair
copulas exhibit a heterogeneous characteristic, which is
not only described by bivariate t copula but also by other
two-parameter copulas.

�e estimated results are reported in Table 4, and all
parameters are highly signi�cant. �e pair copula families
and copula parameters are estimated by the joint maximum
likelihood method. Compared to the sequential estimation
method, this method can provide more precise results since
all the parameters are estimated simultaneously instead of
only the bivariate scenario involved. Kendall’s τ and cor-
responding tail-dependence coe�cients are displayed in
Table 4. �e AIC and BIC scores decrease signi�cantly
compared with other three multivariate copulas mentioned
previously (i.e., multivariate normal copula, multivariate t
copula, and D-vine restricted with pair t copula). Hence, it
performs better at modeling PSA dependence structure at
di
erent vibration periods. It is notable that some pairs
reveal strong tail dependence. In Tree 1, the dependence
between PSAs at 0.1 s and 0.2 s is captured by the survival
Tawn copula [38]. �is two-parameter copula can describe a
lower tail dependence. It implies that PSAs at 0.1 s and 0.2 s
show very strong co-movement probability in left tail region,
i.e., an extreme small PSA at 0.1 s tends to accompany with
an extreme small PSA at 0.2 s, while PSAs at 0.2 s and 1 s
vibration periods show a slight symmetric tail dependence
which is captured by t copula. PSAs at 1 s and 2 s do not
exhibit any unusual character in tail regions since normal
copula has been chosen for this pair. �e dependence be-
tween PSAs at 2 s and 4 s vibration periods is described by
BB1 copula (Clayton–Gumbel) which can capture the
asymmetric tail dependence [38]. �e co-movement of the
extreme small values is greater than that of the extreme large
values. �e remaining pair copulas do not show any unusual
character in tail regions. �e density of corresponding pair
copulas for PSA residuals at di
erent vibration periods is
illustrated in Figures 3–5. �e traditional multivariate
normal copula and t copula fail to describe multivariate
distribution as comprehensive as this one.

0.1s

0.70 0.24 0.094 −0.0018

0.2s

0.29 0.15 0.047

1s

0.57 0.40

2s

0.60

4s

Figure 1: Pair plots of transformed uniform data for residuals of
PSAs at vibration periods of 0.1, 0.2, 1.0, 2.0, and 4.0 sec. �e lower
trigonal panels are bivariate contour plots, scatter plots, and
correlation coe�cients (Kendall’s τ) on the upper panels and
histograms on the diagonal panels.

Table 1: Five-dimensional normal copula and t copula.

Normal Par. Kendall’s
τ

t
copula Par. Kendall’s

τ

ρ1,2
0.8755∗∗∗ 0.6789 ρ1,2

0.8819∗∗∗ 0.6785(0.0040) (0.0050)

ρ1,3
0.3624∗∗∗ 0.2361 ρ1,3

0.3705∗∗∗ 0.2416(0.0200) (0.0210)

ρ1,4
0.1639∗∗∗ 0.1048 ρ1,4

0.1623∗∗∗ 0.1038(0.0230) (0.0240)

ρ1,5
0.0282 0.0180 ρ1,5

0.0207 0.0132(0.0240) (0.0250)

ρ2,3
0.4516∗∗∗ 0.2983 ρ2,3

0.4500∗∗∗ 0.2972(0.018) (0.0190)

ρ2,4
0.2560∗∗∗ 0.1648 ρ2,4

0.2464∗∗∗ 0.1585(0.0220) (0.0230)

ρ2,5
0.1077∗∗∗ 0.0687 ρ2,5

0.0919∗∗∗ 0.0586(0.0240) (0.0250)

ρ3,4
0.7813∗∗∗ 0.5709 ρ3,4

0.7754∗∗∗ 0.5649(0.0080) (0.0080)

ρ3,5
0.5905∗∗∗ 0.4021 ρ3,5

0.5776∗∗∗ 0.3920(0.0140) (0.0150)

ρ4,5
0.8111∗∗∗ 0.6023 ρ4,5

0.8069∗∗∗ 0.5977(0.0070) (0.0070)

υ 20.6782∗∗∗
(3.6160)

�e subscripts 1, 2, 3, 4, and 5 denote PSAs at 0.1, 0.2, 1, 2, and 4 sec,
respectively. ∗∗∗Statistical signi�cance at the 1% level.
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Table 2: Five-dimensional D-vine copula restricted with pair t copula.

Copula Family Par. 1 (ρ) Par. 2 (υ) λU λL Kendall’s τ

C1,2 T 0.8819∗∗∗ 5.5335∗∗∗ 0.5505 0.5505 0.6875(0.0940) (0.8112)

C2,3 T 0.4488∗∗∗ 16.4769∗∗ 0.0192 0.0192 0.2963(0.0197) (6.9061)

C3,4 T 0.7776∗∗∗ 30.0000∗∗∗ 0.0579 0.0579 0.5671(0.0079) (12.2744)

C4,5 T 0.8082∗∗∗ 22.9407∗∗∗ 0.1242 0.1242 0.5992(0.0547) (14.2751)

C1,2|3 T − 0.0568∗∗ 16.3974∗∗∗ 0.0004 0.0004 − 0.0362(0.0274) (6.8677)

C2,4|3 T − 0.1824∗∗∗ 30.0000∗∗∗ 0.0000 0.0000 − 0.1167(0.1497) (12.9389)

C3,5|4 T − 0.1272∗∗∗ 30.0000∗∗∗ 0.0000 0.0000 − 0.0812(0.2539) (11.9427)

C1,4|2,3 T − 0.1135∗∗∗ 30.0000∗∗ 0.0000 0.0000 − 0.0724(0.6598) (11.2320)

C2,5|3,4 T − 0.1469∗∗∗ 30.0000∗∗∗ 0.0000 0.0000 − 0.0938(0.6181) (13.0847)

C1,5|2,3,4 T − 0.0504∗ 30.0000∗ − 0.0362(0.0262) (15.6792)
�e subscripts 1, 2, 3, 4, and 5 denote PSAs at 0.1, 0.2, 1, 2, and 4 sec, respectively. T denotes the pair t copula. ∗Statistical signi�cance at the 10% level;
∗∗statistical signi�cance at the 5% level; ∗∗∗statistical signi�cance at the 1% level.

Table 3: AIC values, BIC values, and log-likelihood values of �ve-dimensional normal copula, �ve-dimensional t copula, and �ve-di-
mensional D-vine copula restricted with pair t copula.

Normal copula t copula D-vine copula with pair t copula
AIC − 5736.3750 − 5770.5100 −5804.4660
BIC − 5683.0450 − 5711.8470 −5834.3630
Log-likelihood value 2878.1870 2896.2550 2922.2330
�e AIC value, BIC value, and log-likelihood values are shown in bold if the corresponding copula is preferred.

1
c1,2:Tawn (180°)

(0.6745)
c2,3:T

(0.2987)
c3,4:N

(0.5695)2 3 4 5
c4,5:BB1 (180°)

(0.5867)

Tree 1

1, 2
c1,3|2: I

(0)

c2,4|3:F

(–0.1218)

c3,5|4:BB8 (270°)

(–0.0922)2, 3 3, 4 4, 5

Tree 2

1, 3 | 2
c1,4|2,3:BB8 (90°)

(–0.0791)

c2,5|3,4:BB8 (90)

(–0.1055)2, 4 | 3 3, 5 | 4

Tree 3

Tree 4

1, 4 | 2, 3
c1,5|2,3,4: I

(0) 2, 5; 3, 4

Figure 2: �e vine structure with the edge labels corresponding to pair copula families and Kendall’s t.
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Table 4: Estimated copula parameters of vine copula for PSA residuals at di
erent vibration periods.

Copula Family Par. 1 Par. 2 λU λL Kendall’s τ

C1,2 Tawn1 (180°) 3.4608∗∗∗ 0.9346∗∗∗ — 0.7512 0.6745(0.0940) (0.0139)

C2,3 T 0.4522∗∗∗ 17.1688∗∗ 0.0173 0.0173 0.2987(0.0197) (8.0943)

C3,4 N 0.7799∗∗∗ — — — 0.5695(0.0079) —

C4,5 BB1z (180°) 0.3726∗∗∗ 2.0394∗∗∗ 0.4016 0.5952 0.5867(0.0547) (0.0627)

C1,3|2 I — — — — —— —

C2,4|3 F − 1.1098∗∗∗ — — — − 0.1218(0.1497) —

C3,5|4 BB8 (270°) − 1.4737∗∗∗ − 0.7718∗∗∗ — — − 0.0922(0.2539) (0.1529)

C1,4|2,3 BB8 (90°) − 1.7090∗∗∗ − 0.5839∗∗ — — − 0.0791(0.6598) (0.2916)

C2,5|3,4 BB8 (90°) − 1.8660∗∗∗ − 0.6173∗∗∗ — — − 0.1055(0.6181) (0.2283)
C1,5|2,3,4 I — — — —
AIC − 5909.0300
BIC − 5834.3600
Log-likelihood 2968.5130
�e subscripts 1, 2, 3, 4, and 5 denote PSAs at 0.1, 0.2, 1, 2, and 4 sec, respectively. N, T, F, I, Tawn, BB1, and BB8 the denote normal copula, t copula, Frank
copula, independent copula, Tawn copula, BB1 copula, and BB8 copula, respectively. �e values in brackets indicate that the �tted pair copula is rotated by
original copula, i.e., 90°, 180°, and 270°.�e standard errors are in parentheses. Independent copula, normal copula, and Frank copula do not exhibit an upper
and lower tail dependence (i.e., λU and λL). ∗∗Statistical signi�cance at the 5% level; ∗∗∗statistical signi�cance at the 1% level.
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Figure 3: Pair copula densities in Tree 1 of �tted vine copula for residuals of PSA for (a) C1,2, (b) C2,3, (c) C3,4, and (d) C4,5.
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3.2.2. Joint Distribution Modeled by Vine Copula. �e joint
distribution of PSAs at �ve di
erent vibration periods are
obtained by combining the marginal distribution of PSAs at
each period and its best �tted vine copula distribution. In
particular, the joint density is the product of marginal

density and corresponding vine copula density de�ned by
equation (2). �e margins represent the information at each
period, and the copula contains the information about pure
dependence structure of PSAs at �ve vibration periods. �e
joint density is de�ned by the following equation:

f ε1, . . . , ε5( ) � f1 ε1( ) · f2 ε2( ) · f3 ε3( ) · f4 ε4( ) · f5 ε5( ) ⟶ marginals

· c1,2 u1, u2( ) · c2,3 u2, u3( ) · c3,4 u3, u4( ) · c4,5 u4, u5( ) ⟶ edges of tree 1

· c1,3|2 u1|2, u3|2( ) · c2,4|3 u2|3, u4|3( ) · c3,5|4 u3|4, u5|4( ) ⟶ edges of tree 2

· c1,4|2,3 u1|2,3, u4|2,3( ) · c2,5|3,4 u2|3,4, u5|3,4( ) ⟶ edges of tree 3

· c1,5|2,3,4 u1|2,3,4, u5|2,3,4( ), ⟶ edges of tree 4

(23)

where fi(·) denotes the marginal distribution of residuals εi
of PSAs at i-th period, i� 1, . . ., 5, i.e., a normal distribution.
�e vine copula model parameters (i.e., corresponding series
of pair copula densities) are reported in Table 4.

3.2.3. Vine Copula-Based Joint Distribution in Earthquake
Engineering. In the seismic hazard and risk assessment of
calculating the aggregated losses of portfolios or infra-
structures, for di
erent types of structures, it is necessary to
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Figure 5: Pair copula densities in Tree 3 of �tted vine copula for residuals of PSAs for (a) C1,4|2,3 and (b) C5,5|3,4.
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Figure 4: Pair copula densities in Tree 2 of �tted vine copula for residuals of PSAs for (a) C2,4|3 and (b) for C3,5|4. Independent copula is
omitted.
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use di
erent fragility functions characterized by di
erent
ground motion parameters. In this sense, multiple ground
motion parameters are embedded in the seismic hazard and
risk assessment. Herein, we present an example to illustrate
the application and performance of the proposed vine
copula-based multivariate joint distribution function by
adopting joint exceedance probability of multiple ground
motion parameters. �e joint exceedance probability of
multiple parameters is de�ned as a probability that a set of
parameters (X1 to Xn) simultaneously and, respectively,
exceeds a set of certain values (x1 to xn), shown as follows:
PX1,X2,...,Xn

x1, x2, . . . , xn( ) � P X1 >x1, X2 >x2, . . . , Xn >xn( ).

(24)

In the example, an earthquake scenario is assumed: (1) a
hypothetical site is located at a distance of 30 km to a point
strike-slip earthquake source; (2) an earthquake with mo-
ment magnitude of 6 occurs at this source; and (3) soil
condition at the site is characterized withVS30� 720m/s. We
investigate the PSAs at 0.1 s, 0.2 s, 1 s, 2 s, and 4 s at this site.
�e median values of the PSAs in logarithmic space, namely,
f(M,R, θ), are calculated using the GMPEs proposed by
Campell and Bozorgnia [10]. Based on the proposed vine
copula-based multivariate joint probability function, we use
the Monte Carlo method to generate 20,000 realizations of
the jointly distributed multivariate residuals of PSAs (rPSA)
at the given site. We obtain the �nal realizations of the PSAs
in logarithmic space by summing up the mean PSAs values
in logarithmic space and the residual realizations.

Figure 6 describes the joint exceedance probability of
PSAs based on the above realizations and demonstrates the
e
ects of the multivariate joint distribution of the PSAs. �e
joint exceedance probability is calculated through equation
(24), where n� 5, X1 to X5 is PSAs at 0.1 s, 0.2 s, 1 s, 2 s, and
4 s, respectively, and x1 to x5 herein indicates a certain level

of PSAs at 0.1 s, 0.2 s, 1 s, 2 s, and 4 s, respectively. In this
case, the level value is the mean value minus or plus a
number times of standard deviation for each PSA investi-
gated. Other two cases are also considered in Figure 6 for
comparison purpose by assuming that the residuals of the
PSAs are independent without correlation or perfectly de-
pendent. �e results imply that the vine copula-based
multivariate distribution function proposed can properly
characterize the joint distribution of multiple ground mo-
tion parameters. �e joint exceedance probability of the
ground motion parameters are underestimated or over-
estimated, respectively, if their correlations are ignored or
they are assumed to be perfectly correlated. Especially, the
di
erence among three cases become larger in the tail region,
that is at a level of large values of groundmotions, suggesting
that the proposed copula-based multivariate distribution
model is necessary to apply in the analysis, especially im-
portant in the extreme region.

4. Conclusion

In this study a multivariate joint probability function of
PSAs at di
erent vibration periods is calibrated using the
vine copula technique. �e dependence structure is devel-
oped based on a large set of ground motion data consisting
of 1550 ground motion records. We show that vine copula
can not only better capture the multivariate dependence of
PSAs at di
erent vibration periods but also capture their tail
dependence which is critical to the losses estimation at low-
probability high-impact risks.

In particular, (1) in this study, the vine copula performs
better than normal and t copula according to the results of
AIC, BIC, and likelihood ration tests; (2) among all the
investigated vine copula structures, the best �tted one is a
D-vine structure; (3) no residuals of PSAs play a major role
but are connected as a path from the shorter period to longer
period; and (4) it is observed that the bivariate copulas may
show asymmetric tail-dependence property which the
normal and t copula could not capture.

�e proposed vine copula-based correlation model in
this study can be conventionally used in the probabilistic
aggregated seismic loss assessment of portfolios or
infrastructures.
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