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Control Domain Case

Hong Huang ,1 Xiangrong Wang ,2 and Ying Li 3,4

1School of Data and Computer Science, Shandong Women’s University, Jinan 250300, China
2Institute of Financial Engineering, Shandong University of Science and Technology, Qingdao 266590, China
3Office of Academic Research, Shandong Women’s University, Jinan 250300, China
4College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China

Correspondence should be addressed to Ying Li; cherry_jn@126.com

Received 10 April 2020; Accepted 18 May 2020; Published 3 June 2020

Guest Editor: Yi Qi

Copyright © 2020 Hong Huang et al. *is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

*is paper analyzes one kind of optimal control problem which is described by forward-backward stochastic differential equations with
Lévy process (FBSDEL).Wederive a necessary condition for the existence of the optimal control bymeans of spike variational technique,
while the control domain is not necessarily convex. Simultaneously, we also get the maximum principle for this control system when
there are some initial and terminal state constraints. Finally, a financial example is discussed to illustrate the application of our result.

1. Introduction

Stochastic optimal control is an importantmatter that cannot be
neglected inmodern control theory in long days. As is known to
all, Pontryagin’s [1]maximum principle is one of themain ways
to settle the stochastic optimal control problem. By introducing
theHamiltonian function, a necessary condition for the optimal
control of stochastic control systems was given by him, which
was called the maximum condition. From that time, plenty of
works on this issue have been done. Peng [2] was the first one to
prove the general maximum principle of the forward-backward
stochastic control system with diffusion coefficient containing
the control variable by the technique of the second-order Taylor
expansion and the second-order duality. He [3] was also the first
one to demonstrate the maximum principle of forward-back-
ward stochastic control systems from the view of backward
stochastic differential equations (BSDE). In Peng’s paper [3], the
control domainwas convex (in local form); Xu [4] extended this
conclusion to the case of the nonconvex control domain (in
global form), but the control variables were not included in the
diffusion coefficient. And these results were extended to the
fully coupled case in the form of local and global by Shi andWu

[5, 6] in 1998 and in 2006, respectively. On the basis of these
works, Situ [7] was the first to obtain the maximum principle of
the forward stochastic control system with global form of
random jumps in 1991. Shi andWu [8] and Shi [9] acquired the
maximum principle for a kind of forward-backward stochastic
control system with Poisson jumps in the form of local and
global, respectively. *e fully coupled forward-backward sto-
chastic control systemwas extended by Liu et al. [10] at the base
of Shi andWu [8], and in the meanwhile, they also obtained the
maximum principle with the control system be constrained
about initial-terminal state constraints. Considering that in real
life, the decision makers could only get partial information but
not complete information in most cases; many scholars have
paid attention to the partial observable stochastic optimal
control problem and have achieved many results (see, for ex-
ample, [11–13]). Traditionally, when using a stochastic partial
differential equation called the Zakai equation to transform a
full-information optimal control problem to the partially ob-
servable case, scholars will encounter a difficult problem: an
infinite-dimensional optimal control problem. Wang and Wu
[14] proposed a backward separation approach and replaced the
original state and observation equation with the Zakai equation,
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and lots of complicated stochastic calculi in infinite-dimensional
spaces were avoided in this way. Based on this approach, Xiao
[15] studied a partially observed optimal control of forward-
backward stochastic systems with random jumps and obtained
the maximum principle and sufficient conditions of an optimal
control under some certain convexity assumptions. Wang et al.
[16] proved the maximum principles for forward-backward
stochastic control systems with correlated state and observation
noises. More recent conclusions of the partially observed sto-
chastic control problem can be seen from the studies conducted
by Wang et al. [17], Zhang et al. [18], and Xiong et al. [19].

In these years, through the study of mathematical
economics and mathematical finance, many scholars turn
their attention to the stochastic control system driven by
Lévy process. In 2000, Nualart and Schoutens [20] built a
pair of pairwise strongly orthonormal martingales which
was called the Teugels martingale. Meanwhile, under some
exponential moment conditions, they also obtained a
martingale representation in that paper. Under these two
important conclusions, for BSDE driven by the Teugels
martingale, they [21] proved the existence and uniqueness
theorem of its solution in the next year. From then on, a
number of important results were proved: Meng and Tang
[22] obtained the maximum principle of the forward
stochastic control system driven by Lévy process. A
necessary and sufficient condition for the existence of the
optimal control of backward stochastic control systems
driven by Lévy process was deduced by Tang and Zhang
[23] through convex variation methods and duality
techniques. For the forward-backward stochastic control
system driven by Lévy process, there are also a lot of
achievements: based on the existence and uniqueness
theorem of FBSDEL [24], Zhang et al. [25] obtained a
necessary condition of the optimal control and verifica-
tion theorem, but in their control system, the backward
state variables yt and zt did not enter the forward part.
Wang and Huang [26] extended this result to the fully
coupled control system and obtained the continuity result
depending on parameters about FBSDEL and the local
form maximum principle. Subsequently, Huang et al. [27]
studied this control system with terminal state constraints
and obtained the corresponding necessary maximum
principle using Ekeland’s variational. For more recent
conclusions about the stochastic control problem driven
by Lévy process, please refer to [28–30].

In this paper, we will study the optimal control problem
for forward-backward stochastic control systems driven by
Lévy process, which could be considered as a nonconvex
control domain case that is extended from the result of [25].

With the technique of spike variation and Ekeland’s vari-
ational principle, the maximum principle of this type of
control system and the control system with initial and final
state constraints are obtained.

*e structure of this paper is as follows. Section 2 de-
scribes some of the preparations used in this paper. *e
maximum principle and the one with initial and terminal
state constraints as the major results of this paper will be
shown in Sections 3 and 4. As an application of the max-
imum principle, Section 5 gives an optimal consumption
problem in the financial market. Section 6 is the summary of
this article.

2. Preliminary Statement

Let (Ω,Ft, P) be a complete probability space which sat-
isfied the usual conditions, and the information structure is
given byFt which is generated by two processes: a standard
Brownian motion Bt 0≤ t≤T valued in Rd and an inde-
pendent 1-dimensional Lévy process Lt 0≤ t≤T of the form
Lt � bt + lt; here, lt is a pure jump process. And assume that
Lévy measure ] satisfies the following two conditions;
thereby, Lévy process Lt 0≤ t≤T has moments in all orders.

(i) 
R
(1∧ x2)](dx)<∞.

(ii) 
(− ε,ε)c eλ |x|](dx)<∞, ∀ε> 0 and some λ> 0.

Denote L1
t � Lt, △Lt � Lt − Lt− , and Li

t � 0<s≤t(△Ls)
i

for i≥ 2. And let Yi
t � Li

t − E[Li
t] (i≥ 1) be the compensated

power jump process of order i; then, Teugels martingale is
defined by Hi

t � 
i
j�1 cijY

j
t ; the coefficients cij correspond to

orthonormalization of the polynomials 1, x, x2, . . . with
respect to the measure μ(dx) � υ(dx) + σ2δ0(dx).

*en, Hi
t 
∞
i�1 are pairwise strongly orthogonal martin-

gales, and their predictable quadratic variation processes are
〈Hi

t, H
j
t 〉 � δijt, δij is an indicator function here. And

[Hi, Hj]t − 〈Hi
t, H

j
t 〉 is an Ft− martingale; for more details

of the Teugels martingale, see Nualart and Schoutens [20].
In the following of this section, we shall assume some

notations: for a Hilbert space H,

l2(H) :� ϕ |H − valued, 
∞
i�1 ‖ϕi‖2 <∞ .

L2(Ω,H) :� ξ |{

H valued,FT − measurable, E|ξ|2 <∞}.
l2(0, T;H) :� ϕi

t | l2(H)−

valued,Ft − measurable, 
∞
i�1 E 

T

0 ‖ϕi
t‖
2dt<∞}.

M2(0, T;H) :� ϕ(·) |

H − valued,Ft − measurable, E 
T

0 |ϕt|
2dt<∞}.

For the following FBSDEL,

dxt � b t, xt, yt, zt, rt( dt + σ t, xt, yt, zt, rt( dBt + 
∞

i�1
gi t, xt− , yt− , zt, rt( dHi

t,

− dyt � f t, xt, yt, zt, rt( dt − ztdBt − 
∞

i�1
ri

tdHi
t,

x0 � a, yT � Φ xT( ,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(1)
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where (xt, yt, zt, rt) take the value inΩ × [0, T] × Rn × Rm ×

Rm×d × l2(Rm) and mappings b, σ, g, and f take the value in
Rn, Rn×d, l2(Rn), and Rm, respectively. Convenient for
writing, set column vector α � (x, y, z)T and
A(t, α, r) � (− Mτf(t, α, r), Mb(t, α, r), Mσ(t, α, r))T,
where M is a m × n full rank matrix.

Assumption 1

(i) All mappings in equation (1) are uniformly Lip-
schitz continuous in their own arguments,
respectively.

(ii) For all (ω, t) ∈ Ω × [0, T], l(ω, t, 0, 0, 0, 0)

∈M2(0, T; Rn+m+m×d) × l2(0, T; Rm) for l � b, f, σ,
respectively, and g(ω, t, 0, 0, 0, 0) ∈ l2(Rn).

(iii) 〈Φ(x) − Φ(x), M(x − x)〉≥ β|Mx|2.
(iv) 〈A(t,α, r) − A(t,α, r),α − α〉 + 

∞
i�1〈M gi, ri〉≤ − μ

1|Mx|2 − μ2(|Mτy|2 + |Mτz|2 + 
∞
i�1 ‖Mτ ri‖2),

where α � (x, y, z), x � x − x, y � y − y, z � z − z,
ri � ri − ri, gi � gi(t,α, r) − gi(t,α, r). μ1, μ2, and β
are nonnegative constants which satisfied
μ1 + μ2 > 0, μ2 + β> 0, and μ1 > 0,β> 0(resp. μ2 > 0)
when m>n (resp. n>m).

*en, the following existence and uniqueness of the
solution conclusion holds.

Lemma 1. 9ere exists a unique solution in M2(0, T;H)

satisfying FBSDEL (1) under Assumption 1.
9e detailed certification process of this conclusion can be

seen in [24].

3. Stochastic Maximum Principle

In this section, for any given admissible control u(·), we
consider the following stochastic control system:

dxt � b t, xt, ut( dt + σ t, xt( dBt + 
∞

i�1
gi t, xt−( dHi

t,

− dyt � f t, xt, yt, zt, rt,, ut dt − ztdBt − 
∞

i�1
ri

tdHi
t,

x0 � a, yT � Φ xT( , t ∈ [0, T],

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where a ∈ Rn is given. An admissible control
u(·) ∈M2(0, T; Rp) is an Ft-predictable process which
takes values in a nonempty subset U of Rp; Uad is the set of
all admissible controls.

And the performance criterion is

J(u) � Ec y0( , (3)

where c : Rm⟶ R is a given Frechet differential function.
Our optimal control problem amounts to determining

an admissible control u∗ ∈ Uad such that

J u
∗
(·)(  � inf

u(·)∈Uad

J(u(·)). (4)

In order to get the necessary conditions for the optimal
control, we assume u∗t is the optimal control, and the
corresponding solution of (2) is recorded as (x∗t , y∗t , z∗t , r∗t )

and introduce the “spike variational control” as follows:

u
ε
t �

vt, τ ≤ t≤ τ + ε,

u∗t , otherwise,
 (5)

and (xε
t , yε

t , zε
t , rεt) are the state trajectories of uε

t ; here, vt is an
arbitrary admissible control and ε is a sufficiently small
constant.

We also need the following assumption and variational
equation (6).

Assumption 2

(i) b, f, g, σ, Φ, and c are continuously differentiable
with respect to (x, y, z, r, u), and the derivatives are
all bounded.

(ii) *ere exists a constant C> 0, and it holds that
|cy|≤C(1 + |y|).

dXt � bx(t)Xt + b t, uε
t(  − b t, u∗t(  dt + σx(t)XtdBt + 

∞

i�1
gi

x(t)XtdHi
t,

− dYt � fx(t)Xt + fy(t)Yt + fz(t)Zt + fr(t)Rt + f t, uε
t(  − f t, u∗t(  dt,

− ZtdBt − 
∞

i�1
Ri

tdHi
t,

X0 � 0,

YT � Φx(t)XT.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)
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Here, bx(t) � bx(t,x∗t ,u∗t ), σx(t) � σx(t,x∗t ), gi
x(t) �

gi
x(t,x∗t ), b(t,uε

t) � b(t,xε
t ,u

ε
t), b(t,u∗t ) � b (t,x∗t ,u∗t ),

fw(t) � fw(t,x∗t ,y∗t ,z∗t , r∗t ,u∗t ), (w � x,y,z · r), f(t,uε
t) �

f(xε
t ,y

ε
t ,z

ε
t , r

ε
t ,u

ε
t), and f(t,u∗t ) � f(x∗t , y∗t ,z∗t , r∗t ,u∗t ).

Lemma 2. Suppose Assumptions 1 and 2 hold; for the first-
order variation X, Y, Z, R, we have the following estimations:

sup
0≤t≤T

E Xt



2 ≤Cε2, (7)

sup
0≤t≤T

E Xt



4 ≤Cε4, (8)

sup
0≤t≤T

E Yt



2 ≤Cε2, (9)

sup
0≤t≤T

E Yt



4 ≤Cε4, (10)

sup
0≤t≤T

E 
T

0
Zt



2ds≤Cε2, (11)

sup
0≤t≤T

E 
T

0
Zt



2ds 

2

≤Cε4, (12)

sup
0≤t≤T

E 
T

0
Rt

����
����
2ds≤Cε2, (13)

sup
0≤t≤T

E 
T

0
Rt

����
����
2ds 

2

≤Cε4. (14)

Proof. We first prove inequations (7) and (8). For the
forward part of the first-order variation equation, we have

E Xt



2

� E 
t

0
bx(s)Xs + b s, u

ε
s(  − b s, u

∗
s(  ds + σx(s)XsdBs + 

∞

i�1
g

i
x(s)XsdH

i
s

⎧⎨

⎩

⎫⎬

⎭

2

≤ 4 E 
t

0
bx(s)Xsds 

2

+ E 
t

0
b s, u

ε
s(  − b s, u

∗
s(  ds 

2

+ E 
t

0
σx(s)Xs 

2ds + E 
t

0


∞

i�1
g

i
x(s)Xs

⎡⎣ ⎤⎦
2

ds
⎧⎨

⎩

⎫⎬

⎭

≤ 12C
2
TE 

t

0
X

2
sds + 4E 

t

0
b s, u

ε
s(  − b s, u

∗
s(  ds 

2

.

(15)

Applying Gronwall’s inequation, we have

E Xt



2 ≤Cε2, for all t ∈ [0, T]. (16)

Similarly, (8) holds.
We next estimate Yt, Zt, and Rt; the backward part of the

first-order variation equation can be rewritten as

Yt + 
T

t
ZsdBs + 

T

t


∞

i�1
R

i
sdH

i
s � Φx(t)XT + 

T

t
fx(t)Xt

+ fy(t)Yt + fz(t)Zt

+ fr(t)Rt

+ f t, u
ε
t(  − f t, u

∗
t( ]dt.

(17)

Squaring both sides of (17) and using the fact of

EYt 
T

t
ZsdBs � 0,

EYt 
T

t


∞

i�1
R

i
sdH

i
s � 0,

E 
T

t
ZsdBs 

T

t


∞

i�1
R

i
sdH

i
s � 0,

(18)

we get

E Yt



2

+ E 
T

t
Z
2
sds + E 

T

t


∞

i�1
R

i
s

⎛⎝ ⎞⎠

2

dH
i
s

� E Φx(t)XT + 
T

t
fx(t)Xt + fy(t)Yt + fz(t)Zt + fr(t)Rt + f t, u

ε
t(  − f t, u

∗
t(  dt 

2

≤ 6C
2
EX

2
T + 6C

2
TE 

T

t
X

2
sds + 6C

2
TE 

T

t
Y
2
sds + 6C

2
(T − t)E 

T

t
Z
2
sds

+ 6C
2
(T − t)E 

T

t


∞

i�1
R

i
s

⎛⎝ ⎞⎠

2

ds + 6E 
T

t
f s, u

ε
s(  − f s, u

∗
s( ( ds 

2

.

(19)
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When t ∈ [T − δ, T] with δ � 1/12C2, we have

E Yt



2

+
1
2

E 
T

t
Z
2
sds +

1
2

E 
T

t


∞

i�1
R

i
s

⎛⎝ ⎞⎠

2

dH
i
s

≤ 6C
2
EX

2
T + 6C

2
TE 

T

t
X

2
sds + 6C

2
TE

· 
T

t
Y
2
sds + 6E 

T

t
f s, u

ε
s(  − f s, u

∗
s( ( ds 

2

.

(20)

Applying Gronwall’s inequation, we have

sup
0≤t≤T

E Yt



2 ≤Cε2, t ∈ [T − δ, T];

sup
0≤t≤T

E 
T

0
Zt



2ds≤Cε2, t ∈ [T − δ, T];

sup
0≤t≤T

E 
T

0
Rt

����
����
2ds≤Cε2, t ∈ [T − δ, T].

(21)

Consider the BSDE of the first-order variation equation
in the interval [t, T − δ]:

Yt + 
T− δ

t
ZsdBs + 

T− δ

t


∞

i�1
R

i
sdH

i
s � YT− δ

+ 
T− δ

t
fx(t)Xt + fy(t)Yt + fz(t)Zt

+ fr(t)Rt + f t, u
ε
t(  − f t, u

∗
t( dt.

(22)

*us,

E Yt



2

+ E 
T− δ

t
Z
2
sds + E 

T− δ

t


∞

i�1
R

i
s

⎛⎝ ⎞⎠

2

dH
i
s,

� E YT− δ + 
T− δ

t
fx(t)Xt + fy(t)Yt + fz(t)Zt + fr(t)Rt

+ f t, u
ε
t(  − f t, u

∗
t( dt

2

≤ 6C
2
EX

2
T + 6C

2
TE 

T− δ

t
X

2
sds + 6C

2
TE 

T− δ

t
Y
2
sds

+ 6C
2
(T − t)E 

T− δ

t
Z
2
sds + 6C

2
(T − t)E

· 
T− δ

t


∞

i�1
R

i
s

⎛⎝ ⎞⎠

2

ds + 6E 
T− δ

t
f s, u

ε
s(  − f s, u

∗
s( ( ds 

2

.

(23)

So, when t ∈ [T − 2δ, T] with δ � 1/12C2, we have

sup0≤t≤TE Yt



2 ≤Cε2, t ∈ [T − 2δ, T],

sup0≤t≤TE 
T

0
Zt



2ds≤Cε2, t ∈ [T − 2δ, T],

sup0≤t≤TE 
T

0
Rt

����
����
2ds≤Cε2, t ∈ [T − 2δ, T].

(24)

After a finite number of iterations, (9), (11), and (13) are
obtained. And (10), (12), and (14) can be proved by using a

similar method and the following inequalities:
E(

T

t
ZsdBs)

4 ≥ β1E(
T

t
Z2

sds)2, β1 > 0;
E(

T

t

∞
i�1 Ri

sdHi
s)
4 ≥ β2E( 

T

t
(
∞
i�1 Ri

s)
2ds)2, β2 > 0. □

Lemma 3. Under hypothesis, Assumptions 1 and 2, it holds
the following four estimations:

sup
0≤t≤T

E x
ε
t − x
∗
t − Xt



2 ≤Cεε

2
, Cε⟶ 0,when ε⟶ 0,

(25)

sup
0≤t≤T

E y
ε
t − y
∗
t − Yt



2 ≤Cεε

2
, Cε⟶ 0,when ε⟶ 0,

(26)

E 
T

0
z
ε
t − z
∗
t − Zt



2ds≤Cεε

2
, Cε⟶ 0,when ε⟶ 0,

(27)

E 
T

t
r
ε
t − r
∗
t − Rt

����
����
2ds≤Cεε

2
, Cε⟶ 0,when ε⟶ 0.

(28)

Proof. To prove (25), we observe that


t

0
b s, x

∗
s + Xs, u

ε
s( ds + 

t

0
σ s, x

∗
s + Xs( dBs

+ 
t

0


∞

i�1
g

i
s, x
∗
s− + Xs−( dH

i
s

� 
t

0
b s, x

∗
s , u

ε
s(  + 

1

0
bx s, x

∗
s + λXs, u

ε
s( dλXs ds

+ 
t

0
σ s, x

∗
s(  + 

1

0
σx s, x

∗
s + λXs( dλXs dBs

+ 
t

0


∞

i�1
g

i
s, x
∗
s(  + 

1

0


∞

i�1
g

i
x s, x

∗
s + λXs( dλXs

⎡⎣ ⎤⎦dH
i
s

� 
t

0
b s, x

∗
s , u
∗
s( ds + 

t

0
σ s, x

∗
s( dBs + 

t

0


∞

i�1
g

i
s, x
∗
s( dH

i
s

+ 
t

0
bx s, x

∗
s , u
∗
s( Xsds + 

t

0
σx s, x

∗
s( XsdBs

+ 
t

0


∞

i�1
g

i
x s, x

∗
s−( dH

i
s

+ 
t

0
b s, x

∗
s , u

ε
s(  − b s, x

∗
s , u
∗
s(  ds + 

t

0
A
εds

+ 
t

0
B
εdBs + 

t

0
C
εdH

i
s

� x
∗
t − x0 + Xt + 

t

0
A
εds + 

t

0
B
εdBs + 

t

0
C
εdH

i
s,

(29)
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where

A
ε

� 
1

0
bx s, x

∗
s + λXs, u

ε
s(  − bx s, x

∗
s , u
∗
s(  dλXs,

B
ε

� 
1

0
σx s, x

∗
s + λXs(  − σx s, x

∗
s(  dλXs,

C
ε

� 
1

0


∞

i�1
g

i
x s, x

∗
s + λXs(  − g

i
x s, x

∗
s(  ⎡⎣ ⎤⎦dλXs.

(30)

It follows easily from Lemma 2 that

sup
0≤t≤T

E 
t

0
A

εds 

2

+ 
t

0
B
εdBs 

2

+ 
t

0
C
εdH

i
s 

2
⎡⎣ ⎤⎦ � o ε2 .

(31)

Since

x
ε
t − x0 � 

t

0
b s, x

ε
s, u

ε
s( ds + 

t

0
σ s, x

ε
s( dBs + 

t

0


∞

i�1
g

i
s, x

ε
s−( dH

i
s,

(32)

then

x
ε
t − x
∗
t − Xt � 

t

0
b s, x

ε
s, u

ε
s(  − b s, x

∗
s + Xs, u

ε
s(  ds

+ 
t

0
σ s, x

ε
s(  − σ s, x

∗
s + Xs(  dBs

+ 
t

0


∞

i�1
g

i
s, x

ε
s−(  − g

i
s, x
∗
s− + Xs−(  dH

i
s

+ 
t

0
A
εds + 

t

0
B
εdBs + 

t

0
C
εdH

i
s

� 
t

0
D

ε
x
ε
s − x
∗
s − Xs( ds + 

t

0
E
ε

x
ε
s − x
∗
s − Xs( dBs

+ 
t

0
F
ε

x
ε
s − x
∗
s − Xs( dH

i
s,

(33)

with Dε � 
1
0 bx(s, x∗s + Xs + λ(xε

s − x∗s − Xs), uε
s)dλ,

Eε � 
1
0 σx(s, x∗s + Xs + λ(xε

s − x∗s − Xs))dλ, and Fε � 
1
0


∞
i�1 gi

x(s, x∗s + Xs + λ(xε
s − x∗s − Xs))dλ.

By Gronwall’s inequation, we have

sup
0≤t≤T

E x
ε
t − x
∗
t − Xt



2 ≤Cεε

2
, Cε⟶ 0,when ε⟶ 0.

(34)

Next, we prove (26), (27),, (28); it can be easily checked
that

− 
T

t
f s, x

∗
s + Xs, y

∗
s + Ys, z

∗
s + Zs, r

∗
s + Rs, u

ε
s( ds

+ 
T

t
s, z
∗
s + Zs( dBs + 

T

t


∞

i�1
g

i
s, x
∗
s− + Xs−( dH

i
s

� Φ x
∗
T(  − y

∗
t +Φx x

∗
T( XT − Yt − 

T

t
G
εds.

(35)

Here,

G
ε

� 
1

0
fx s, x

∗
s + λXs, y

∗
s + λYs, z

∗
s((

+ λZs, r
∗
s + λRs, u

ε
s − fx(s)dλXs

+ 
1

0
fy s, x

∗
s + λXs, y

∗
s + λYs, z

∗
s(

+ λZs, r
∗
s + λRs, u

ε
s − fy(s)dλYs

+ 
1

0
fz s, x

∗
s + λXs, y

∗
s + λYs, z

∗
s((

+ λZs, r
∗
s + λRs, u

ε
s − fz(s)dλZs

+ 
1

0
fr s, x

∗
s + λXs, y

∗
s + λYs, z

∗
s((

+ λZs, r
∗
s + λRs, u

ε
s − fr(s)dλRs.

(36)

Since

y
ε
t � Φ x

ε
T(  + 

T

t
f s, x

ε
s, y

ε
s, z

ε
s, r

ε
s, u

ε
s( ds − 

T

t
zsdBs

− 
T

t


∞

i�1
r

i,ε
s dH

i
s,

(37)

then

y
ε
t − y
∗
t − Yt � Φ x

ε
T(  − Φ x

∗
T(  − Φx x

∗
T( XT + 

T

t
f s, x

ε
s, y

ε
s, z

ε
s, r

ε
s, u

ε
s(  − f s, x

∗
s + Xs, y

∗
s + Ys, z

∗
s + Zs, r

∗
s + Rs, u

ε
s( ds

− 
T

t
z
ε
s − z
∗
s − Zs( dBs − 

T

t


∞

i�1
r

i,ε
s − r

i,∗
s − Rs dH

i
s + 

T

t
G
εds.

(38)
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Squaring both sides of the equation above, we get

E y
ε
t − y
∗
t − Yt



2

+ E 
T

t
z
ε
s − z
∗
s − Zs( 

2ds − E 
T

t


∞

i�1
r

i,ε
s − r

i,∗
s − Rs 

2
ds

� E f s, x
ε
s, y

ε
s, z

ε
s, r

ε
s, u

ε
s(  − f s, x

∗
s + Xs, y

∗
s + Ys, z

∗
s + Zs, r

∗
s + Rs, u

ε
s(  ds +Φ x

ε
T(  − Φ x

∗
T(  − Φx x

∗
T( XT + 

T

t
G
εds 

2

.

(39)

From Lemma 2 and equation (25), we have

sup0≤t≤TE 
T

t
G
εds 

2

� o ε2 ,

E Φ x
ε
T(  − Φ x

∗
T(  − Φx x

∗
T( XT 

2
� o ε2 .

(40)

*en, we can get (26), (27), and (28) by applying the
iterative method to the above relations. □

Lemma 4 (variational inequality). Under the conditions
that Assumptions 1 and 2 are established, we can get the
following variational inequality:

Ecy y∗0( Y0 ≥ o(ε). (41)

Proof. From the four estimations in Lemma 3, we have the
following estimation:

E c y
ε
0(  − c y

∗
0 + Y0(   � o(ε). (42)

*erefore,

0≤E c y
∗
0 + Y0(  − c y

∗
0(   + o(ε) � Ecy y

∗
0( Y0 + o(ε).

(43)

We introduce the following Hamiltonian function
H : [0, T] × Rn × Rm × Rm×d × l2(Rm) × U × Rn × Rm ×

Rn×d× l2(Rn) as

H(t, x, y, z, r, u, p, q, w, k) � 〈p, b(t, x, u)〉 +〈w, σ(t, x)〉

+〈k, g(t, x)〉 − 〈q, f(t, x, y, z, r, u)〉,

(44)

and the following adjoint equation

dqt � Hy u∗t( dt + Hz u∗t( dBt + 
∞

i�1
Hi

r u∗t( dHi
t,

− dpt � Hx u∗t( dt − wtdBt − 
∞

i�1
ki

t− dHi
t,

q0 � cy y∗0( , pT � − Φx x∗T( qT, t ∈ [0, T],

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(45)

where

Hx u
∗
t(  � Hx t, x

∗
t , y
∗
t , z
∗
t , r
∗
t , u
∗
t , pt, qt, wt, kt( ,

Hy u
∗
t(  � Hy t, x

∗
t , y
∗
t , z
∗
t , r
∗
t , u
∗
t , pt, qt, wt, kt( ,

Hz u
∗
t(  � Hz t, x

∗
t , y
∗
t , z
∗
t , r
∗
t , u
∗
t , pt, qt, wt, kt( ,

Hr u
∗
t(  � Hr t, x

∗
t , y
∗
t , z
∗
t , r
∗
t , u
∗
t , pt, qt, wt, kt( .

(46)

It is easily check that adjoint equation (45) has a unique
solution quartet (pt, qt, wt, kt) ∈M2(0, T; Rn+m+m×d) ×

l2(0, T; Rm).
*en, we get the main result of this section. □

Theorem 1. Let hypothesis, Assumptions 1 and2, hold; u∗t is
an optimal control, and the corresponding optimal state
trajectories are (x∗t , y∗t , z∗t , r∗t ); let (pt, qt, wt, kt) be the
solution of adjoint equation (45); and then, for each ad-
missible control ut ∈ Uad[0, T], we have

H t,x∗t ,y∗t , z∗t , r∗t , ut,pt, qt,wt,kt( 

≥H t,x∗t ,y∗t , z∗t , r∗t , u∗t ,pt, qt,wt,kt( a.s.a.e..
(47)

Proof. Applying It o,s formula to 〈p, X〉 and 〈q, Y〉, it
follows from (6), (45), and the variational inequality that

E 
T

0
H t, xt, yt, zt, rt, u

ε
t , pt, qt, wt, kt( 

− H t, xt, yt, zt, rt, u
∗
t , pt, qt, wt, kt( dt � Ecy y

∗
0( Y0 ≥ o(ε).

(48)

By the definition of uε
t , we know that, for any

u ∈ Uad[0, T], the following inequation holds:

E H t, xt, yt, zt, rt, u
ε
t , pt, qt, wt, kt( 

− H t, xt, yt, zt, rt, u
∗
t , pt, qt, wt, kt( ≥ 0.

(49)

*en, (47) can be easily checked. □

4. Stochastic Control Problem with
State Constraints

In this part, we are going to discuss stochastic control
problems with state constraints in control system (2).
Specifically, the initial state constraints and final state
constraints are as follows:

EG1 xT(  � 0,

EG0 y0(  � 0,
(50)
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where G1 : Rn⟶ Rn1(n1 < n), G0 : Rm⟶ Rm1(m1 <m).
Our optimal control problem is to find u∗ ∈ Uad such that

J u
∗
(·)(  � inf

u(·)∈Uad

J(u(·)), (51)

subject to the state constraints (50). In the following, we will
apply Ekeland’s variational principle to solve this optimal
control problem. Firstly, we need the following assumptions.

Assumption 3. Control domain U is assumed to be closed,
the mappings in state constraints G1, G0 are continuously
differentiable, and G1x, G0y are bounded.

For ∀u1(·), u2(·) ∈ Uad, let

d u1(·), u2(·)(  � E u1(·) − u2(·)



2 > 0; t ∈ [0, T] 



. (52)

Same as Section 3, we also assume u∗t be the optimal
control, and the corresponding optimal state trajectories are
(x∗t , y∗t , z∗t , r∗t ). In order to solve the constraint problem,
we need the following penalty cost functional, for any ρ> 0:

Jρ(u) � E G1 xT(  



2

+ E G0 y0(  



2

+ J(u) − J u∗( ) + ρ



2

 
1/2

.

(53)

It can be checked that Jρ(u) : Uad⟶ R1 is continuous,
and for any u(·) ∈ Uad,

Jρ(u)≥ 0, Jρ u
∗

(  � ρ,

Jρ u
∗

( ≤ inf
u(·)∈Uad

Jρ(u) + ρ.
(54)

It can be obtained by Ekeland’s variational principle that
there exists u

ρ
t ∈ Uad such that

(i) Jρ uρ( )≤ Jρ u∗( ) � ρ,

(ii) d uρ, u∗( )≤ �ρ√
,

(iii) Jρ(v)≥ Jρ uρ( ) −
�ρ√

d uρ, v( ), for ∀v(·) ∈ Uad.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(55)

For fixed ρ and admissible control u
ρ
t , we define the spike

variation as follows:

u
ρ,ε
t �

vt, τ ≤ t≤ τ + ε;

u
ρ
t , otherwise,

 (56)

for any ε> 0, and it is easy to check from (iii) of (55) that

Jρ uρ,ε( ) − Jρ uρ( ) +
�ρ√

d uρ,ε, uρ( )≥ 0. (57)

Let (x
ρ
t , y

ρ
t , z

ρ
t , r

ρ
t ) be the trajectories corresponding to u

ρ
t

and (x
ρ,ε
t , y

ρ,ε
t , z

ρ,ε
t , r

ρ,ε
t ) be the trajectories corresponding to

u
ρ,ε
t . *e variational equation we used in this section is the

same as the one in Section 3, with u∗t � u
ρ
t and

(x∗t , y∗t , z∗t , r∗t ) � (x
ρ
t , y

ρ
t , z

ρ
t , r

ρ
t ). And we also assume that

the solution of this variational equation is (X
ρ
t , Y

ρ
t , Z

ρ
t , R

ρ
t ).

Similar to the approach in Lemmas 2 and 3, it can be shown
that

sup0≤t≤TE x
ρ,ε
t − x

ρ
t − X

ρ
t



2 ≤Cεε

2
, Cε⟶ 0,when ε⟶ 0,

sup0≤t≤TE y
ρ,ε
t − y

ρ
t − Y

ρ
t



2 ≤Cεε

2
, Cε⟶ 0,when ε⟶ 0,

E 
T

0
z
ρ,ε
t − z

ρ
t − Z

ρ
t



2ds≤Cεε

2
, Cε⟶ 0,when ε⟶ 0,

E 
T

0
r
ρ,ε
t − r

ρ
t − R

ρ
t

����
����
2ds≤Cεε

2
, Cε⟶ 0,when ε⟶ 0.

(58)

*en, by (57), the following variational inequality holds:

Jρ u
ρ,ε

(  − Jρ u
ρ

(  +
�
ρ

√
d u

ρ,ε
, u

ρ
( 

�
J2ρ uρ,ε( ) − J2ρ uρ( )

Jρ uρ,ε( ) + Jρ uρ( )
+ ε

�
ρ

√

�〈hρ,ε
1 , E G1x x

ρ
T(  X

ρ
T〉 +〈hρ,ε

0 , E G0y y
ρ
0(  Y

ρ
0〉

+ h
ρ,ε

E cy y
ρ
0( Y

ρ
0  + ε

�
ρ

√
+ o(ε),

(59)

where

h
ρ,ε
1 �

2E G1 x
ρ
T(  

Jρ uρ,ε( ) + Jρ uρ( )
,

h
ρ,ε
0 �

2E G0 y
ρ
0(  

Jρ uρ,ε( ) + Jρ uρ( )
,

h
ρ,ε

�
2E c y

ρ
0(  − c y0(  + ρ 

Jρ uρ,ε( ) + Jρ uρ( )
.

(60)

Now, let (p
ρ,ε
t , q

ρ,ε
t , w

ρ,ε
t , k

ρ,ε
t ) be the solution of

− dp
ρ,ε
t � b

ρ
x(t)( 

τ
p
ρ,ε
t − f

ρ
x(t)( 

τ
q
ρ,ε
t + σρx(t)( 

τ
w

ρ,ε
t + 
∞

i�1
g
ρ
x(t)( 

τ
k
ρ,ε
t )i

 dt,

− w
ρ,ε
t dBt − 

∞

i�1
k
ρ,ε
t( 

idHi
t,

dq
ρ,ε
t � f

ρ
y(t)( 

τ
q
ρ,ε
t dt + f

ρ
z(t)( 

τ
q
ρ,ε
t dBt + 

∞

i�1
f
ρ,i
r (t) 

τ
)q

ρ,ε
t dHi

t,

q0 � − G0,y y
ρ
0( h

ρ,ε
0 + cy y

ρ
0( hρ,ε, pT � G1x x

ρ
T( h

ρ,ε
1 − Φx x

ρ
T( q

ρ,ε
T , t ∈ [0, T].

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(61)
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Here, b
ρ
x(t) � bx(t, x

ρ
t , u

ρ
t ), σρx(t) � σx(t, x

ρ
t ),

f
ρ
y(t) � fy(t, x

ρ
t , y

ρ
t , z

ρ
t , r

ρ
t , u

ρ
t ), etc. Applying It o,s formula

to 〈X
ρ
t , q

ρ,ε
t 〉 + 〈Y

ρ
t , p

ρ,ε
t 〉, variational inequality (59) can be

rewritten as

H t, x
ρ
t , y

ρ
t , z

ρ
t , r

ρ
t , u

ρ,ε
t , p

ρ,ε
t , q

ρ,ε
t , w

ρ,ε
t , k

ρ,ε
t( 

− H t, x
ρ
t , y

ρ
t , z

ρ
t , r

ρ
t , u

ρ
t , p

ρ,ε
t , q

ρ,ε
t , w

ρ,ε
t , k

ρ,ε
t( 

+ ε
�
ρ

√
+ o(ε)≥ 0, ∀vt ∈ U, a.e., a.s.,

(62)

where the Hamiltonian function H is defined as (44). Since

limε⟶0 h
ρ,ε
0



2

+ h
ρ,ε
1



2

+ h
ρ,ε


2

  � 1, (63)

there exists a convergent subsequence, still denoted by
(h

ρ,ε
0 , h

ρ,ε
1 , hρ,ε) such that (h

ρ,ε
0 , h

ρ,ε
1 , hρ,ε)⟶ (h

ρ
0, h

ρ
1, hρ) when

ε⟶ 0 with |h
ρ
0|
2 + |h

ρ
1|
2 + |hρ|2 � 1.

Let (p
ρ
t , q

ρ
t , w

ρ
t , k

ρ
t ) be the solution of

− dp
ρ
t � b

ρ
x(t)( 

τ
p
ρ
t − f

ρ
x(t)( 

τ
q
ρ
t + σρx(t)( 

τ
w

ρ
t + 
∞

i�1
g
ρ
x(t)( 

τ
k
ρ
t )i

 dt,

− w
ρ
tdBt − 

∞

i�1
k
ρ
t( 

idHi
t,

dq
ρ
t � f

ρ
y(t)( 

τ
q
ρ
tdt + f

ρ
z(t)( 

τ
q
ρ
tdBt + 

∞

i�1
f
ρ,i
r (t) 

τ
 q

ρ
tdHi

t,

q0 � − G0,y y
ρ
0( h

ρ
0 + cy y

ρ
0( hρ, pT � G1x x

ρ
T( h

ρ
1 − Φx x

ρ
T( q

ρ
T, t ∈ [0, T].

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(64)

From the continuous dependence of the solutions of
FBSDEs with Lévy process on the parameters, we can prove
that the following convergence holds:
(p

ρ,ε
t , q

ρ,ε
t , w

ρ,ε
t , k

ρ,ε
t )⟶ (p

ρ
t , q

ρ
t , w

ρ
t , k

ρ
t ); then, in equation

(62), it implies that

H t, x
ρ
t , y

ρ
t , z

ρ
t , r

ρ
t , vt, p

ρ
t , q

ρ
t , w

ρ
t , k

ρ
t( 

− H t, x
ρ
t , y

ρ
t , z

ρ
t , r

ρ
t , u

ρ
t , p

ρ
t , q

ρ
t , w

ρ
t , k

ρ
t( 

+
�
ρ

√ ≥ 0, ∀vt ∈ U, a.e., a.s..

(65)

Similarly, there exists a convergent subsequence
(h

ρ
0, h

ρ
1, h

ρ
) such that (h

ρ
0, h

ρ
1, h

ρ
)⟶ (h0, h1, h) when

ρ⟶ 0 with |h0|
2 + |h1|

2 + |h|2 � 1. Since u
ρ
t⟶ u∗t , as

ρ⟶ 0, we have (x
ρ
t , y

ρ
t , z

ρ
t , r

ρ
t )⟶ (x∗t , y∗t , z∗t , r∗t ) and

(X
ρ
t , Y

ρ
t , Z

ρ
t , R

ρ
t )⟶ (Xt, Yt, Zt, Rt), which is the solution of

the variational equation as same as (6).
*e following adjoint equation is introduced:

− dpt � bx(t)( 
τ
pt − fx(t)( 

τ
qt + σx(t)( 

τ
wt + 
∞

i�1
gx(t)( 

τ
kt)

i
 dt,

− wtdBt − 
∞

i�1
kt( 

idHi
t,

dqt � fy(t) 
τ
qtdt + fz(t)( 

τ
qtdBt + 

∞

i�1
f
ρ,i
r (t) 

τ
 qtdHi

t,

q0 � − G0,y y0( h0 + cy y0( h, pT � G1x xT( h1 − Φx xT( qT, t ∈ [0, T].

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(66)

Similarly, it can be proved that
(p

ρ
t , q

ρ
t , w

ρ
t , k

ρ
t )⟶ (pt, qt, wt, kt); then, inequation (65)

implies
H t, x

∗
t , y
∗
t , z
∗
t , r
∗
t , vt, pt, qt, wt, kt( 

− H t, x
∗
t , y
∗
t , z
∗
t , r
∗
t , u
∗
t , pt, qt, wt, kt( ≥ 0,∀vt ∈ U, a.e., a.s..

(67)

*en, we get the following theorem:

Theorem 2. Let Assumptions 1–3 hold; u∗t is an optimal
control, and the corresponding optimal state trajectories are
(x∗t , y∗t , z∗t , r∗t ), and (pt, qt, wt, kt) is the solution of adjoint

equation (66); then, there exists nonzero constant
(h1, h0, h) ∈ (Rn1 × Rm1 × R) with |h0|

2 + |h1|
2 + |h|2 � 1

such that, for any admissible control vt ∈ Uad[0, T], the
maximum condition (67) holds.

9is conclusion can be drawn from the above analysis
directly.

5. A Financial Example

In this section, we will study the problem of optimal con-
sumption rate selection in the financial market, which will
naturally inspire our research to the forward-backward
stochastic optimal control problem in Section 3.
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Assume the investor’s asset process xt (t≥ 0) in the fi-
nancial market is described by the following stochastic
differential equation with the Teugels martingale:

dxt � μtxt − Ct dt + σtxtdBt + 
∞

i�1
gi

txtdHi
t,

x0 � W> 0, t ∈ [0, T],

⎧⎪⎪⎨

⎪⎪⎩
(68)

where μt and σt ≠ 0 are the expected return and volatility of
the value process xt at time t, respectively, and Ct is the
consumption rate process. Assume μt, σt, gt, and Ct are all
uniformly bounded Ft− measurable random processes. *e
purpose of investors is to select the optimal consumption
strategy C∗t at time t≥ 0, minimizing the following recursive
utility:

J(C(·)) � E y0 , (69)

where yt is the following backward stochastic process:

− dyt � Le− rt
C1− R

t

1 − R
− ryt dt − ztdBt − 

∞

i�1
ri

tdHi
t,

yT � − xT > 0, t ∈ [0, T],

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(70)

with constant L> 0, the discount factor r> 0, and the
Arrow–Pratt measure of risk aversion R ∈ (0, 1).

If the consumption process Ct is regarded as a control
variable, then combining (68) with (70), we encounter the
following control system:

dxt � μtxt − Ct dt + σtxtdBt + 
∞

i�1
gi

txtdHi
t,

− dyt � Le− rt
C1− R

t

1 − R
− ryt dt − ztdBt − 

∞

i�1
ri

tdHi
t,

x0 � W> 0, yT � − xT > 0, t ∈ [0, T],

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(71)

which is obviously a special case of stochastic control system
(2) with b(t, x, u) � μtxt − Ct, σ(t, x) � σtxt, g(t, x) �

gi
txt, Φx(xT) � − XT and f(t, x, y, z, r, u) � Le− rt(C1− R

t /
(1 − R)) − ryt.

We can check that both Assumptions 1 and 2 are sat-
isfied.*en, we can use ourmaximum principle (*eorem 1)
to solve the above optimization problem. Let C∗t be an
optimal consumption rate and x∗t , y∗t be the corresponding
wealth process and recursive utility process. In this case, the
Hamiltonian function H reduces to

H t, x
∗
t , y
∗
t , Ct, p

∗
t , q
∗
t , w
∗
t , k
∗
t(  �〈p∗t , μtx

∗
t − Ct〉

+〈w∗t , σtx
∗
t 〉 +〈k∗t , g

i
tx
∗
t 〉 − 〈q∗t , Le

− rt C1− R
t

1 − R
− ry
∗
t 〉,

(72)

and (p∗t , q∗t , w∗t , k∗t ) is the solution of the following adjoint
equation:

dqt � rqtdt

− dpt � μtpt + σtwt + 
∞

i�1
ki

t( 
τ
gi

t dt − wtdBt − 
∞

i�1
ki

tdHi
t,

q0 � 1, pT � qT, t ∈ [0, T].

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(73)

According to the maximum principle (47), we have

p
∗
t � − Le

− rt
C
∗
t( 

− R
q
∗
t , (74)

and the optimal consumption rate

C
∗
t � −

ert

L

p∗t
q∗t

 

− 1/R

. (75)

By solving FBSDE (73), we get q∗t � ert, p∗t � erteμ(T− t),
and w∗t � k∗t � 0. *en, we get the optimal consumption
rate of the investor which is

C
∗
t � −

erT

L
e
μ(T− t)

 

− 1/R

, t ∈ [0, T]. (76)

6. Conclusions

In this paper, a nonconvex control domain case of the
forward-backward stochastic control driven by Lévy process
is considered, and we obtain the global stochastic maximum
principle for this stochastic control problem. And then, the
problem of stochastic control with initial and final state
constraints on the state variables is discussed, and a nec-
essary condition about existence of the optimal control is
also acquired. A financial example of optimal consumption
is discussed to illustrate the application of the stochastic
maximum principle.
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