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Ultrawideband (UWB) is well-suited for indoor positioning due to its high resolution and good penetration through objects. )e
observation model of UWB positioning is nonlinear. As one of nonlinear filter algorithms, extended Kalman filter (EKF) is widely
used to estimate the position. In practical applications, the dynamic estimation is subject to the outliers caused by gross errors.
However, the EKF cannot resist the effect of gross errors. )e innovation will become abnormally large and the performance and
the reliability of the filter algorithm are inevitably influenced. In this study, a robust EKF (REKF) method accompanied by
hypothesis test and robust estimation is proposed. To judge the validity of model, the global test based on Mahalanobis distance is
implemented to assess whether the test statistical term exceeds the threshold for outlier detection. To reduce and eliminate the
effects of the individual outlier, the robust estimation using scheme III of the Institute of Geodesy and Geophysics of China
(IGGIII) based on local test of the normalized residual is performed. Meanwhile, three kinds of stochastic models for outliers are
expressed by modeling the contaminated distributions. Furthermore, the simulation and measurement experiments are per-
formed to verify the effectiveness and feasibility of the proposed REKF for resisting the outliers. Simulation experiment results are
given to demonstrate that the outliers following all the three kinds of contaminated distributions can be detected. )e proposed
REKF can effectively control the influences of the outliers being treated as systematic errors and large variance random errors.
When the outliers come from the thick-tailed distribution, the robust estimation does not play a role, and the REKF are equivalent
to the EKFmethod.)emeasured experiment results show that the outliers will be generated in the nonline-of-sight environment
whose impact is abnormally serious. )e robust estimation can provide relatively reliable optimized residuals and control the
influences of the outliers caused by gross errors. We can believe that the proposed REKF is effective to resist the effects of outliers
and improves the positioning accuracy compared with least-squares (LS) and EKF method. Moreover, the adaptive filter and
ranging error model should be considered to compensate the state model errors and ranging systematic errors respectively. )en,
the measurement outliers will be detected more correctly, and the robust estimation will be used effectively.

1. Introduction

High accuracy position information is of great importance in
location-based service (LBS). Due to a large bandwidth,
ultrawideband (UWB) can obtain high-resolution distance
estimation and enables reliable distance estimation [1].
)erefore, UWB is well-suited for indoor positioning

applications. )e observation model of UWB positioning is
nonlinear. )e approximate solutions can be obtained it-
eratively based on Taylor’s expansion of nonlinear distance
equations [2, 3]. As a standard method for solving general
nonlinear equations, the Gauss–Newton iteration is efficient
and has a linear convergence rate for points close to the
solution [4]. However, in this procedure, only the
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measurements at the discrete epoch are employed to esti-
mate the positions. )is approach wastes the useful state
model information which describes the dynamic process.
)e Kalman filter (KF) has been applied in the area of
dynamic positioning. It makes full use of the information of
the state model. When the process and measurement noises
are Gaussian distribution, it can be proven that KF is un-
biased and consistent, and it is optimal in the linear system
[5]. In practical applications, most of the dynamic state is
nonlinear system, and many nonlinear filter algorithms are
developed, such as extended Kalman Filter (EKF), Un-
scented Kalman Filter (UKF), and Particle Filter (PF) [6]. As
a standard filter algorithm of nonlinear estimation, EKF
simply linearizes the nonlinear observation equation. )e
distribution is propagated through the first-order expression
of the nonlinear system. Because of neglecting the high order
items of the expansion, the linearization error is introduced
[7].

In practical applications, an unbiased estimation of the
positioning result will be expected. On one hand, the esti-
mation of filter algorithms is affected by the model errors.
When the dynamic system model is not accurate, the per-
formance and the reliability of the filter algorithms are
inevitably influenced. To compensate the model errors, one
common way is to introduce the corresponding parameters
into the state and observation functional model [8]. How-
ever, this approach may introduce wrong or insufficient
parameters. Besides, too many input parameters will lead to
the high dimension state vector, and this may result in the
increasing computation load and rank defect model [9]. An
adaptive fitting method for systematic errors of the obser-
vations and kinematic model errors is presented to resist the
influences of systematic errors on the estimated states of
navigation. )e systematic errors are fitted with a mean or a
weighted mean by using the residuals of observations and
residuals of predicted states within a chosen time window
[10, 11]. Another way for compensating the model errors is
to introduce suitable covariance matrix in the stochastic
model. However, good priori knowledge of the process and
measurement information is difficult to obtain, and an in-
effective covariance matrix will cause greater error or even
filtering divergence. An innovation-based adaptive Kalman
filter for integrated navigation is developed, and the adaptive
Kalman filter is based on the maximum likelihood criterion
for the proper choice of the filter weight [12]. An adaptive
fading Kalman filter based on Mahalanobis distance is
proposed, and this method has a stronger tracking ability to
the true state than the standard Kalman filter in the presence
of modeling errors [13].

On the contrary, the positioning estimation is subject to
different environmental error factors, including signal
blockage, multipath, and thermal noise. According to the
cause of the error, it is divided into gross error, systematic
error, and random error. )e gross error is very different
from the assumed stochastic model and is a small probability
event. )e systematic error which is exact value or changes
with the lawmainly affects the accuracy of the measurement.
)e random error occurs randomly and obeys the statistical
model. It has a certain influence on the precision.)e data is

contaminated by the outliers, which is non-Gaussian dis-
tribution and heavy-tailed distribution [14]. Two categories
of advanced techniques have been developed for treating the
observations contaminated by outliers, one is the outlier
detection method based on the statistical test and the other is
the robust estimation method [15]. Statistical test or model
errors, outliers, and biases usually consists of detection,
identification, and adaptation (DIA) step which is an im-
portant diagnostic tool for data quality control [16].)e DIA
method combines parameter estimation with hypothesis
test, and parameter estimation is conducted to find estimates
of the parameters one is interested in and testing is con-
ducted to remove any biases that may be present [17]. Under
the assumption with Gaussian distribution, the weighted
sum of squared residuals follows the noncentral Chi-squared
distribution for the global model test [18, 19]. To screen each
individual observation for an outlier, the data snooping
based on the local model test is implemented [20, 21]. A
robust Kalman filter scheme based on the Chi-square test is
proposed to resist effectively the influence of observation
error including the outliers in the actual observations and
the heavy-tailed distribution of the observation noise, so
robustness can be achieved [22]. Different robust filter
approaches are adopted for solving the measurement out-
liers. A robust Kalman filter based on the m-interval
polynomial approximation (MIPA) method for unknown
non-Gaussian noise is proposed, and the MIPA Kalman
filter is computationally feasible, unbiased, more efficient,
and robust [23]. )e robust Kalman filter is obtained by
Bayesian statistics and by applying a robust M-estimate for
rank deficient observation models. )e outliers are down-
weighted not only in the observations but also in the updated
parameters [24]. A general estimator for an adaptively ro-
bust filter is developed. )is method can not only resist the
influence of outlying kinematic model errors but also
controls the effect of measurement outliers [25]. An adaptive
method with fading memory and a robust method with
enhancing memory is proposed in the Kalman filter. )e
method has the ability of strongly tracking the variation of
the state and is insensitive to gross errors in observation [26].
A robust version of the Kalman filter to address process
modeling errors in the linear system with rank deficient
measurement models is developed using the generalized
maximum likelihood estimator (M-estimator) [27]. A robust
unscented Kalman filter based on the generalized M-esti-
mation is proposed to improve the robustness of the inte-
grated navigation system. )e filter has the ability to
suppress the effects of outliers from both the dynamic model
and measurements on dynamic state estimates [28].

In this study, the discussion will be restricted to the
problem of resisting the observations contaminated by
outliers. A robust EKF (REKF) method is proposed ac-
companied by hypothesis test and robust estimation. )e
main feature of this proposed method consists of two parts.
One is the global test based on Mahalanobis distance for
outlier detection. )e hypothesis test is carried out for
testing the model. )e other is the robust estimation using
scheme III of the Institute of Geodesy and Geophysics of
China (IGGIII) based on the local test of the normalized
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residual. )e outliers are resisted by the equivalent weights
according to the discrepancy between the model and the
measurements.

)e remainder of this paper is organized as follows. In
Section 2, the nonlinear least-squares (LS) solution of
overdetermined distance equations and the extended Kal-
man filter are introduced. In Section 3, the REKF method is
proposed. )ree kinds of contaminated distributions are
illustrated. In Section 4, the effectiveness of proposed REKF
is verified and analyzed by the numerical examples. In
Section 5, the conclusions are summarized.

2. The Extended Kalman Filter

)e distance equation of UWB positioning is given as [29]

Li � di(X) + εi, (i � 1, 2, · · · , n), (1)

where Li denotes the observation distance between the tag
and ith anchor; L � L1 L2 · · · Ln 

T denotes the obser-

vation vector; di(X) �

��������������������������

(xi − x)2 + (yi − y)2 + (zi − z)2


is
the Euclidean distance; εi represents the corresponding
random error; and (xi, yi, zi) is the known coordinate of ith
anchor. (x, y, z) is the coordinate of tag.

When the state model is not considered and the non-
linear equations are overdetermined, the nonlinear solution
of distance equation is to find X � argminX g(X), where
g(X) � VT(X)V(X)/2, in which V(X) � d(X) − L repre-
sents the residual vector [30].

)e approximate solutions can be obtained iteratively
based on the linearized distance equations. With a rough
initial value, we can obtain the LS solution by the way of
Gauss–Newton method with iterations, and the LS solution
can be written as

Xk+1 � Xk + JTJ 
−1
JTV, (2)

where J � eT1 eT2 · · · eTn 
T
is the Jacobian matrix of dis-

tance equations and ei � [x − xi, y − yi, z − zi]/di(X) is the
direction cosine vector from the tag to the anchor.

)e Gauss–Newton method only includes the first-order
Taylor expansion of distance equations. )e linearization of
the positioning observation model results in biased LS es-
timators. )e bias comes from neglected higher order terms,
which can be regarded as a systematic error. It will be re-
alized that the parameter estimator tends to be unbiased with
a sufficiently small relative ranging error or a good posi-
tioning configuration. )is makes the bias totally negligible.

When the state model is considered, the state and ob-
servation models of the nonlinear system are expressed as

Xk � F Xk−1(  + ωk,

Yk � H Xk(  + Δk,
 (3)

where Xk−1 and Xk represent the state vector of system at
epoch k− 1 and k; Yk is the observation vector of system at
epoch k; F(·) and H(·) is the nonlinear state transition
function and observation function; ωk and Δk are process
noise and observation noise, both of them are uncorrelated

Gaussian white noise, where Qk and Rk are corresponding
covariance.

By linearizing the state model and observation model, we
combine the linear dynamic system and first-order observa-
tion equations, and the model of EKF can be expressed as [9]

Xk � Φk/k−1Xk−1 + ωk,

Yk � HkXk + Δk,
 (4)

whereΦk/k−1 andHk are the state transition and observation
matrices, respectively.

)e EKF implementation can be written as follows.
)e predicted state and covariance matrix can be cal-

culated as
Xk/k−1 � Φk/k−1

Xk−1,

Pk/k−1 � Φk/k−1Pk−1ΦT
k/k−1 + Qk−1.

⎧⎨

⎩ (5)

)e Kalman filter gain can be written as

Kk � Pk/k−1H
T
k HkPk/k− 1H

T
k + Rk 

− 1
. (6)

)e estimated state vector and posterior covariance
matrix can be expressed as

Xk � Xk/k−1 + Kk Yk − Hk
Xk/k−1 ,

Pk � I − KkHk( Pk/k−1.

⎧⎨

⎩ (7)

3. The Robust Extended Kalman Filter
Accompanied by Hypothesis Test and
Robust Estimation

)e UWB positioning data influenced by outliers do not
fulfill the assumed stochastic model of extended Kalman
filter, and it can be a potential problem for parameter es-
timation. A robust extended Kalman filter should be applied
to resist the effects of measurement outliers. Firstly, we
perform the global test based on Mahalanobis distance for
outlier detection. )en, the robust estimation using the
IGGIII scheme based on local test of the normalized residual
is implemented. Furthermore, the stochastic model for
outliers in the measurement process is expressed.

3.1. 4e Global Test Based on Mahalanobis Distance for
Outlier Detection. )e global model test is used to detect
discrepancies between the measurements and the functional
and stochastic models [31]. For outlier detection, a judging
index is defined as the square of the Mahalanobis distance
from the observation to its prediction, and the hypothesis
test is performed by treating the judging index as the test
statistic [22]. )e test statistic term can be written as

λ � D
2
M �

���������������������

Yk − Y−
k( 

T
P−

y,k
Yk − Y−

k( 



 

2

,

�
�������
ηTk P−

y,kηk


 

2
,

� ηTk P
−
y,kηk,

(8)
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where DM �
�������
ηTk P−

y,kηk


denotes theMahalanobis distance, λ

is the test statistic term, and ηk is the innovation vector.
)e hypothesis test can be carried out for testing the

model. )e null hypothesis is that the stochastic model of
parameter estimation is correct, and the observations do not
contain gross error and obey Gaussian distribution. )e
alternative hypothesis is that there is at least one mea-
surement outlier caused by gross error in the data. )en, the
probability of null hypothesis being rejected satisfies

P(λ> c) � α, (9)

where c is predetermined score by the chosen level α of
significance based on Chi-square distribution table. )e
small significance level is chosen, the more frequently we will
incline to accept the null hypothesis. A good hypothesis test
for outlier detection would minimize the probabilities of
decision error. )e test statistic term can be a measure of
significance.

When the innovation is normal, the test statistic term λ is
smaller than the threshold c of the test statistic, and λ should
be Chi-square distributed with the dimension of the ob-
servation vector as the degree of freedom (DOF). )e null
hypothesis is confirmative. If λ is larger than c, the value of
test statistic will fall in the right tail area of the distribution,
and the null hypothesis will be rejected. We can believe that
the outliers in the observation do occur and the stochastic
model of observation error is not correct. )e test statistic
term will follow a noncentral Chi-square distribution with
noncentral parameter.

3.2.4e Robust Estimation Using the IGGIII Scheme Based on
LocalTest of theNormalizedResidual. If the global test rejects
the null hypothesis, it shows that the model does not
conform with the specifications. We should find and
eliminate the individual outlier, and the local test is per-
formed. For the outlier detection, the null hypothesis is that
there is no observation affected by outliers. )e alternative
hypothesis is that there is an outlier in one known obser-
vation [32]. )e normalized residual of jth observation in
the observation vector constructed as a test statistic term is
given as

sj �
vj

σvj

�
vj

σ0
����
qvj,vj

 ∼ N(0, 1), (10)

where vj � Yk,j − Y−
k,j is the prediction residual, σ0 is

standard deviation of residual, σ0 is standard deviation of
observation, and qvj,vj

is the cofactor matrix corresponding
to the prediction residual.

If the observations are contaminated by the outliers, the
covariance should be inflated. To control the influence of the

outliers, the equivalent weight elements based on the IGGIII
which are established based on theM-estimation are applied
[33]. In fact, some existing equivalent weight functions can
be used to calculate the equivalent weight element. )e
robust gain matrix factor of Kalman filter can be written as
[34]

Kij �

Kij, sj ≤ k0,

Kij ×
k0

sj

×
k1 − sj

k1 − k0
 

2

, k0 < sj ≤ k1,

0, sj > k1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

where k0 � 3.5 and k1 � 4.5 are two constants, which are
usually determined based on the objective requirement, and
i represents the i th element in the state vector.

3.3. 4e Stochastic Model for Outliers. )e stochastic model
is expressed by modeling the distribution and introducing a
prior covariance matrix of the observations. We assume the
measurement errors obey the normal distribution which is
an independent Gaussian variable with zero mean and equal
variance. )e probability density function (PDF) reads

f x, μ, σ2s  �
1

σs

���
2π

√ exp −
(x − μ)2

2σ2s
 , (12)

where x is the random variable, μ is the expectation of the
observation which reflects the average value of random
variables, and σs is the standard deviation which indicates
the dispersion degree of random variables.

In general, outliers require special attention in data
analysis, the outliers are most often caused by gross errors
and gross errors are most often caused outliers. )e outliers
are the result of twomechanisms. Onemechanism is that the
observations errors obey the normal distribution, but the
gross errors follow a different distribution. )e gross errors
which contribute to the outliers can be treated as systematic
errors and large variance random errors. Another one is that
both the observations’ random errors and gross errors come
from the thick-tailed distribution. )e outliers come from
the tails of the distribution [31]. Note that an extreme ob-
servation may not be an outlier, and it may instead be an
indication of skewness of PDF. )ree kinds of contaminated
distributions can be expressed as follows.

If the observations are contaminated by the gross errors,
the outliers are treated as systematic errors, and the PDF can
be obtained as location-contaminated normal distribution
[35]:

f x, μ + εg, σ2s , p  �
1

σs

���
2π

√ (1 − p)exp −
(x − μ)2

2σ2s
  + p exp −

x − μ − εg 
2

2σ2s
⎛⎝ ⎞⎠⎛⎝ ⎞⎠, (13)
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where εg is the gross errors, which is a kind of gross error
generated by adding a bias to the random variable, and p is
the probability of gross errors in the total observations.

If the outliers are treated as random variables with large
variance, the PDF is given as scale-contaminated normal
distribution [36]:

f x, μ, σ2s + σ2g, p 
1
���
2π

√
(1 − p)

σs

exp −
(x − μ)2

2σ2s
  +

p
������
σ2s + σ2g

 exp −
(x − μ)2

2σ2s
 ⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠, (14)

where σ2g is the variance of gross errors, and this kind of
gross error is obtained by increasing the variance in the
random variable.

)e Laplace distribution is introduced to express the
nonnormal distributed gross error. )e Laplace distribution
has the heavier tail than the normal distribution. It is also
called the double exponential distribution. We can consider
it as a result of variance inflation. )e PDF can be expressed
as [37]

f x, μ, σ2  �
1
2σ

exp −
|x − μ|

σ
 , (15)

where σ is the scale parameter of the model, and the kurtosis
of this distribution is 3.

4. Numerical Examples

In this section, the simulation and measurement experi-
ments are carried out for evaluating the performance of
proposed REKF method for UWB Positioning. )e LS
procedure is performed first to provide the initial state es-
timates and then the state estimates are updated by the filter.
Meanwhile, the individual positioning results of the three
methods LS, EKF, and REKF are counted and compared.

4.1. Simulation Verification. In order to realize positioning
application, the anchors are distributed in four upper cor-
ners of space. )e performance of the REKF is analyzed
based on three sets of tests with the three kinds of stochastic
models for outliers. )e positioning accuracy are obtained
by calculating the RMS (root mean square). )e simulation
experimental scene and the test trajectory are shown in
Figure 1.

For the first set of test, the outliers for this stochastic
model are biased, and we can simulate the observations with
the systematic errors and random errors. )e systematic
errors are regarded as gross errors, and they are randomly
added to certain epochs.)e significance level for testing the
model is predetermined 0.01. )e probability of gross errors
in the total observations is set to 0.05.

To check the model error for outlier detection, the hy-
pothesis test based onMahalanobis distance is implemented.
It is used to assess whether the outliers are in the obser-
vation. )e result of test and the threshold are compared in
Figure 2.We can see that the test statistics are relatively small
in most epochs, but some epochs still exceed the threshold.
)e outliers are outstanding and can be easily detected. It
indicates that the outliers in these observations do occur.)e

statistical results of positioning error for all epochs are
shown in Figure 3.)e statistical results of mean positioning
error are given in Figure 4. It can be observed that the LS and
EKF estimation are not effective and the observations are
contaminated by the gross errors. Besides, EKF estimates are
better than LS due to considering dynamic model infor-
mation. )e REKF proposed in this paper consists of the
hypothesis test and robust estimation. )e hypothesis test
detects the outliers in the observation.)e robust estimation
can provide reliable residuals and control the influences of
the outliers. We can believe that the REKF is effective to
resist the effects of outliers being treated as systematic errors.

For the second set of test, the outliers for this stochastic
model are due to large variance random errors which can be
seen as gross errors. We can simulate a certain percentage of
large variance random errors in the total observations.
Similarly, the significance level for testing the model is
predetermined 0.01. Meanwhile, four sets of scale-con-
taminated normal distributions for outliers are conducted:
(σg � 20, p � 0.05) (Case 1), (σg � 20, p � 0.10) (Case 2),
(σg � 40, p � 0.05) (Case 3), and (σg � 40, p � 0.10) (Case
4).

As shown in Figure 5, the hypothesis test is carried out to
compare the test statistic term of four cases. We can see that
the number of epochs exceeding the threshold in Case 4 is
the most and the number of epochs in Case 1 is the least. It
makes us known that the larger the covariance of the gross
errors, the more the number of outliers. )e larger the
proportion of gross errors in the total observations is, the
more the number of outliers will be.

)e statistical results of positioning error for all epochs
in four cases are shown in Figure 6. )e statistical results of
mean positioning error in four cases are given in Figure 7.
)e positioning performance of Cases 1 to 4 can be ranked
from good to poor. It is shown that the gross errors with
larger covariance greatly affect the positioning results of a
few epochs when the proportion of gross errors in the total
observations is same. Comparing Case 1 and Case 3 or
compare Case 2 and Case 4, it can be observed that those
gross errors with larger covariance have a great influence on
the mean positioning error of LS and EKF, but the mean
positioning error of REKF in two cases are very close. It
indicates that the frequency that robust estimation is called is
consistent. REKF can resist the influence of gross errors
equally and effectively in despite of different covariance.
Furthermore, the larger proportion of gross errors in the
total observations will affect the positioning results of more
epochs when the covariance of the gross errors is equal.
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Comparing Case 1 and Case 2 or compare Case 3 and Case 4,
it can be seen that those gross errors that account for a larger
proportion of the observations have corresponding influ-
ence on the mean positioning error of LS, EKF, and REKF. It
can be known that the robust estimation is called more times
in REKF in Cases 2 and 4.)is also increases the positioning
error of some epochs and leads to the larger mean posi-
tioning error of REKF in Cases 2 and 4.

For the third set of test, the outliers for this stochastic
model come from the tails of the distribution. We can
simulate the observations with Laplace distribution.
Both the random errors and gross errors come from the
distribution. In order to detect more outliers, the sig-
nificance level for testing the model is predetermined
0.05.
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Figure 8 represents the hypothesis test for outlier de-
tection based on Mahalanobis distance. We can see that the
test statistics of some epochs exceed the threshold and the
outliers exist in the observations. Figure 9 shows the sta-
tistical results of positioning error for all epochs. Figure 10
illustrates the statistical results of mean positioning error. It
can be seen that the positioning error of LS is also the largest,
and the REKF works as well as EKF. It demonstrates that the
robust estimation does not play a role in resisting gross

errors and the REKF does not reduce the effects of the thick-
tailed distributed outliers.

)rough the above analysis, we can verify that the
performance of the proposed REKF is superior or not in-
ferior to EKF under the condition that the outliers exist.
Moreover, we note that the test statistics of initial epoch of
the three sets of tests exceed the threshold. It can be known
that it is the condition that reaches asymptotic stability of
Kalman filter algorithm.
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4.2. Measurement Verification. Figure 11 represents the
UWB sensor network positioning system based on the
DecaWave Mini2016 suite, including the anchor and tag
nodes. By determining the time of flight (TOF) of signals
travelling between the anchor and tag, the ranging mea-
surements in these transceivers is performed based on the
two way ranging (TWR).

In the measurement experiment, the test trajectory and
the experimental scene are shown in Figure 12. )e ex-
perimental scene is an empty hall of 10 meters by 18 meters.
)e anchor nodes are placed on a tripod of the same antenna
height.)e tester walked along the predetermined trajectory.

)ree sets of tests are conducted as follows. In Test 1, the
tag node is mounted on the top of the helmet, which is worn
on the head of tester in a dynamic situation. Compared with
Test 1, during the testing process, the relevant external
personnel enter the experiment field and walk randomly for
interfering signal in Test 2. In Test 3, the tag node is on the
waist of tester, and there are no relevant personnel entering
the experiment field.

As shown in Figure 13, the hypothesis test is implemented
for outlier detection. In Test 1, we find that although there is no
external interference, and there are still some epochs whose test
statistic terms exceed the threshold. Combined with the

statistical position results which are shown in Figure 14, we can
see that the test statistic terms at the corners are relatively large.
)e main cause is that the state model is not reasonable to
describe the dynamic process. )is leads to larger prediction
residuals, and the robust estimation of the proposed REKF
method will be invoked to resist the mistaken gross errors.)is
not only does not have the robust effect but also increases the
positioning error. In this case, the adaptive filter is generally
used to compensate the state model errors. Moreover, during
the positioning process, the positioning estimation is subject to
different error sources, including gross errors, systematic er-
rors, and random errors. Although the hardware devices adopt
the principle of TWR without a common time reference, the
clock drift and offset still affect the ranging systematic errors.
Meanwhile, the positioning system is prone to become ill-
posed. )e performance and the reliability of the positioning
algorithms are inevitably influenced. It causes the residuals of
the filtering algorithm increasing, and the test statistic terms of
a few epochs exceed the threshold. In practical applications, the
systematic errors should be modeled, and its influence should
be weakened as far as possible.

In Test 2, the test statistic terms of some epochs have
exceeded the threshold similar to Test 1, two of which are
particularly large and outstanding. It makes us know that the
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Figure 9: )e statistical results of positioning error.
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(a) (b)

Figure 11: )e anchor (a) and tag (b) hardware devices.
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signal transmission between the anchor and the tag is sig-
nificantly affected by external personnel in these two epochs.
)en, the gross errors are generated due to the influence of
the nonline-of-sight (NLOS) propagation. Meanwhile, the
position statistical results indicate that the proposed REKF
improve the positioning accuracy compared with EKF and
LS. )e robust estimation can provide relatively reliable
optimized residuals and control the influences of the outliers
caused by gross errors. In Test 3, although there is no ex-
ternal influence, the tag wearing position will influence the
signal propagation throughout. Compared with Test 2, its
impact is abnormally serious and the generated gross errors
are very large. )e outliers are outstanding and can be easily
detected. Similarly, it can be observed that the robust esti-
mation is carried out to reduce the prediction residual. We
can believe that the REKF is effective to resist the effects of
outliers.

5. Conclusions

)e main goal of this paper is to verify the effectiveness of
proposed REKF. It provides a reference to realize the reli-
ability of filter algorithm applied to UWB positioning. )e
LS estimator has been widely applied in kinematic posi-
tioning. )is method can resist the dynamic model error.
However, it only determines the discrete position based on
the observation model, but wastes the dynamic model in-
formation. As a generalization of the LS estimator, EKF
obtains the better positioning performance by solving the
linear dynamic system and observation equations. However,
both LS and EKF which minimize the sum of the residuals
are sensitive to the outliers. )e performance and the re-
liability of the filtering algorithm are inevitably influenced
when the measurements are contaminated by the outliers.
)e proposed REKF accompanied by hypothesis test and
robust estimation is applied to process the observations
being contaminated by the outliers. In the procedure, the
outliers are detected by the hypothesis test, and then the

outliers are controlled by the robust estimation based on the
robust equivalent weights. It will be realized that the pro-
posed REKF has better performance when the outliers are
the systematic errors and large variance random errors. )e
REKF works as well as the EKF when the Laplace distri-
bution accounts for the outliers. Although the outliers
existing in the observations are effectively detected, the
robust estimation does not play a role. )e REKF performs
not well in the thick-tailed distributed outliers. For the thick-
tailed distributed outliers, LS adjustment is not suitable.
Furthermore, in practical positioning services, the mea-
surements are complex due to the different error sources. It
is necessary to perform quality analysis and preprocessing
on the raw observations. )e better performance can be
obtained.
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