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In this article, it is pointed out that the existing intuitionistic fuzzy and T-spherical fuzzy Einstein averaging and geometric
operators have some limitations. To overcome these limitations, we proposed some new averaging and geometric operators in the
T-spherical fuzzy environment instead of the intuitionistic fuzzy environment because the T-spherical fuzzy set is the most
generalized form and the proposed operators can be particularized to the intuitionistic fuzzy environment. First, new operational
laws for T-spherical fuzzy information are defined, on the basis of which Einstein geometric interaction operators and Einstein
averaging interactive aggregation operators are then proposed. Some basic properties and advantages of proposed aggregation
operators are also discussed. Moreover, the proposed operators are applied to the MADM problem to check their reliability. The

superiority of the proposed operators over existing work is checked with the help of an example.

1. Introduction

To deal with uncertainty, a tool called fuzzy set (FS) was
introduced by Zadeh [1]. ES tells the degree of membership
(MD) of an object. Intuitionistic fuzzy set (IFS), a general-
ization of FS, was introduced by Atanassov [2, 3]. IFS has two
functions, a membership and a nonmembership function,
and both functions map on a closed unit interval from a
nonempty set. As the name indicates that they tell the MD and
nonmembership degree (NMD) of an object, respectively, the
IFS has a condition that the sum of both degrees must belong
to [0, 1]. Whenever the sum of both degrees exceeds from 1,
IES fails to handle that information. To overcome this issue,
Yager [4, 5] relaxed the condition that the square sum of both
degrees must belong to [0, 1] and named that structure as
Pythagorean fuzzy set (PyFS). In PyFS, the decision maker has
more options for giving values to an object but the decision
maker is not free to give any value because there are some
limitations. To overcome this problem, Yager [6] proposed an
improved fuzzy structure called q-rung orthopair fuzzy set (q-
ROPFS) in which there is no limitation overall.

The notion picture fuzzy set (PFS) was introduced by
Coung [7]. In PES, there are four functions which express the
MD, NMD, abstinence (AD), and refusal with a condition
that the sum of MD, AD, and NMD must belong to [0, 1].
PFS fails when their sum exceeds one. Mahmood et al. [8]
overcame this problem by introducing the concept of
spherical fuzzy set in which they relaxed the condition that
the square sum of MD, AD, and NMD must belong to [0, 1].
In [8], they also proposed the concept of a T-spherical fuzzy
set in which the decision makers have to find the power for
which the sum lies in the unit’s closed interval.

All the fuzzy structures discussed above are used to solve
many problems in the field of decision making, similarity
measures, etc. Xu and Yager [9] proposed weighted geometric
operators for IFS. Zeng et al. [10] proposed some probabilistic
averaging operators for IFS and studied their application to
group decision making. Garg [11] investigated the MADM
problem using interval-valued IF robust geometric aggrega-
tion operators. Zhang et al. [12] discussed the IF MULTI-
MOORA approach for the MADM problem. He et al. [13]
investigated the MADM problem using interactive geometric
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aggregation operators for IFS. Zhao and Wei [14] used
Einstein t-norm and t-conorm to introduce IF Einstein
geometric aggregation (IFEWA) operators and IF Einstein
averaging aggregation (IFEWG) operators to solve the
MADM problem. Mu et al. [15] investigated the MADM
problem using Zhenyuan aggregation operators for interval-
valued IFSs. Some MADM problems are solved for IFSs in
[16-18]. Garg [19] investigated the MADM problem using
Einstein norms for PyFSs. Wei and Lu [20] used power
operators for PyFSs to solve the MADM problem. Yang and
Chang [21] solved the MADM problem using interval-valued
Pythagorean normal fuzzy aggregation operators. Zeng et al.
[22] investigated the MADM problem using the novel ag-
gregation method for PyFS. Zeng et al. [23] investigated the
MADM problem using PyF confidence aggregation operators.
By using PyFSs, some problems are solved in [24, 25]. Peng
et al. [26] investigated the MADM problem by using expo-
nential aggregation operators for g-ROPFS. Yang et al. [27]
solved the MADM problem using q-ROPF interaction
Heronian mean operators. Yang et al. [28] proposed the
q-ROPF multicriteria decision algorithm and used it to in-
vestigate multiple heterogeneous relationships. Hussain et al.
[29] investigated the MADM problem using a covering-based
q-ROPF rough set model. Hussain et al. [30] used q-ROPF
soft averaging operators to solve the MADM problem. Some
MADM problems are studied using q-ROPFSs in [31-33].

Wei [34] proposed picture fuzzy Hamacher aggregation
operators and studied their application in the MADM
problem. Khan et al. [35] investigated the MADM problem
using some logarithmic aggregation operators for PFS. Some
MADM problems for PFS are studied in [36-38]. Quek et al.
[39] studied the MADM problem using T-spherical fuzzy
weighted aggregation operators. Garg [40] proposed inter-
active aggregation operators for T-spherical fuzzy sets and
solved the MADM problem using the proposed operators.
Zeng et al. [41] proposed immediate probabilistic averaging
aggregation operators for T-spherical fuzzy sets and in-
vestigated their application in the selection of solar cells.
Munir et al. [42] solved the MADM problem using Einstein
aggregation operators for T-spherical fuzzy set. By using
spherical fuzzy sets and T-spherical fuzzy sets, some MADM
problems are studied in [43-46].

The existing Einstein operations [14, 42] fail under some
circumstances, e.g., if I; = (m,,0) and I, = (0,n,) are
intuitionistic fuzzy numbers (IFNs), then IFEWA operators
aggregate these IFNs as (some value, 0) and IFEWG oper-
ators aggregates these IFNs as (0,some value). From the
above example, it is easy to notice that the IFEWA operator
cannot aggregate the nonmembership value when non-
membership value of anyone IFN becomes zero and simi-
larly the IFEWG operator cannot aggregate the membership
value when nonmembership value of anyone IFN becomes
zero. This issue motivates us to propose some improved
Einstein aggregation operators which will overcome these
problems.

The purposes of this manuscript are as follows:

(1) To develop some new interactive Einstein opera-
tional laws
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(2) To develop new T-spherical fuzzy Einstein weighted
geometric interaction operators using the new
proposed interactive operational laws

(3) To develop new T-spherical fuzzy Einstein weighted
averaging interaction operators based on the new
proposed interactive operations

(4) To present an algorithm for solving the MADM
problem

(5) To check the applicability of the proposed operators
through a numerical example

To achieve these aims, the rest of the article is sum-
marized as follows. Section 2 has some notions that will be
helpful for the readers in further sections. In Section 3, new
operational laws are proposed for T-spherical fuzzy sets, and
in Section 4, T-spherical fuzzy Einstein interaction geo-
metric operators are proposed and some basic properties are
also proved. In Section 5, T-spherical fuzzy Einstein in-
teraction averaging operators are defined and some of their
basic properties are also discussed. The advantages of the
proposed work and comparative analysis between the
existing and proposed operators are developed in Section 6.
In Section 7, an algorithm for solving a MADM problem is
developed and also applied in an example. A brief conclusion
of the manuscript is included in Section 8.

2. Preliminaries

Some basic definitions over the set X are defined in this
section. These basic notions will help the readers to un-
derstand the proposed work.

Definition 1 (see [8]). A T-spherical fuzzy set on X is defined
as

P ={(x,m(x),i(x),n(x))|x € X}, (D

where m,i,n: X — [0,1] are a membership, abstinence,
and nonmembership function, respectively, with the con-
dition 0 <m’ (x) +i' (x) +n' (x)<1,Vx € X, t € N.

r(x) = /1= (m' (x) + i (x) + n' (x)) is called the refusal
degree of x in P, and (m, i, n) is known as T-spherical fuzzy
number (T-SFN).

Definition 2 (see [8]). Let P = (m,i,n) € T-spherical fuzzy
set. ‘Then, the score value of P is defined as
SC(P) = m'(x) —n'(x), and the accuracy value of P is
defined as AC(P) = m' (x) + i (x) + n’ (x). A T-SFN with a
greater score is superior to others. If the score of any two
T-SFNs becomes equal, then their superiority will be
checked with the help of their accuracy values. The number
which has greater accuracy value will be superior as com-
pared to the others. If accuracy values also become equal,
then both numbers are considered similar.

Remark 1

(1) Definitions 1 and 2 can be reduced for spherical
fuzzy set if we consider t = 2



Mathematical Problems in Engineering

(2) Definitions 1 and 2 can be reduced for PFS if we
consider t = 1

(3) Definitions 1 and 2 can be reduced for q-ROFS if we
consider i =0

(4) Definitions 1 and 2 can be reduced for PyES if we
consider t =2 and i =0

m,m,

(5) Definitions 1 and 2 can be reduced for IFS if we
consider t =1and i =0

(6) Definition 1 can be reduced for FS if we consider
t=1,i=0,and n=0

Definition 3 (see [14]). Some operations for any two IFNs
I, = (my,ny) and I, = (m,, n,) are defined as

1,8, =

n, +mn,
1+(1-m) (1-my) 1+mn, )

mn,
L+mmy, 1+(1+n)(1-n))

1+m1

+(1-my)"

(2)

I®Iz_(m1+m2

2n}
(1+m)" _(1_”"1) 2-m) +n1)

(1+m)" +

T
2mj

7>0,

ﬁ:(@—nﬁf+m50+no“}::2§)

3. Einstein Interaction Operations for
T-Spherical Fuzzy Set

Existing Einstein operations have some limitations that they
fail under some conditions. So, we proposed some new

7>0.

Einstein operations on which we define some new aggre-
gation operators. Let P, = (my,i;,n;) and P, = (m,,i,,n,)
be two T-spherical fuzzy sets; then, their Einstein operations
are as follows:

rlz((l_”tl -iﬁ)(l-ﬂé-ii) (l_ml ’1 _”1)(1_””2_12_”2))

(1+”1)(1+”2) (1 1)(1_”2)
P,®P, = ,
Ja+ i) +i) - -i) (=) [ +n) (1 +n)-(1-n)(1-n)
Na+a)y i)+ (T-i) (=) N+ m) (T +nh)+(1-m)(1-nb)
J+m) (e ml) = (1 -m) (1 =mb) JO+&) (1 +8) -1 -d)(1-4)
N +md) (1 +mb)+ (L -mb) (1 —mb) N+ 8) (1 + i) +(1—df) (1-db)
P,eP, =
R =mi =) (1 = = i) = (L= — i =) (1 =y — i — 1))

(L mi) (1 +m3) + (1= my) (1 —m))

J i)y —(-ity

] J (@ +mt) = (1 -ml)
Pi= < (Lem) + (Lo m)” (L rm)

(1—m)”

J%U—m?ﬂf—ﬂ—%—ﬁ—%ﬁ>,r>a

(1+m) +(1-mh)"

(L-mf—it —n)) [(L+8) -(1-4)

. [ R -n-i) -
E)‘<[ (Lar)

+(1-n)"

Remark 2

(1) The defined operations will be reduced to spherical
fuzzy sets for ¢t = 2

(2) The defined operations will be reduced to PFSs for
t=1

Ju+4y—u-¢y>,r>0

N ) (- )" () T (- n)

(3) The defined operations will be reduced to q-ROFSs

fori=0
(4) The defined operations will be reduced to PyFSs for
t=2andi=0

(5) The defined operations will be reduced to IFSs for
t=1landi=0



(6) The defined operations will be reduced to FSs for
t=1,i=0,andn=20

4. T-Spherical Fuzzy Einstein Geometric
Interaction Operators
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environment of T-spherical fuzzy set and some of its basic
properties such as monotonicity, boundedness, and idem-
potency are also discussed. The validity of the proposed work
is checked with the help of an example.

In this section, on the basis of new proposed Einstein op- D e]z ni'ti;m34. Fo}i alzf);lcollecti(')n of T-SENs, P; = (m;,ij,n;)
erations, we defined geometric interaction operators in the (j=12,3,...,k). The mapping
koW
T - SFEWIG,, (P;, P, .., Py) = ®_ P}’
k £\Wi Tk . w; k \Wi Tk £\W)
(2(ITs (1= =)™~ TT (L= = =)™ 4TI (1)~ TT (1= 85)™
T T E— ) . RN Pa— o
[Tt (1 75)™ + T (1= 7)™ I (1) + T (1= 1)
k w; ok w
(T (1) =TT (1 —m)”
k w k w
[T (1 +)™ + T (1= 7)™
(4)
is called the T-spherical fuzzy Einstein weighted interactive =~ Theorem 1. If all P;=P, then T-SFEWIG,
geometric (T-SFEWIG) operator, where w = (wy,...,w;)" (P, P,,...,P,) =P,
is the weight vector of P; with w; € [0,1] and Z]szl w; =1
Proof. Let P; = Py = (my, iy, n,) for all j; then,
k F\Wi Tk ; w; k £\ k £\ W)
(2(I T (1= =)™ =TT (L= = =) ™) T (L) =TT (1=45)”
k w; k w; > k N A NwU
Hj:1 (1 +n3) T+ szl (1 - n?) g HFl (1 +z§-) T+ Hj=1 (1 - 13) !
T - SFEWIG, (P}, P, ..., P,) =
k w k w
([ (1) — T (1 =)™
szl (1 +n§) T+ szl (1 - n?) !
) (1_nt_iz)Zille_(l_mt_it_nt)Zlewj Zk w. Zk w.
L A ({0 SR (B
k k > k k >
(1 +n§)2j:1 wj +(1 _ n;)zj':le (1 + it{)zj‘:le +(1 _ lt)ZH wj
T - SFEWIG, (P,, P, ..., P}) =
k k
t(Hn;)Z,-:le_(l n;)z,»:le
k k
(1 + nt')ijl wj +(1 _ nt')z;':l wj
= (mg»ig,my) = Py
(5)
O

Theorem 2. Consider a collection of T-SFNs P; (j=1,2,
..., k) with Pt = min ;P; and PY = max ;P;. Then,
(6)

P" <T - SFEWIG,, (P, P,,...,P;) <P".

Proof. Straightforward.

Theorem 3. Consider any two T-SFNs Pi=(mji;n;) and

P}: (m;,i;,n})(j: 1,2,...,k) such that PjSP}for all j. Then,
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T - SEEWIG, (P,, Py, .., P) < T — SFEEWIG, (P, P}...,P}).  Proof. Let P;<Pj then, m;<

by using ba51c information,

(7)

J

!
L > .
, zJ < ], and n;>n;. Then,

(8)
I (1) -0 (=) T (04 6) ) -1 (- ()')
< : :
W e o N () 1 - )
w w
I (1) - T (1) T (1)) =TT (1))
Ve (e e (1+0m))" + 1 (1= (w)')”
This shows that Definition 5. For any collection of T-SFNs, P; = (m,i;,n;)
T - SEEWIG, (Py, Py .., Py) <T - SEEWIG, (P, Pyr...,P,).  J =123, k). The mapping
9)
O

T - SFEOWIG,, (P}, Py, ..., Py) = &, Py

k ¢ t i k t t ¢ i i k s Yi
‘ Z(H;‘:I (1 ~ ()~ ln<j>) ~ I (1 =My = la(j) ‘”a(j)) ) (| T (1 +’a<1>) ~ = (1 "a(j))

| Il (“”om) ‘Hj:l(l‘”am)

w) k , UJI
H (1+ng(1)) +Hj:1(1—ng(j))

wj k ; w} > k wj k M w]’
[T (“”m) +Hj:1(1‘“a<j>) szl(”’a(;)) +Hj:1(1"a<j))

(10)

T - SFEOWIG,, is called the T-spherical fuzzy Einstein ~ Theorem 5. Consider a collection of T —SFNsP;(j=
ordered weighted interactive geometrlc (T-SFEOWIG) 1,2,...,k) with Pt = min;P; and PY = max;P;. Then,

operator, where @ = (w,,...,w,)" is the associated weight

vector of P; with w; € [0 1] andz ) w; = 1and g (j) is any P" <T - SFEOWIG,, (P,, P,, ..., Py) < P". (11)

permutatlon of (1 2,...,k) such that Py o(j-1) = P (j)-

Proof. Straightforward.
Theorem 4. If all P;=P, then T-SFEOWIG,
(P, Py...,P) = P,

(m], ],n Y forall (j=1,2,.
Proof. Same as in Theorem 1. O  Then,

Theorem 6. For any two T-SFNs, P = (m z],n ) and P
k) such that P; <P! ; for all J.

O



T - SEEOWIG, (P, P,, ..., P;) < T — SFEOWIG,
- (P, Py, ..., PY).

(12)

T - SFEHIG,,, (P, P,,...,P
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Proof. Directly follows from the proof of Theorem 3. [

Definition
P = (m

6. For any  collection of  T-SFNs,

j,ij,nj) (j=1,2,3,...,k). The mapping

j=

k ~t =t wj k ~ ¢ =t ~t wj . w; . w;
tz(njzl(l‘”au)"a(j)) =T (1= ) = To() ~ Ty ) AT (1+7,) 7~ T (1-75)”
’-t
1(7

k ¢ wj k ¢ wj
Hj:I 1+nu(j) +Hj:1 1- My (i)

N (14 %) 7+ T (17

k —
T (147,

) =T (1 -7 )

k —
[T (147

T - SFEHIG,, ,is called the T-spherical fuzzy Einstein hy-
brid interactive geometric (T-SFEHIG) operator, where
Pj = (Pj)kwf. Letw = (wy, ..., wk)T is the weight vector and
w= (w,,...,w;)" is the associated weight vector of P; witha
condition that both weight and associated weight vectors
belong to closed unit interval and their sum is equal to 1.

Hybrid aggregation operators first aggregate the given
data considering their attributes and then rearrange them in
a specific order. After that, they aggregate the data con-
sidering their order. This means that hybrid operators are a
generalization of weighted and ordered weighted operators.
So, the T-SFEHIG operator will satisfy idempotency,
monotonicity, and bounded property.

Example 1. Consider T-SFNs P, = (0.7,0.3,0.2), P, = (0.9,
0.1,0.6), P; = (0.4,0.6,0.8), P, = (0.1,0.5,0.7), and P; =
(0.0,0.0,0.8) with a weight vector w = (0.25,0.20,0.15,
0.18,0.22)7.

Solution 1. First of all, we find the aggregated value of these
T-SENs by using the T-spherical fuzzy Einstein hybrid
geometric aggregation (T-SFEHG) operator [42] to find out
the drawbacks of the given operators. For this purpose, first,
we have to calculate the value of t for which the given data lie
in T-SF information.

As 0.9 +0.1+0.6 = 1.6,

For t =2, 0.9 +0.12 + 0.6 = 1.18
t=3,0.9+0.1°+ 0.6° = 0.946
Similarly, for ¢ =3, all the given data lie in the
T-spherical fuzzy information.

By using T-spherical fuzzy Einstein weighted geometric
operator, we shall be able to find these values:

)7+ T (1= 7)™

w;

(13)

P, = (0.6388,0.3232,0.5381),

P, =(0.9,0.1,0.6),

P, = (0.4163,0.5464, 0.7370), (14)
P, = (0.1050, 0.4829, 0.6776),

Py = (0.0,0.0, 0.8206).

Their scores values will be
SC(P,) = 0.1048,
SC(P,) = 0.5130,
SC(P;) = -0.3282, (15)
SC(P,) = -0.3099,
SC(Ps) = —0.5525.

Now using the score value, the aggregated values ob-
tained by using T-SFEWG operators are rearranged in
descending order. Then, these ordered values are again
aggregated by using the T-SFEHG operator with associated
weight vector being w = (0.112,0.236, 0.304, 0.236,0.112):

P,y =(0.9,0.1,0.6),
P, = (0.6388, 0.3232,0.5381),
P, = (0.1050, 0.4829,0.6776), (16)
P,y = (0.4163, 0.5464,0.7370),
P, s = (0.0,0.0,0.8206).
Now, employ the T-SFEHG operator as follows:

T - SFEHG,,, (P, . .., P5) = (0.0,0.8525,0.9882).  (17)
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From the above result, it is noticed that when abstinence
or nonmembership value of one T-SEN is zero, then the
T-SFEHG operator cannot aggregate the whole membership
value. This shows a big flaw in the T-SFEHG operator. This
means that the results obtained from T-SFEHG operators
are not reliable. Now, by using the T-SFEHIG operator, we
shall show that the proposed operator will overcome this
drawback.

By using the T-SFEWIG operator, we shall be able to find

P, =(0.7393,0.3232,0.2154),

P, =(0.9,0.1,0.6),

P, =(0.4131, 0.5464,0.7370), (18)
P, =(0.0988, 0.4829,0.6776),
P, =(0.0,0.0,0.8206).
Their scores values will be
SC(P,) = 0.3941,
SC(P,) = 0.5130,
SC(P,) = —0.3299, (19)
SC(P,) = -0.3101,

SC(Ps) = —0.5525.

Now using the score value, the aggregated values ob-

aggregated by using the T-SFEHIG operator with the as-
sociated weight vector being w = (0.112,0.236,0.304,
0.236,0.112):

P, =(0.9,0.1,0.6),

P, =(0.7393, 0.3232,0.2154),
P, 3 = (0.0988, 0.4829,0.6776), (20)
P, 4 = (0.4131, 0.5464,0.7370),

P, s = (0.0,0.0,0.8206).

Now, employ the T-SFEHG operator as follows:
T - SFEHIG,,, (P, ..., P5) = (0.6878,0.4329,0.6591).
(21)

This shows that the T-SFEIG operator aggregates the
membership value.

5. T-Spherical Fuzzy Einstein Hybrid
Interaction Averaging Operators

In this section, on the basis of new proposed Einstein op-
erations, we define averaging interaction operators in
T-spherical fuzzy environment and some basic properties
are also discussed.

tained by using T-SEWIG operators are rearranged in  Definition 7. Consider a  collection of T-SEN
descending order. Then, these ordered values are again P;= (m]-,i]-,nj) (j=1,2,3,...,k). Then,
k
T - SFEWIA,, (P}, P,,..., Py) = & w,P;
k w; k w k S\W; k S\W;
(T (1) ™ =T (1) ™ 4T (1)~ T (1 -45)”
. T, . o\ = 7 . T
[T (1 m5) ™ o Ty (1= )™ \TT (1489) ™ + T (1= 1) (22)
k t_at\Wi k t_at t\Wi
(2(T T (1 - =)™ =TT (1 = = 1) ™)
k j k
[Tt (1) 4 T (1))
T — SFEWIA  is called T-spherical fuzzy Einstein weighted Theorem 7. If all P]- =P, then T-SFEWIA,
interactive averaging (T-SFEWIA) operator with weight (P, Py, ..., Pp) = Py

vector w = (wy, wz,...,wk)T of P, with w; € [0,1] and

k
2w =L

Proof. Let P; = Py = (my, iy, n,) for all j; then,
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T - SFEWIA, (P}, P,, ..., P})

sz';lom;f;)“’fn';loms-fzn;)%)
w

¢ (1+m;)2j:1wj _(1_m§)2j=1w1’ ¢ (l+i§)2j:1wj _(l_ig)zj':le (23)
t)Z];:le-Jr(l_ mt)zl;:le (1”3)21% +(1- i;)Zij

T - SFEWIA, (P}, P,, ..., P})

] J

t 2((1 — m; — 15)Z§=1 wj _(1 _ H’lt- _ it» _ n;)zljll wj)

k

(142 1)

= (Mg, ig,my) = Py,

Theorem 8. Consider a  collection of T-SFNs  Theorem9. Forany two T-SFNs, P; = (mj, i;, n;) and P} =

P, (j=12,..., k) with P = min ;P; and PY = min;P;. (m}, i]’., n}) such that P; SP} for all j. Then,

Then, T - SFEWIA,, (P,,P,,...,P,) <T - SFEWIA,, (P}, P,, ..., P}).
P"<T - SFEWIA, (P,, P,, ..., P;)<P. (24) (25)

Proof. Let P;<P’; then, m;<m
by using this basic information,

! . ol !
. »i;<i;, and n; >n;. Then,
Proof. Straightforward. Pis ="

oI (1 =) T (1= =iy - 1))
w; w;
[T (1 )™+ Ty (1= )™

(T (1=Cm) ) ) -1 (=) -G -()'))

IN

(26)
[ ()" -1 ()T (1)) -0 (1))
Ve o e, (1)) o0 (- () )
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This shows that Definition 8. Consider a  collection of T-SFNs
T - SFEWIA, (Py, Py...,P,) <T - SEEWIA, (PLP)...,P)).  Fi= (mpipn)(j=1,2,3,.. k). Then,
(27)
O
T - SFEOWIA, (P, Py, Py) = & @;Py(;
k Yk “i k Yk )Y
. Hj:l<1+mfy(j)) _Hj:1<1_mfy(j)) [ Hj:1(1+lg(])> _szl(l_lzty(j))
X w; B w;> w; B ] @)
Hj=1<1+mz(j)) +Hj=1<1—mf,(j)) H <1+10(1)> +]_[j=1<1—1f7(j)>
k t + \Y k t it e\
¢ 2[“;:1 (1 Moy T ’a(j)) - Hj=1 (1 Moy Tl T no(j)) ]
k (AJ wj
[T (1 +ma(;)) +1T- ( a<;>>
(28)
T — SFEOWIA,, is called the T-spherical fuzzy Einstein  Proof. Straightforward. O

ordered weighted interactive averaging (T-SFEOWIA) op-

erator with associated Welght vector @ = (W}, Wy,...,w)" Theorem 12. Consider any two T - SENs P, = (m, i), n,)
ofP with w; € [0,1] andz _; @; = 1. Here, o (j) is any i AR
J andP = (m',i ,n)such thatP SP for all j. Then,
permutatlon of (1,2,...,k) such that PU(] D >PU(]) it
T — SEEOWIA, (P}, Py, . .., Pk) <T - SFEOWIA,,
Theorem 10. If  for all P; =P, then - (PLPL...,PD).
T - SFEOWA,, (P, P,,...,P;) = P,
(30)
Proof. Same as in Theorem 7. O
Theorem 11. Consider a collection of T-SFNs P; (j = 1,2, Proof.  Same as in Theorem 9. r
., k) with Pt = min;P; and PY = = minP;. Yhen,
P' <T - SFEOWIA, (P,, P,, ..., P;) < PY. (29)  Definition 9. Consider a collection of T-SFNs P; = (m;,
ij,nj)(j =1,2,3,...,k). The mapping
T - SFEHIA,,, (P, P,,...,P;) = &) lw]PJ
k —t k @j k 2\
(T (1)~ Tl (1= 7)) 4 T (L B )™ = Tt (1 =Top)
k ~t ~t > k =t wj k ~t w;?
[T (U )™+ Ty (1= ) NIy (1 +70) ™+ Tzt (1= Toy)”
k — t ~t wj k ~t =t t i
{ 2<Hj:1 (=) ~Top) = T (1 ~ () T o) T na(j)) )
, k —
[T (1 )™ + T (1= )™

is called the T-spherical fuzzy Einstein hybrid interactive
P;=kw;P; and

averaging (T- SFEHIA) operator, where

w;,w; € [0,1], andz,lw —landz,lw =

Hybrld aggregatlon operators first aggregate the given
data considering their attributes and then rearrange them in

(31)

a specific order. After that, they aggregate the data con-
sidering their order. This means that hybrid operators are a
generalization of weighted and ordered weighted operators.
So, the T-SFEHIA operator will satisfy idempotency,
monotonicity, and bounded property.

1.
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Example 2. Consider five T-SFNs P, = (0.9,0.3,0.4),
P, = (0.6,0.3,0.2), Py = (0.3,0.8,0.6), P, = (0.4,0.5,0.8),
and P;=(0.6,0.0,0.0) with a weight vector
w = (0.25, 0.20, 0.15, 0.18,0.22)".

solution 1. First of all, we find the aggregated value of these
T-SFNs by using the T-spherical fuzzy Einstein hybrid av-
eraging aggregation (T-SFEHA) operator [42] to find out the
drawbacks of given operators. For this purpose, first, we have
to find the value of ¢t for which the given data lie in
T-spherical fuzzy environment.

As 0.3+0.8+0.6=1.7,

For t =2, 0.3% + 0.8 + 0.6> = 1.09
For ¢t = 3, 0.3% + 0.8% + 0.6 = 0.755

Similarly, for t=3, all the given data lie in the
T-spherical fuzzy environment.

By using T-spherical fuzzy Einstein weighted averaging
operator, we shall be able to find these values:

P, =(0.9362, 0.2104,0.3029),

P, =(0.6,0.3,0.2),

P, =(0.2726, 0.8527,0.6984), (32)
P, =(0.3862, 0.5437,0.8211),

P, =(0.6187,0.0,0.0).

Their scores values will be
SC(P,) = 0.7927,
SC(P,) = 0.2080,
SC(P,) = —0.3203, (33)
SC(P,) = —0.4961,
SC(Py) = 0.2368.
Now using the score value, the aggregated values ob-
tained by using T-SFEWA operators are rearranged in
descending order. Then, these ordered values are again

aggregated by using the T-SFEHA operator with associated
weight vector being w = (0.112,0.236, 0.304, 0.236, 0.112):

P,y = (0.9362,0.2104,0.3029),

P, = (0.6187,0.0,0.0),

P, =(0.6,0.3,0.2), (34)
P, = (0.2726, 0.8527,0.6984),

P, = (0.3862,0.5437,0.8211).

Now, employ the T-SFEHA operator as follows:
T - SFEHA,, (P,,...,P;) = (0.6187,0.0,0.0).  (35)

From the above result, it is noticed that when abstinence
or nonmembership value of one T-SEN is zero, then the
T-SFEHA operator cannot aggregate the whole abstinence
and nonmembership value. This shows a big flaw in the
T-SFEHA operator. This means that the results obtained

Mathematical Problems in Engineering

from T-SFEHA operators are not reliable. Now, by using the
T-SFEIA operator, we shall show that the proposed operator
will overcome this drawback.

By using T-SFEIA operator, we shall be able to find

P, = (0.9362, 0.4308,0.2739),

P, = (0.6,0.3,0.2),

P, = (0.2726, 0.7370,0.5956), (36)
P, = (0.3862, 0.4829,0.7888),

P, = (0.6187,0.0,0.0).

Their scores values will be
SC(P,) = 0.7999,
SC(P,) = 0.2080,
SC(P,) = -0.1910, (37)
SC(P,) = —0.4333,
SC(Ps) = 0.2368.
Now using the score value, the aggregated values ob-
tained by using T-SFEWIA operators are rearranged in
descending order. Then, these ordered values are again

aggregated by using the T-SFEHIA operator, with associated
weight vector being w = (0.112,0.236, 0.304, 0.236, 0.112):

P,y = (0.9362,0.4308, 0.2739),

P, = (0.6187,0.0,0.0),

P, = (0.6, 0.3,0.2), (38)
P, 4 = (0.2726, 0.7370,0.5956),

P, = (0.3862,0.4829,0.7888).

Now, employ the T-SFEHIA operator as follows:
T - SFEHIA,,, (P, ..., P5) = (0.6372,0.5055,0.3978).
(39)

This shows that the T-SFEIA operator aggregates the
membership value.

6. Advantages

In this section, we prove that our work is more generalized
than the existing work. In our proposed work, experts are
free in giving the values to alternatives according to the given
attributes. Not only this, the proposed work is also valid
under those conditions where the existing work fails. Here,
we reduced the proposed work to intuitionistic, Pythago-
rean, q-rung orthopair, picture, and spherical fuzzy envi-
ronments. This proves that the proposed work is valid for all
those environments.
Consider the T-SFEHIA defined as follows:

(1) Fort = 2, equation (31) reduces to SF Einstein hybrid
interaction averaging operators (SFEHIA operators),
ie.,
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Tl (L))" =TT (1= )™ | T (1+ ’o(;))w' -1 (1 ‘i(;‘))wj

T - SFEHIA,,, (P,,P,,...,P;) =

T (1) + T (1= )™ NI (14 7)) + T (1= %)

k ~2 2 \Y k ~2 =2 t “i
2(1]-:1 (L= ~Toy) '~ ijl(l = M) ~lo(j) ~ ”a(j))z )

[Ty (1) + T (1= )

(2) For t =1, equation (31) reduces to PF Einstein hy-
brid interaction averaging operators (PFEHIA op-
erators), i.e.,

PFEHA,, (P,,B,,...,B}) =

(3) For i = 0, equation (31) reduces to q-ROPF Einstein
hybrid interaction averaging operators (q-ROFEHIA
operators), i.e.,

q-ROFEHIA,, , (P}, P,,...,P;) =

k ~¢ w; k ¢ " wj
f2<Hj=1(1 ) ‘Hfl(l‘maur”au)) >

T3 (1 )™+ T (1= )™

(4) For t =2 and i =0, equation (31) reduces to PyF
Einstein hybrid interaction averaging operators
(PyFEHIA operators), i.e.,

PyFEHIA,,, (P, P,,...,P;)

2(IT (1= 3)" =TT (1= g - 7))
&t
T (1) + T (1= )™

11

(40)

(41)

(42)

(43)
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(5) For t =1 and i =0, equation (31) reduces to IF
Einstein hybrid interaction averaging operators
(IFEHA operators), i.e.,

Mathematical Problems in Engineering

k k — w
[T (170 =TT (1 =)
3 j k — O\
[T (1 7)™ + Tl (1= ()
IFEHIA,,, (P, P,,...,P}) = (44)
k ~ O\ k ~ =\
2T (1= 0)” = T (1= oy = Fio() ™)
k — T\ k T\
[T (14 )+ Tl (1 705) ™
0(1 =(0.7,0,0.1),
Similarly, we can reduce T-SFEWIA operator,
T-SFEOWIA operator, T-SFEWIG operator, T-SFEOWIG 0(2 = (0.5538, 0,0.2071),
operator, and T-SFEHIG operator. 6(3 = (0.5401, 0, 0.4599), (47)
The proposed aggregation operators can aggregate the
data given in FS, IFS, PyFS, q-ROPFS, PFS, and spherical 0(4 = (0.2281, 0,0.3630),
fuzzy set environments, but the converse is not possible. P, s = (0.2481,0,0.5312),

Here, with the help of an example, it is proved that the
proposed aggregation operator can aggregate the data given
in IFSs.

Example 4. Let IFNs P, = (0.2,0.5), P,=(0.7,0.1),
P, = (0.3,0.4), P, = (0.6,0.2), and P; = (0.5,0.5) with a
weight vector w = (0.25, 0.20, 0.15, 0.18,0.22)".

Solution 1. We can write these IFNs in the form of T-SFNs
as P, =(0.2,0,0.5), P,=(0.7,0,0.1), = (0.3,0,0.4),
P, =(0.6,0,0.2), and P; = (0.5,0,0.5). Then, by using the
T-SFEWIA operator, we shall be able to find these values:

= (0.2481,0,0.5312),
P, =(0.7,0,0.1),
P, = (0.2281, 0,0.3630), (45)
P, = (0.5538, 0,0.2071),
P, = (0.5401,0,0.4599).

Their scores values will be

sC(P,) = -0.2831,
sc(p,) = 0.6,

SC(P;) = -0.1350, (46)

SC(P,) = 0.3467,
SC(Ps) = 0.0801.

Now, using the score value, the aggregated values ob-
tained by using T-SFEWIA operators are rearranged in
descending order. Then, these ordered values are again
aggregated by using the T-SFEHIA operator with the as-
sociated ~ weight  vector being w = (0.112,0.236,
0.304,0.236,0.112):

Now, utilize the T-SFEHIA operator as follows:
T - SFEHIA,, , (P,,P,, ..., P;) = (0.4709,0,0.2645).
(48)

Here, it is proved that the information given in IFNs can
be solved by using the T-SFEHIA operator. Similarly, we can
solve the information given in IFNs by using the T-SEHIG
operator and the information given in any other fuzzy
structure can also be aggregated using the proposed operators.

7. An Algorithm for MADM with T-Spherical
Fuzzy Information

Consider a set of alternatives D = {d,,d,,d;,...,d;} and a set
of attributes M = {m,, m,, ms, ..., m;} having a weight vector
w = {w,w,,ws,...,w}, where w; € [0,1] and Y

w,, = 1. For making a decision, we have to follow these steps

Step 1. Calculate t for which the values lie in T-spherical
information

Step 2. Aggregate the given alternatives according to
attributes by T-SFEWIA (or T-SFEWIG) operators
using some weight vectors

Step 3. Find scores values and with the help of score
value, we reorder them in descending order

Step 4. Aggregate these ordered values using T-SFEHIA
(or T-SFEHIG) operator

Step 5. Using score values find out the best option

Example 3. The board of governors of a company decided to
reduce their expenses for maximizing the profit. They ob-
serve that the cost of electricity is one of the major expense
and they can reduce it if they started to generate electricity
using solar energy. They have three options of photovoltaic
cells that they may use in their solar plant:
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TaBLE 1: Decision matrix.
Ml M2 M3 M4 MS
d, (0.4, 0.1,0.7) (0.5, 0.2,0.4) (0.8, 0.3,0.7) (0.4, 0.8,0.5) (0.9, 0.5,0.2)
d, (0.7, 0.4,0.3) (0.2, 0.4,0.7) (0.9, 0.3,0.6) (0.3, 0.2,0.8) (0.4, 0.7,0.5)
d, (0.4, 0.7,0.5) (0.6, 0.6,0.1) (0.6, 0.9,0.2) (0.8, 0.1,0.1) (0.5, 0.6,0.2)
TaBLE 2: Aggregated values.
M, M, M; M, M;
0.4308, 0.5, 0.7370, 0.3862, 0.9164,
d, 0.1077, 0.2, 0.2726, 0.7770, 0.5160,
0.7367 0.4 0.7172 0.5022 0.1906
0.4308, 0.2, 0.8440, 0.2896, 0.4129,
d, 0.4308, 0.4, 0.2726, 0.1931, 0.7206,
0.3061 0.7 0.6677 0.7820 0.5037
0.4308, 0.6, 0.5464, 0.7770, 0.5160,
d, 0.7485, 0.6, 0.8440, 0.0965, 0.6187,
0.5064 0.1 0.0829 0.2031

0.2430

(i) d,: monocrystalline photovoltaic cell
(ii) d,: polycrystalline photovoltaic cell
(iii) d5: thin Film photovoltaic cell

They assess the given photovoltaic cell on the basis of the

following attributes.

(i) M;: heat tolerance
(ii) M,: cost
(iii) Mj: reliability
(iv) M,: efficiency
(V) Ms: ability of charge separation
Step 1. As 0.8 +0.3+0.7 = 1.8 ¢ [0,1],0.8> + 0.3% +
0.72=1.22 ¢ [0,1]and 0.8° +0.3> + 0.7° = 0.882 ¢

[0, 1]. Similarly, we found that all values in Table 1
belong to [0, 1] for t = 3.

Step 2. By taking w = (0.25, 0.20, 0.15, 0.18,0.22)",
we find T-SFEWIA values of given data, as listed in
Table 2.

Step 3. Scores of each alternative with respect to all
attributes are shown in Table 3.

By comparing the score values, we have

SC(P,5)>SC(Py,)>SC(Py3)>SC(P14)>SC(Pyy),
SC(P51)>SC(Py3)>SC(Py5)>SC(Pyy)>SC(Pyy),
SC(Ps,)>SC(Ps;)>SC(Ps3)>SC(P35)>SC(Py))-
(49)
Based on above score analysis, the data are arranged in

descending order and the aggregated values of ordered
data are as listed in Table 4.

Step 4. The associated weight vector will be
w = (0.112,0.236,0.304, 0.236,0.112)", and by using
T-SFEHA operators, we have

P, =(0.6596, 0.5227, 0.4668),

P, = (0.6176, 0.5291,0.5276), (50)

133 = (0.5826, 0.7075, 0.2290).

Step 5. Now, we have to find the score values:

SC(P,) = 0.1853,
SC(P,) = 0.0887,
SC(P;) = 0.1858,
SC(P,)>SC(P,)>SC(P,).

(51)

Since the score value of dj is highest, the thin film
photovoltaic cell is the best option.

Now, we check their validity by using Einstein hybrid
geometric interaction operators.

By taking w = (0.25, 0.20, 0.15, 0.18,0.22)", we find
T-SFEWG values of given data, as listed in Table 5.

Scores of each alternative with respect to all attributes
are shown in Table 6.

By comparing the score values, we have

SC(Py5) > SC(Py3) > SC(Py,) > SC(Pyy) > SC(Pyy),

SC(Py3) > SC(Py;) > SC(Py5) > SC(Py,) > SC(Pyy),

SC(P) > SC(Pyy) > SC(P) > SC(Pys) > SC Py, ).
(52)
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TABLE 3: Score values.
M, M, M; M, M,
d, —0.3199 0.0610 0.0314 —0.0690 0.7626
d, 0.3906 —-0.3350 0.3035 —0.4538 —-0.0574
d, —0.0499 0.2150 0.1488 0.4685 0.1290
TaBLE 4: Ordered aggregated values.
M, M, M; M, M;
0.9164, 0.5, 0.7370, 0.3862, 0.4308,
d, 0.5160, 0.2, 0.2726, 0.7770, 0.1077,
0.1906 0.4 0.7172 0.5022 0.7367
0.7485, 0.8440, 0.4129, 0.2, 0.2896,
d, 0.4308, 02726, 0.7206, 0.4, 0.1931,
0.3061 0.6677 0.5037 0.7 0.7820
0.7770, 0.6, 0.5464, 0.5160, 0.4308,
ds 0.0965, 0.6, 0.8440, 0.6187, 0.7485,
0.0829 0.1 0.2430 0.2031 0.5064
TaBLE 5: Aggregated values.
M, M, M; M, M;
0.4117, 0.5, 0.7998, 0.4008, 0.9051,
d, 0.1077, 0.2, 0.2726, 0.7770, 0.5160,
0.7485 0.4 0.6398 0.4829 0.2064
0.7347, 0.2, 0.9071, 0.2984, 0.4034,
d, 0.4308, 0.4, 0.2726, 0.1931, 0.7206,
0.3232 0.7 0.5464 0.7770 0.5160
0.4064, 0.6, 0.6434, 0.7807, 0.5103,
d, 0.7485, 0.6, 0.8440, 0.0965, 0.6187,
0.5381 0.1 0.1817 0.0965 0.2064
TABLE 6: Score values.
M, M, M; M, M;
d, —0.3495 0.0610 0.2497 —0.0482 0.7327
d, 0.3628 —-0.3350 0.5833 —0.4425 -0.0717
d, —0.0887 0.2150 0.2603 0.4749 0.1241
TaBLE 7: Ordered aggregated values.
M, M, M, M, M,
0.9051, 0.7998, 0.5, 0.4008, 0.4117,
d, 0.5160, 0.2726, 0.2, 0.7770, 0.1077,
0.2064 0.6398 0.4 0.4829 0.7485
0.9071, 0.7347, 0.4034, 0.2, 0.2984,
d, 0.2726, 0.4308, 0.7206, 0.4, 0.1931,
0.5464 0.3232 0.5160 0.7 0.7770
0.7807, 0.6434, 0.6, 0.5103, 0.4064,
ds 0.0965, 0.8440, 0.6, 0.6187, 0.7485,
0.0965 0.1817 0.1 0.2064 0.5381
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Based on the above score analysis, the data are arranged
in descending order and the aggregated values of or-
dered data are as listed in Table 7.

Associated weight vector will be w= (0.112,
0.236,0.304,0.236,0.112)", and by using T-SFEHG
operators, we have

P, = (0.5445, 0.5217,0.5419),
P, =(0.6830, 0.5376,0.5913), (53)
P, = (0.7556, 0.6879,0.2780).

Step 6. Now, we have to find the score values:

SC(P,) = 0.0023,
SC(P,) = 0.1080,
SC(P;) = 0.4099,
SC(P,)>SC(P,) >SC(P,).

(54)

Here again, the score value of alternative dj is high. So,
the thin film photovoltaic cell is the best option.

8. Conclusion

In this paper, it is pointed out that the existing work
[14, 42] fails under some conditions such as in Einstein
averaging operators, if one nonmembership value of an
IFN is zero, then the NMD of aggregated value will also
become zero and neglect the other nonmembership values.
Similarly, if the membership value of one IFN becomes
zero, then the MD of the aggregated value of the Einstein
geometric operator will also become zero and neglect the
other membership values. So, new interactive operational
laws are proposed in this article. On the basis of these
operational laws, T-spherical Einstein interactive geo-
metric operators and T-spherical Einstein interactive
averaging operators are proposed. After that, some con-
ditions are discussed under which the proposed operators
can reduce to other fuzzy frameworks. A comparison of
proposed and existing work is also established and
explained using an example. We validate the proposed
operators with the help of an application in MADM. In the
future, we have a plan to propose some power aggregation
operations for T-spherical fuzzy sets and try to use them in
the MADM process.
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