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+is note focuses on the finite horizon H2/H∞ control for stochastic nonlinear jump systems with partially unknown
transition probabilities. We derive the nonlinear stochastic bounded real lemma and the nonlinear optimal regular result for
the considered system at first. A sufficient condition and a necessary condition for the solution of H2/H∞ control are,
respectively, offered by four cross-coupled Hamilton–Jacobi equations (HJEs). Besides, numerical examples show the
effectiveness of the obtained results.

1. Introduction

Control synthesis is one of the important parts of control
theory [1–5]. +e H∞ synthesis aims to seek for a suitable
controller to suppress the effect of the exogenous distur-
bance on the dynamic system below a given level [6–9].
However, it is aware thatH∞ control can guarantee the good
robustness of the designed system, but cannot optimize the
closed-loop to achieve perfect performance. Because of this,
the linear quadratic control (H2 control) is selected to make
up the lack in optimization. Combining the two control
methods becomes a natural idea to reach the balance.
H2/H∞ control not only ensures to repress the influence of
the disturbance, but also minimizes the energy cost under
the disturbance input [10–12]. So far, H∞ control and
H2/H∞ control have been paid continuous attention
[13–17]. In particular, for stochastic systems, bounded real
lemmas in finite and infinite horizon have been derived for
linear models by the coupled Riccati equations method
[14, 15], and the coupled Hamilton–Jacobi equations
method has been performed for nonlinear models [16, 17]. It
can be seen that a local solution to the primal nonlinear
H2/H∞ control exists if its linearized H2/H∞ control
problem is solvable. However, most of the existing works on

stochastic H2/H∞ control are concerned with jump linear
systems, while little attention is paid on nonlinear systems
with Markov jump.

As we all know, Markov jump systems have been used
widely both in theory and in engineering over the past
decades [18–24]. +e main motivation of research studies is
that such models have numerous applications in mechanics,
traffic, power, and many other fields in industry and finance.
When encountering system failures, sudden environmental
changes, and external noise, the structure and parameter
factors of dynamics are mutated. +e process of state
hopping from one mode to another can be marked as
Markov jumps. +e transition probabilities of a jump
process are crucial factors which determine the behavior of a
system exactly [25, 26]. Normally, the elements of the
transition probability matrix are assumed to be fully known
[14, 15]. However, in some practical cases, the transition
probabilities may not be fully known, which inspired
scholars to study Markov jump systems with partial prob-
ability [27–37]. For instance, Zhang and Boukas considered
stability and stabilization of Markovian jump systems with
partially unknown transition probabilities [27]. In addition,
sliding-mode control, H2, H∞, and filtering control subject
to partially unknown transition probabilities have gained
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considerable research interest [29–35]. Nevertheless, to the
best of our knowledge, there are no literatures to deal with
H2/H∞ control for nonlinear jump systems with partially
unknown transition probabilities up to now, which is the
theoretical significance of this note. More importantly, to get
the robust controller, a nonlinear stochastic bounded real
lemma is derived.

+e remainder of this paper is arranged as follows. +e
second part provides some useful definitions and lemmas. In
the third part, for nonlinear jump systems with partially
unknown transition probabilities, a sufficient condition and
a necessary condition for the finite horizon H2/H∞ control
are obtained, respectively. +e forth part gives numerical
illustrative examples. Conclusions are drawn in the fifth part.

Notations used in this study are as follows. Rn is the
n-dimensional Euclidean space; A> 0(A≥ 0): A is a positive
definite (positive semidefinite) matrix; E(·) is the mathe-
matical expectation; AT is the transpose of a matrix A; A− 1 is

the inverse of a nonsingular matrix A; Rn×m is the set of all
n × m real matrices; ‖·‖ is the Euclidean vector norm;
(Ω,F, Ft t≥0,P) is the completed filtration space with the
filtration Ft t≥0 satisfying the usual conditions, i.e., it is
right continuous and F0  contains all P-null sets;
L2

F([0, T],Rl) is the space of all nonanticipative stochastic
processes y(t) ∈Rl with respect to an increasing σ-algebra
Ft(t⩾0), which satisfies E 

T

0 ‖y(t)‖2dt<∞; C2,1(U, [0, T]):
the class of all functions V(x, t) are twice continuously
differentiable with respect to x ∈ U and once continuously
differentiable with respect to t ∈ [0, T], except possibly at the
point x � 0; In×n is the identity matrix;
col(x1, x2, . . . , xn) ≔ [x1, x2, . . . , xn]′.

2. Preliminaries

Let us think about the following stochastic nonlinear jump
systems described by the Itô-type equation:

dx(t) � f x, t, θt(  + g x, t, θt( u(t) + h x, t, θt( v(t) dt + l x, t, θt(  + q x, t, θt( u(t) + s x, t, θt( v(t) dw(t),

x0 ∈R
n, θ0 ∈ T, t ∈ [0, T],

z(t) � col m x, t, θt( , u(t)  ≔
m x, t, θt( 

u(t)
 ,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

where x(t) ∈Rn, z(t) ∈Rz, u(t) ∈L2
F([0, T],Rnu ), and

v(t) ∈L2
F([0, T],Rnv ) stand for the system state, penalty

output, control input, and exogenous disturbance signal,
respectively. ω(t) is an one-dimensional standard wiener
process defined on the filtered probability space
(Ω,F,Ft,P) with Ft � σ ω(s): 0≤ s≤ t{ }. +e stochastic
mode jump process θt is a continuous-time discrete-state
Markov process with values in a finite space
T � 1, 2, . . . , N{ } and is assumed to be independent with
ω(t). +e process of transition probabilities are denoted
by

P θt+τ � h | θt � r  �
πrhτ + o(τ), r≠ h,

1 + πrrτ + o(τ), r � h,
 (2)

where τ > 0, limτ⟶0(o(τ)/τ) � 0, and
πrh ≥ 0(r, h ∈ T, r≠ h) represent the transition rate from
mode r at time t to mode h at time t + τ and
πrr � − 

N
h�1,r≠h πrh for all r ∈ T. So, the transition proba-

bilities matrix is defined by

 �

π11 π12 · · · π1N

π21 π22 · · · π2N

⋮ ⋮ ⋱ ⋮

πN1 πN2 · · · πNN

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3)

In this paper, we suppose that the transition probabilities
are partly unknown. For instance, for N � 4, the transition
rate matrix  is given by

 �

π11 ? π13 ?

? ? ? π24

π31 ? π33 ?

π41 ? ? π44

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4)

In above, we use “?” to sign the unknown element.
Furthermore, ∀r ∈ T, we set T � Tr

K + Tr
UK, where

T
r
K ≜ h: πrh is known ,

T
r
UK ≜ h: πrh is unknown .

(5)

In addition, if Tr
K ≠ ∅, it can be described as

Tr
K � (Kr

1,K
r
2, . . . ,Kr

m), ∀1≤m≤N, whereKr
m is the mth

known element and the exponent Kr
m is the rth row of

matrix . +en, set πr
K ≜j∈Tr

K
πrh.

Remark 1. WhenTr
K � 0 andTr

UK � T, the transition rates
in the stochastic process are fully unknown. Tr

K � T and
Tr

UK � 0 mean that the transition rates are fully known.
For convenience, we signify (·)θt

≔ (·)(x, t, θt)

throughout the paper, and all coefficients in (1) are thought
to be Borel measurable. Meanwhile, assume that
f(0, t, r) ≡ 0, g(0, t, r) ≡ 0 for ∀(t, r) ∈ [0, T] × T.

Now, we introduce the following definitions.

Definition 1. Given c> 0, a feedback control law
u � u∗T ∈LF

2([0, T],Rnu ) is called the finite horizon ro-
bust H2/H∞ control of system (1), if the following condi-
tions are satisfied:
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(i) For any nonzero, v(t) ∈LF
2([0, T],Rnu ), and the

trajectory of the resulted closed-loop by (1) starting
from x0 � 0 and θ0 � 0, we always have

E 
T

0
m x, t, θt( 

����
����
2

+ u
∗
T

����
����
2dt|θ0 � r ≤ c

2
E 

T

0
‖v‖

2dt|θ0 � r , r ∈ T; (6)

(ii) When the worst disturbance v∗T is executed in (1), u∗T
can minimize the quadratic performance
E 

T

0 [‖m(x, t, θt)‖
2 + ‖u‖2]dt | θ0 � r , r ∈ T.

Definition 2 (see [18]). For each V(x, t, r) ∈ C2,1

(Rn × [0, T] × T,R), we have an operator LV: Rn×

[0, T] × T⟶R associated with (1) given by

LV(x, t, r) �
zV(x, t, r)

zt
+

zV′(x, t, r)

zx
[f(x, t, r) + g(x, t, r)u(t) + h(x, t, r)v(t)] + 

N

h�1
πrhVh

+
1
2
[l(x, t, r) + q(x, t, r)u(t) + s(x, t, r)v(t)]

T
×

z2V(x, t, r)

zx2 [l(x, t, r) + q(x, t, r)u(t) + s(x, t, r)v(t)].

(7)

Definition 3 (see [16]). We set two extreme value functions
V
1
T(x, s, θt) ∈R

n × [0, T] × T⟼R− and V
2
T(x, s, θt) ∈

Rn × [0, T] × T⟼R+ related with (1) as follows:

V
1
T x, s, θt(  � inf v∈LF

2 [s,T],Rnv( )

x(s)�x,u�u ∗
T

J
T
1 (u, v),

V
2
T x, s, θt(  � inf u∈LF

2 [0,T],Rnu( )

x(s)�x,v�v ∗
T

J
T
2 (u, v),

(8)

in which the performances are as follows:

J
T
1 u, v; x0, θ0(  ≔ c

2
‖v‖

2
[0,T] − ‖z‖

2
[0,T]

� E 
T

0
c
2
‖v‖

2
− ‖z‖

2
 dt θ0

 � r , r ∈ T,

J
T
2 u, v; x0, θ0(  ≔ ‖z‖

2
[0,T] � E 

T

0
‖z‖

2dt θ0
 � r , r ∈ T.

(9)

Remark 2. +e following results are obvious:
V
1
T ≤ 0, V

1
T x, t, θt(  � 0 for allx ∈Rn

;

V
2
T ≥ 0, V

2
T x, t, θt(  � 0 for allx ∈Rn

.
(10)

Remark 3. Let the perturbation operator be denoted by
LT: L2

F([0, T],Rnv )⟶L2
F([0, T],Rnz ) with the norm

L
T

����
���� � sup v∈LF

2 [0,T],Rnv( )

v≠ 0,θ0�r,x0�0

‖z(·)‖[0,T]

‖v(·)‖[0,T]

� sup v∈LF
2 [0,T],Rnv( )

v≠ 0,θ0�r,x0�0

E 
T

0 m x, t, θt( 
����

����
2dt|θ0 � r 

1/2

E 
T

0 ‖v‖2dt|θ0 � r 
1/2 , r ∈ T.

(11)

It can be checked that (6) is equivalent to ‖LT‖≤ c.
Next, we state the following lemmas, which will be used

later.

Lemma 1. For a given level c> 0, with an initial state x0 �

0 ∈Rn and θ0 ∈ T, think about the following stochastic
perturbed system with Markov jumps:

dx(t) � f x, t, θt(  + h x, t, θt( v(t) dt

+ l x, t, θt(  + s x, t, θt( v(t) dw(t),

z(t) � m x, t, θt( .

⎧⎪⎪⎨

⎪⎪⎩
(12)

If there exists V(x, t, θt) ∈ C2,1(Rn × [0, T] × T,R)

with system (12) and satisfies the following HJE:
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Δ1 Vθt
  ≔

zVθt

zt
+

zVθt
′

zx
fθt

− mθt
′mθt

+
1
2
lθt
′
z2Vθt

zx2 lθt
+ 

h∈Tr
K

πrh Vh − Tr(  −
1
4

zVθt
′

zx
hθt

+ lθt
′
z2Vθt

zx2 sθt

⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

c
2
I +

1
2
sθt
′
z2Vθt

zx2 sθt

⎛⎝ ⎞⎠

− 1

hθt
′
zVθt

zx
+ sθt
′
z2Vθt

zx2 lθt

⎛⎝ ⎞⎠ � 0, c
2
I +

1
2
sθt
′
z2Vθt

zx2 sθt
> 0, Vh − Tr ≥ 0, h ∈ Tr

UK, r≠ h, Vh − Tr ≥ 0,

h ∈ Tr
UK, r � h, V x, T, θt(  � 0.

(13)

Then, ‖LT‖≤ c holds. Proof. Noticing that for any symmetric matrix Tr (r ∈ T),
we have 

N
h�1 πrhTr � 0. Applying the generalized Itô’s

formula, one gets

LV x, t, θt( 

� E 
T

0

zVθt

zt
+

zVθt
′

zx
fθt

+ hθt
v  +

1
2

lθt
+ sθt

v ′
z2Vθt

zx2 lθt
+ sθt

v  + 

N

h�1
πθth

Vh
⎡⎣ ⎤⎦dt θ0

 � r
⎧⎨

⎩

⎫⎬

⎭

� E 
T

0

zVθt

zt
+

zVθt
′

zx
fθt

+ hθt
v  +

1
2

lθt
+ sθt

v ′
z2Vθt

zx2 lθt
+ sθt

v  + 
N

h�1
πrhVh − 

N

h�1
πrhTr

⎡⎣ ⎤⎦dt θ0
 � r

⎧⎨

⎩

⎫⎬

⎭

� E 
T

0

zVθt

zt
+

zVθt
′

zx
fθt

+ hθt
v  +

1
2

lθt
+ sθt

v ′
z2Vθt

zx2 lθt
+ sθt

v  + 
h∈Tr

K

πrh Vh − Tr(  + 
h∈Tr

UK

πrh Vh − Tr( dt⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦ θ0
 � r

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(14)

+en, it can deduced that

E V xT, T, θT(  − V x0, 0, θ0(   θ0 � r
 

� E 
T

0
LTV x, t, θt( 

� E 
T

0

zVθt

zt
+

zVθt
′

zx
fθt

+ hθt
v  +

1
2

lθt
+ sθt

v ′
z2Vθt

zx2 lθt
+ sθt

v  + 
N

h�1
πθth

V(x, t, h) +‖z‖
2

− c
2
‖v‖

2
− ‖z‖

2
+ c

2
‖v‖

2⎡⎣ ⎤⎦dt θ0
 � r

⎧⎨

⎩

⎫⎬

⎭

� E 
T

0

zVθt

zt
+

zVθt
′

zx
fθt

+ hθt
v  +

1
2

lθt
+ sθt

v ′
z2Vθt

zx2 lθt
+ sθt

v  +‖z‖
2

− c
2
‖v‖

2
− ‖z‖

2
+ c

2
‖v‖

2
+ 

h∈Tr
K

πrh Vh − Tr( ⎡⎢⎢⎢⎢⎣
⎧⎪⎨

⎪⎩

+ 
h∈Tr

UK

πrh Vh − Tr( ⎤⎥⎥⎥⎥⎦dt θ0
 � r

⎫⎪⎬

⎪⎭

� E 
T

0
‖z‖

2
− c

2
‖v‖

2
 dt + v − v

∗
T

����
����
2

c,s,Vθt
(  + Δ1 Vθt

  + 
h∈Tr

UK

πrh Vh − Tr(  θ0 � r


⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, r ∈ T,

(15)
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where

‖z‖
2

c,s,Vθt
( 

� z′ c
2
I +

1
2
sθt
′
z2Vθt

zx2 sθt

⎛⎝ ⎞⎠z,

v
∗
T � −

1
2

c
2
I +

1
2
sθt
′
z2Vθt

zx2 sθt

⎛⎝ ⎞⎠

− 1

· hθt
′
zVθt

zx
+ sθt
′
z2Vθt

zx2 lθt

⎛⎝ ⎞⎠,

πrh ≥ 0(∀r, h ∈ T, r≠ h),

πrr � − 
N

h�1,r≠h
πrh < 0(r ∈ T),


h∈Tr

UK

πrh Vh − Tr( ≥ 0.

(16)

Inferring from (14)–(16), it reveals that v∗T is the cor-
responding worst disturbance, which yields that

E 
T

0
‖z‖

2dt|θ0 � r 

� E 
T

0
c
2
‖v‖

2
− v − v

∗
T

����
����
2

c,s,Vθt
(  − Δ1 Vθt

  − 
h∈Tr

UK

πrh Vh − Tr(  + E V xT, T, θT(  − V x0, 0, θ0(  

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
dt | θ0 � r

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

≤E 
T

0
c
2
‖v‖

2dt|θ0 � r .

(17)

+at is,

0≤ J
T
1 u
∗
T , v
∗
T ; x0, θ0( ≤ J

T
1 u
∗
T , v; x0, θ0( . (18)

+is lemma is proved. □

Lemma 2. For a given level c> 0, with an initial state
x0 � 0 ∈Rn, θ0 ∈ T, think about the following nonlinear
stochastic controlled system with Markov jumps:

dx(t) � f x, t, θt(  + g x, t, θt( u(t) dt

+ l x, t, θt(  + q x, t, θt( u(t) dw(t),

z(t) � m x, t, θt( .

⎧⎪⎪⎨

⎪⎪⎩
(19)

If the following HJE

Δ2 V2θt
  ≔

zV2θt

zt
+

zV2θt
′

zx
fθt

− mθt
′mθt

+
1
2
lθt
′
z2V2θt

zx2 lθt
+ 

h∈Tr
K

πrh Vh − Tr( 

⎧⎪⎨

⎪⎩

−
1
4

zV2θt
′

zx
gθt

+ lθt
′
z2V2θt

zx2 qθt

⎛⎝ ⎞⎠ I +
1
2
qθt
′
z2V2θt

zx2 qθt

⎛⎝ ⎞⎠

− 1

hθt
′
zV2θt

zx
+ qθt
′
z2V2θt

zx2 lθt

⎛⎝ ⎞⎠ � 0, I

+
1
2
qθt
′
z2V2θt

zx2 qθt
> 0, Vh − Tr ≥ 0, h ∈ Tr

UK, r≠ h, Vh − Tr ≤ 0, h ∈ Tr
UK, r � h, V2 x, T, θt(  � 0.

(20)

admits a nonnegative solution
V2(x, t, θt) ∈ C2,1(Rn × [0, T] × T,R), then we have

J
T
2 u
∗
T , v
∗
T ; x0, θ0( ≤ J

T
2 uT, v

∗
T ; x0, θ0(  � V2 x0, 0, r( , r ∈ T,

(21)

with the optimal control

u
∗
T � −

1
2

I +
1
2
qθt
′

z2V2θt

zx2 qθt

⎛⎝ ⎞⎠

− 1

gθt
′

zV2θt

zx
+ qθt
′

z2V2θt

zx2 lθt

⎛⎝ ⎞⎠,

(22)

where

Mathematical Problems in Engineering 5



J
T
2 uT, v

∗
T ; x0, θ0(  ≔ inf

u∈L2
F [0,T],Rnu( )

E 
T

0
‖z‖

2dt | θ0 � r 

� inf
u∈L2

F [0,T],Rnu( )

E 
T

0
mθt

�����

�����
2

+‖u‖
2dt | θ0 � r .

(23)

Proof. Taking integration and expectation in dV2(x, t, θt),
for any T> 0, we get

E 
T

0
dV2 x, t, θt( 

� E 
T

0
LuV2dt + E 

T

0
lθt

+ qθt
u ′

zV2θt

zx
dw(t) | θ0 � r 

� E 
T

0

zV2θt

zt
+

zV2θt
′

zx
fθt

+ gθt
u dt +

1
2

lθt
+ qθt

u ′
z2V2θt

zx2 lθt
+ qθt

u ⎡⎣ ⎤⎦dt + 
N

h�1
πrhV(x, t, h) | θ0 � r

⎧⎨

⎩

⎫⎬

⎭

� E 
T

0

zV2θt

zt
+

zV2θt
′

zx
fθt

+ gθt
u  +

1
2

lθt
+ qθt

u 
z2V2θt

zx2 lθt
+ qθt

u ⎡⎣ ⎤⎦dt + 
N

h�1
πrhVh − 

N

h�1
πrhTr | θ0 � r

⎧⎨

⎩

⎫⎬

⎭

� E 
T

0

zV2θt

zt
+

zV2θt
′

zt
fθt

+ gθt
u dt +

1
2

lθt
+ qθt

u ′
z2V2θt

zx2 lθt
+ qθt

u ⎡⎣ ⎤⎦dt + 
h∈Tr

K

πrh Vh − Tr( 

⎧⎪⎨

⎪⎩

+ 
h∈Tr

UK

πrh Vh − Tr(  | θ0 � r
⎫⎪⎬

⎪⎭
, r ∈ T.

(24)

By Itô’s formula and the completing square technique
combined with (24), we obtain

J
T
2 u, v

∗
T ; x0, θ0( 

� E 
T

0
‖z‖

2dt θ0 � r
 

� E 
T

0
mθt

�����

�����
2

+‖u‖
2

 dt|θ0 � r 

� E 
T

0
mθt
′mθt

+ u′u dt + LV2 x, t, θt(  + V2 x0, 0, θ0(  − EV2 x, t, θt( |θ0 � r 

� E 
T

0

zV2θt

zt
+ lθt
′
zV2θt
′

zx
fθt

+ gθt
u  +

1
2

lθt
+ qθt

u ′
z2V2θt

zx2 lθt
+ qθt

u ⎡⎣ ⎤⎦dt + 
N

h�1
πrhV(x, t, h) + mθt

′mθt
+ u′udt

⎧⎨

⎩

+ V2 x0, 0, θ0(  − EV x, t, θt( |θ0 � r
⎫⎬

⎭

� E 
T

0

zV2θt

zt
+ lθt
′
zV2θt
′

zx
fθt

+
1
2
l
T
θt

z2V2θt

zx2 lθt
+ mθt
′mθt

+ 
h∈Tr

K

πrh Vh − Tr(  + 
h∈Tr

UK

πrh Vh − Tr( ⎡⎢⎢⎢⎢⎣
⎧⎪⎨

⎪⎩

−
1
4

z2V2θt
′

zx2 gθt
+ lθt
′
z2V2θt

zx2 qθt

⎛⎝ ⎞⎠ I +
1
2
qθt
′
z2V2θt

zx2 qθt

⎛⎝ ⎞⎠

− 1

+ gθt
′
zV2θt

zx
+ qθt
′
z2V2θt

zx2 lθt

⎛⎝ ⎞⎠ + u − u
∗
T( ′ I +

1
2
qθt
′
z2V2θt

zx2 qθt

⎛⎝ ⎞⎠ u − u
∗
T( ⎤⎥⎥⎦dt

+ V2 x0, 0, θ0(  − EV x, t, θt( |θ0 � r
⎫⎬

⎭

� E 
T

0
u − u
∗
T

����
����
2dt +△2 V2θt

  + 
h∈Tr

UK

πrh Vh − Tr(  + V2 x0, 0, r(  − EV x, t, θt( , r ∈ T,

(25)
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in which the inequality JT
2 (u∗T , v∗T ; x0, θ0)≤ JT

2 (uT, v∗T ;

x0, θ0) � V2(x0, 0, r) holds since that V2(x, T, θt) � 0,
△2(V2θt

) � 0, and h∈Tr
UK
πrh(Vh − Tr)≥ 0(r � h or r≠ h).

So, from (25), this lemma is obvious with the optimal control
(22). □

3. Main Results

In this part, a sufficient condition comes down to+eorem 1
for the solvability of the H2/H∞ control with nonlinear
jump systems (1).

Theorem 1. For a given c> 0, think about the following four
cross-coupled HJEs:

△3 V1θt
  ≔

zV
1θt

zt
+

zV
1θt

′

zx
fθt

− mθt
′ mθt

+
1
2
lθt
′
z2Vθt

zx2
lθt

+ 
h∈Tr

K

πrh Vh − Tr(  −
1
4

zV1θt
′

zx
hθt

+lθt
′
z2V1θt

zx2 sθt

⎛⎝ ⎞⎠ c
2
I +

1
2
sθt
′
z2Vθt

zx2 sθt

⎛⎝ ⎞⎠

− 1⎧⎪⎨

⎪⎩

hθt
′
zVθt

zx
+ sθt
′
z2Vθt

zx2
lθt

⎛⎝ ⎞⎠ � 0, c
2
I +

1
2
sθt
′
z2V1θt

zx2 sθt
> 0, Vh − Tr ≥ 0, h ∈ Tr

UK, r≠ h, Vh − Tr ≤ 0, h ∈ Tr
UK, r � h, V1 x, T, θt(  � 0,

(26)

K1 � −
1
2

c
2
I +

1
2
sθt
′
z2V1θt

zx2 sθt

⎛⎝ ⎞⎠

− 1

hθt
′
zV1θt

zx
+ sθt
′
z2V1θt

zx2
lθt

⎛⎝ ⎞⎠, (27)

△4 V2θt
  ≔

zV
2θt

zt
+

zV
2θt

′

zx

fθt
− mθt
′mθt

+
1
2
l1θt
′
z2Vθt

zx2
l1θt

+ 
h∈Tr

K

πrh Vh − Tr(  −
1
4

zV2θt
′

zx
gθt

+l1θt
′
z2V2θt

zx2 sθt

⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

I +
1
2
qθt
′
z2V2θt

zx2 qθt

⎛⎝ ⎞⎠

− 1

hθt
′
zV2θt

zx
+ qθt
′
z2V2θt

zx2
l1θt

⎛⎝ ⎞⎠ � 0, I +
1
2
qθt
′
z2V2θt

zx2 qθt
> 0, Vh − Tr ≥ 0, h ∈ Tr

UK, r≠ h, Vh − Tr⩽0,

h ∈ Tr
UK, r � h, V1 x, T, θt(  � 0,

(28)

K2 � −
1
2

I +
1
2
qθt
′
z2V2θt

zx2 qθt

⎛⎝ ⎞⎠

− 1

gθt
′
zV2θt

zx
+ qθt
′
z2V2θt

zx2
l1θt

⎛⎝ ⎞⎠. (29)

If there exist solutions (V1θt
, V2θt

) with V1θt
≤ 0 and

V2θt
≥ 0 for (26)–(29), then the finite horizon H2/H∞

control of nonlinear Markov jumps has a pair of solutions
(u∗T , v∗T ) with u∗T � K2x, v∗T � K1x, and JT

2 (u∗T , v∗T ; x0, θ0)
� V2(x0, 0, r).

Proof. Notice the following transformations in (26)–(29):

fθt
� fθt

+ gθt
K2,

lθt
� lθt

+ qθt
K2,

mθt
� col mθt

, K2 ,

f1θt
� fθt

+ hθt
K1,

l1θt
� lθt

+ sθt
K1.

(30)

Substituting u � K2x with K2 defined by (29) into (1), we
have

dx(t) � f x, t, θt(  + h x, t, θt( v(t) dt

+ l x, t, θt(  + s x, t, θt( v(t) dw(t),

z(t) � mθt
, K2 .

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(31)

Applying Lemma 1 to system (31), we conclude

E 
T

0
mθt

�����

�����
2

+ u
∗
T

����
����
2dt|θ0 � r ≤ c

2
E 

T

0
‖v‖

2dt|θ0 � r , r ∈ T,

(32)

and v � K1x is the worst case disturbance. In the meantime,
implementing v � v∗T � K1x into (1), one yields that

dx(t) � f1 x, t, θt(  + g x, t, θt( u(t) dt

+ l1 x, t, θt(  + q x, t, θt( u(t) dw(t),

x0 ∈R
n, θ0 ∈ T, t ∈ [0, T].

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(33)

Minimizing JT
2 (u, v∗T ; x0, θ0) under the constraint of (33)

is a standard nonlinear quadratic optimal problem. By
applying the Lemma 2, JT

2 (u, v∗T ; x0, θ0) achieves its
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minimum at u∗T � K2x, and JT
2 (u∗T , v∗T ; x0, θ0) � V2(x0,

0, r). By Definition 1, this theorem is proved.
+eorem 2 offers a necessary condition for the H2/H∞

control of system (1). □

Theorem 2. For a given c> 0, V
1
Tθt

, V
2
Tθt
∈ C2,1 ∈Rn×

[0, T] × T, think about system (1). If the finite horizon H2/
H∞ of nonlinear stochastic jump systems has solutions (u∗T �

K2x, v∗T � K1x) ∈L2
F([0, T],Rnu ) × ([0, T],Rnu ) satisfying

the following terms:

c2I +
1
2
sθt
′
z2 V

1
Tθt

zx2 sθt
> 0, V

1
T x, t, θt(  � 0,

I +
1
2
qθt
′
z2 V

2
Tθt

zx2 qθt
> 0, V

2
T x, t, θt(  � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(34)

Ren, V
1
Tθt
≤ 0 and V

2
Tθt
≥ 0 are the solutions of the four cross-

coupled HJEs (26)–(29).

Proof. Substituting u � u∗T � K2x into (1), one reads (31).
Hence, (6) holds because (u∗T , v∗T ) solves the H2/H∞ con-
trol. By Definition 3, Lemma 1, and Lemma 4.1 of [17], we
assert that V

1
Tθt
≤ 0 solves the following HJE:

Lu�u∗
T

,v�0
V
1
T − mϑt
′mθt

− K2
����

����
2

− 
h∈Tr

K

πrh Vh − Tr( 

−
1
4

zV
1′
Tθt

zx
hθt

+lθt
′
z2 V

1
Tθt

zx2 sθt

⎛⎜⎜⎝ ⎞⎟⎟⎠ c
2
I +

1
2
sθt
′
z2 V

1
Tθt

zx2 sθt

⎛⎝ ⎞⎠

− 1

hθt
′
zV

1
Tθt

zx
+ sθt
′
z2 V

1
Tθt

zx2
lθt

⎛⎝ ⎞⎠ � 0,

c2I +
1
2
s
′
θt

z2 V
1
Tθt

zx2 sθt
> 0,

Vh − Tr⩾0, h ∈ Tr
UK, r≠ h,

Vh − Tr⩽0, h ∈ Tr
UK, r � h,

V
1
T x, T, θt(  � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(35)

Notice the inequality (15), apparently,

E 
T

0
c
2
‖v‖

2
− ‖z‖

2
 dt|θ0 � r 

� V 0, 0, θ0(  − EV x, t, θt(  + E 
T

0
v − v
∗
T

����
����
2

c,s,V
1
Tθt

 
dt + Δ3 V1θt

  + 
h∈Tr

UK

πrh Vh − Tr( .

(36)

+is, together with (35) and Definition 3, for each T> 0

J
T
1 u
∗
T , v; x0, θ0(  � V

1
T x0, 0, θ0(  + E 

T

0
v − v
∗
T

����
����
2

c,s,V
1
Tθt

 
dt

+ 
h∈Tr

UK

πrh Vh − Tr( .

(37)

From (37), we see that JT
1 (u∗T , v∗T ; x0, θ0) �

min JT
1 (u∗T , v; x0, θ0), and

v
∗
T � −

1
2

c
2
I +

1
2
sθt
′
z2 V

1
Tθt

zx2 sθt

⎛⎝ ⎞⎠

− 1

hθt
′
zV

1
Tθt

zx
+ sθt
′
z2 V

1
Tθt

zx2
lθt

⎛⎝ ⎞⎠,

(38)

is the worst perturbance. So, v∗T � v∗T � K1x. +en,
substituting v � v∗T � K1x into (1), (33) can be obtained.
Owing to minimizing V

2
T(x, s, θt) � inf

u∈LF
2([0, T],

Rnu )x(s) � x, v � v∗TJT
2 (u, v) under the constraint of (33),

we can infer that u∗T � K2x is the optimal solution. Next,
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considering the stochastic dynamic programming principle,
we can certify that (V

2
Tθt

, u∗T ) solves the following HJE:

−
zV

2
Tθt

zt
+ maxu∈L2

F [0,T],Rnu( )H x, t, θt, u, −
zV

2
Tθt

zx
, −

z2 V
2
Tθt

zx2
⎛⎝ ⎞⎠ � 0,

(39)

that is,

−
zV

2
Tθt

zt
+ H x, t, θt, u

∗
T , −

zV
2
Tθt

zx
, −

z2 V
2
Tθt

zx2
⎛⎝ ⎞⎠ � 0. (40)

In this step, the generalized Hamiltonian function is
prescribed as follows:

H x, t, θt, u, −
zV

2
Tθt

zx
, −

z2 V
2
Tθt

zx2
⎛⎝ ⎞⎠

≔ − ‖u‖
2

− mθt

�����

�����
2

−
z V

2′
Tθt

zx
f1θt

+ gθt
u  − 

N

h�1
πrhV(x, t, h)

−
1
2

l1θt
+ qθt

u ′
z2 V

2
Tθt

zx2
l1θt

+ qθt
u  � − Δ4 V

2
Tθt

  +
z V

2
Tθt

zt
− u − u

∗
T

����
����
2
1,q,V

2
Tθt

 
− 

h∈Tr
UK

πrh Vh − Tr( ,

(41)

with

u
∗
T � −

1
2

I +
1
2
qθt
′
z2 V

2
Tθt

zx2 qθt

⎛⎝ ⎞⎠

− 1

gθt
′
zV

2
Tθt

zx
+ qθt
′
z2 V

2
Tθt

zx2
l1θt

⎛⎝ ⎞⎠.

(42)

From (41), we get u∗T � u∗T � K2x. Substituting the above
u∗T into (40) and considering Definition 3, it tests that
V
2
Tθt
≥ 0 solves the following HJE:

zV
2
Tθt

zt
+

z V
2′
Tθt

zx
f1θt

+ mθt
′mθt

+
1
2
l1θt

z2 V
2
Tθt

zx2
l1θt

+ 
h∈Tr

K

πrh Vh − Tr( 

−
1
4

z V
2′
Tθt

zx
gθt

+ l1θt
′
z2 V

2
Tθt

zx2 qθt

⎛⎜⎜⎝ ⎞⎟⎟⎠ I +
1
2
qθt
′
z2 V

2
Tθt

zx2 qθt

⎛⎝ ⎞⎠

− 1

gθt
′
zV

2
Tθt

zx
+ qθt
′
z2 V

2
Tθt

zx2
l1θt

⎛⎝ ⎞⎠ � 0,

I +
1
2
qθt
′
z2 V

2
Tθt

zx2 qθt
> 0,

Vh − Tr ≥ 0, h ∈ Tr
UK, r≠ h,

Vh − Tr ≤ 0, h ∈ Tr
UK, r � h,

V
2
T x, T, θt(  � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(43)

Combining (35) and (43), the desired result therefore is
obtained. □

Remark 4. It should be noted that HJEs (26)–(29) are hard
to solve in general. To get the analytic expression of the
controller, Takagi–Sugeno fuzzy model is constantly used,
which can approximate nonlinear system effectively. +e

method to solve HJEs (26)–(29) is worth to make further
studies.

4. Examples

In this part, we will give two examples to illustrate the
usefulness of above results.
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Example 1. +ink about the following one-dimensional
Markov jump systems with three modes:

dx(t) � −
3
2
x
3

+ xu(t) +
�
2

√
xv(t) dt + x2dw(t),

z(t) � col
1
2

x, u(t) , θ0 ∈ T,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(44)

dx(t) � −
1
2
x
3

−
�
2

√
x
2

− 8x  +
�
2

√
u(t) + 4v(t) dt

+ x2 +
�
2

√
x( dw(t),

z(t) � col

�
5

√

2
x, u(t) , θ0 ∈ T,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(45)

dx(t) � −
3
2
x
3

−
�
6

√
x
2

−
25
2

x  + 2u(t) + 2
�
7

√
v(t) dt

+
�
3

√
x2 +

�
2

√
x( dw(t),

z(t) � col

�
5

√

2
x, u(t) , θ0 ∈ T.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(46)

We assume that the elements of the transition proba-
bilities matrix (1) are fully known:

1 �

−
1
2

 
1
4

1
4

1
2

− 1
1
2

1
2

1
2

− 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (47)

Set Vrh(x) � prhx2(r � 1, 2, h � 1, 2, 3). For given c � 1,
the corresponding HJEs have solutions with p11 � − 1,
p12 � − (1/2), p13 � − (1/2), p21 � 2, p22 � (3/2), and
p23 � (3/2). According to+eorem 1, the H2/H∞ controller
of (44)–(46) can be chosen as v∗T (x, t, 1) �

�
2

√
x2,

v∗T (x, t, 2) � 2x, v∗T (x, t, 3) �
�
7

√
x u∗T (x, t, 1) � − 2x2,

u∗T (x, t, 2) � − (3/
�
2

√
)x, and u∗T (x, t, 3) � − 3x.

Example 2. +ink about the following one-dimensional
Markov jump systems with three modes:

dx(t) � −
3
2
x
3

+
1
4

u(t) +
1
2

v(t) dt +
�
3

√
x2dw(t),

z(t) � col
1
2

x, u(t) , θ0 ∈ T,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(48)

dx(t) � −
1
2
x
3

−
�
2

√
x
2

− 8x  +

��
19

√

3
u(t) +

��
50
3



v(t) dt + x2 +
�
2

√
x( dw(t),

z(t) � col

�
5

√

2
x, u(t) , θ0 ∈ T,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(49)

dx(t) � −
3
2
x
3

−
�
6

√
x
2

−
25
2

x  +

��
37

√

3
u(t) +

��
86
3



v(t) dt +
�
3

√
x2 +

�
2

√
x( dw(t),

z(t) � col

�
5

√

2
x, u(t) , θ0 ∈ T.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(50)

+e elements of the transition probability matrix (2)

are supposed to be partially unknown:

2 �

−
1
2

  ? ?

1
2

− 1 ?

1
2

? − 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (51)

where “?” represents the unaccessible element. Set Vrh(x) �

prhx2 (r � 1, 2, h � 1, 2, 3) and c � 1. It can be found that

p11 � − 1, p12 � − (1/2), p13 � − (1/2), p21 � 2, p22 � (3/2),
and p23 � (3/2) solving the corresponding HJEs. According
to +eorem 1, the H2/H∞ controller of (48)–(50) can be
given by v∗T (x, t, 1) � (1/2)x, v∗T (x, t, 2) � (5/

�
6

√
)x,

v∗T (x, t, 3) � (
����
43/6

√
)x, u∗T (x, t, 1) � − (1/2)x,

u∗T (x, t, 2) � − (
��
19

√
/2)x, and u∗T (x, t, 3) � − (

��
37

√
/2)x.

5. Conclusions

+is note dealt with the finite horizon H2/H∞ control for
stochastic nonlinear Markov jump systems with partially
unknown transition probabilities. Based on the four cross-

10 Mathematical Problems in Engineering



coupled Hamilton–Jacobi equations, a sufficient condition
and a necessary condition for the existence of H2/H∞
control are respectively drawn, which can be regarded as the
generalization of [16] to nonlinear jumpmodels.+e validity
of the results has been demonstrated by two numerical
examples.
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