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,is paper studies a new convex variational model for denoising and deblurring images with multiplicative noise. Considering the
statistical property of the multiplicative noise following Nakagami distribution, the denoising model consists of a data fidelity
term, a quadratic penalty term, and a total variation regularization term. Here, the quadratic penalty term is mainly designed to
guarantee the model to be strictly convex under a mild condition. Furthermore, the model is extended for the simultaneous
denoising and deblurring case by introducing a blurring operator. We also study some mathematical properties of the proposed
model. In addition, the model is solved by applying the primal-dual algorithm. ,e experimental results show that the proposed
method is promising in restoring (blurred) images with multiplicative noise.

1. Introduction

Image restoration problems [1–9] have attracted a great
amount of attention in real applications. Noise in images is
often roughly grouped into additive noise and multiplicative
noise. In this paper, we mainly focus on the multiplicative
noise removal problem [10], which can be formulated as

f � (Ku)v, (1)

where f: Ω⟶ R+ is the observed image (Ω ⊂ R2 is a
connected bounded open subset with compact Lipschitz
boundary), v ∈ L2(Ω) denotes multiplicative noise with
mean 1, and K ∈L(L2(Ω)) is a known linear and con-
tinuous blurring operator. ,e goal is to find the unknown
true image u from the degraded image f as well as possible.

Multiplicative noise, also known as speckle [11–15],
often occurs in active imaging systems, such as synthetic
aperture radar (SAR), laser images, and ultrasound imaging.
In this paper, the characteristics of speckle which follow a
Nakagami distribution in SAR images are considered. In

SAR imaging system which are widely used in military
reconnaissance, marine monitoring, and other fields, a radar
sends a coherent wave. ,en, it is reflected on the ground
and “recorded” by the radar sensor to capture SAR images.
,e fading of radar echo signal often causes that the SAR
images are degraded by speckle, which limits their inter-
pretation and processing.

Over the past decades, there is a great deal of research
that has been done on solving the speckled image problem
[16–19]. Early filtering techniques are exploited under the
minimum mean square error (MMSE) criterion in the
spatial domain [20]. And the bilateral filtering [21], the
meshless method [22], the low-rank method [23], and the
wavelet-based [24, 25] and nonlocal-based [26–28] ap-
proaches have also been explored for despeckling. Partic-
ularly, in some statistics-based methods, the observed image
intensity is considered as a random variable following a
negative exponential law, and then the intensity of the
L-look image which is obtained as the average of L different
independent images follows a gamma law with mean equal
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to one. And thus, the image to be recovered is assumed to be
degraded by multiplicative gamma noise. Based on this
assumption, a series of variational models, including the
ZWM model [29], the AA model, and its variants and
convexity improvements (e.g., the exponent-based models
[30–33], the mV model [34], the TwL-mV model [35], and
DZ model [36]), are proposed, where the regularization
terms generally play a key role to preserve the image
structure such as edge detail. On the contrary, in some other
statistics-based methods, the image amplitude which is the
square root of the reflectivity (intensity) image is taken into
consideration. And the pixel amplitudes are modeled as
independent and identically distributed according to the
Nakagami distribution. Related work includes the proba-
bilistic patch-based (PPB) method [27], the SAR block-
matching 3D (SAR-BM3D) method [28], DD-SRAD
method [37], a variation-based model by using fields of
experts (FoEs) [38] proposed by Chen et al. [11], and the
references cited therein.

Based on the works [11, 36, 39], we investigate a new
convex variational model in this paper, where the image
amplitude is considered, and the fidelity term is deduced
from the probability density function of the Nakagami
distribution and a quadratic penalty term is derived from the
statistical property of Nakagami distribution, which guar-
antees the proposed model to be strictly convex under a mild
condition. ,e convex model guarantees the uniqueness of
the solution. Under the framework of continuous functional,
we study the existence and uniqueness of the proposed
model to the image denoising and deblurring problem.
Furthermore, we employ the primal-dual method [36, 40] to
solve the proposed model. Finally, we arrange some nu-
merical comparisons on simulated images and real SAR
images to illustrate the efficiency of the model.

2. Methods

To recover u for the degraded image f in (1), based on the
statistical properties of Nakagami noise, in Section 2.1, we
first propose a new variational model (6) for image denoising
(i.e., K � I). We analyze the existence and uniqueness of the
solution of the new model and discuss the properties of the
solution of the model. ,en, we extend the denoising model
(6) to simultaneous deblurring and denoising case and also
show the properties of the solution of the model in Section
2.2. And on these bases, we introduce a primal-dual algo-
rithm to solve the proposed model in Section 2.3. By
adopting the similar ideas in [36, 39], we can get Proposi-
tions 1, 2–5, and ,eorem 1. And the proof of Propositions
1,2, and 4 is given in the Appendices A, C, and D, re-
spectively; and the proof of ,eorem 1 can be found in
Appendix B.

2.1. A Convex Variational Denoising Model. We now in-
troduce a new variational model for image denoising, based
on the statistical properties of Nakagami noise. For the
multiplicative model f � uv, we assume that v follows a

Nakagami distribution, the square root of the reflectivity
[11, 13]:

p(f | u) �
2LL

Γ(L)u2L
f
2L− 1

e
− Lf2/u2( ), (2)

where L is the number of looks of the image (i.e., number of
independent values averaged) and Γ(·) is the classical
Gamma function.

Based on (2), by using the MAP estimator and com-
bining the resulting data term with the total variation (TV)
prior model, we obtain the following AA-like variational
model:

inf
u∈S(Ω)

􏽚
Ω

2 log u +
f2

u2􏼠 􏼡dx + λ􏽚
Ω

|Du|, (3)

where λ> 0 and S(Ω): � u ∈ BV(Ω): u≥ 0{ }. And 􏽒Ω|Du|

is the TV of image u.
Let z � (1/v) and z denote the instance of random

variable Z. It is not hard to get that its PDF is

pZ(z) �
2LL

Γ(L)
z

− 2L− 1
e

− L/z2
, ∀z≥ 0. (4)

A direct calculation shows that

E(Z) �

��
L

√
Γ(L − (1/2))

Γ(L)
> 0,

lim
L⟶+∞

E (Z − 1)
2

􏼐 􏼑 � 0.

(5)

Based on this observation, we therefore introduce a
quadratic penalty term 􏽒Ω((u/f) − β1)2dx into the AA-like
model (3), yielding the following optimization problem:

inf
u∈S(Ω)

E(u) ≔ 􏽚
Ω

2 log u +
f2

u2􏼠 􏼡dx + α􏽚
Ω

u

f
− β1􏼠 􏼡

2

dx

+ λ􏽚
Ω

|Du|,

(6)

where α> 0, λ> 0, and β≥ 1 vary with the level of the noise.
We now show that E(u) in (6) is convex if the parameter α
satisfies certain condition.

Proposition 1. If α is chosen satisfying

α≥
1
12

, (7)

then the model (6) is strictly convex.

Next, we study the existence and uniqueness of the
solution to (6) and the minimum-maximum principle. To
this end, we make the following notations. Given a function
f ∈ L∞(Ω), we denote by supΩf (resp., infΩf) the
supremum (resp., infimum) of f, i.e., supΩf �

inf C ∈ R; f(x)≤C a.e.􏼈 􏼉 (resp., infΩf � sup C ∈ R; f(x)􏼈

≥C a.e.}).
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Theorem 1. If f ∈ L∞(Ω) and infΩf> 0, then the problem
(6) has a solution u∗ ∈ BV(Ω) such that

0< inf
Ω

f≤ u
∗ ≤ β sup

Ω
f. (8)

Moreover, the solution of (6) is unique when α is chosen to
satisfy (7).

We now introduce a comparison principle that char-
acterizes the relationship of solutions of problem (6) with
different f values.

Proposition 2. Suppose f1 and f2 are in L∞(Ω) with
infΩf1 > 0 and infΩf2 > 0. Let a1 � infΩf1, a2 � infΩf2,
b1 � supΩf1, and b2 � supΩf2. Assume that f1 <f2. We
denote by u∗1 (resp., u∗2 ) a solution of (6) for f � f1(resp.,
f � f2). <en, we have u∗1 ≤ u∗2 a.e. in Ω if α and β satisfy
(αβ/1 + α)< (a2

1a
2
2/b

2
1b

2
2).

2.2. A Simultaneous Deblurring and Denoising Model.
Given a nonnegative, linear, and continuous blurring op-
erator K ∈L(L2(Ω)), the degraded image can be expressed
as f � (Ku)v. Here, f is the observed image, u is the image
to be recovered, and v is the noise. Similar to (6), the
deblurring and denoising model can be formulated as

inf
u∈S(Ω)

EK(u) ≔ 􏽚
Ω

2 log(Ku) +
f2

(Ku)2
􏼠 􏼡dx

+ α􏽚
Ω

Ku

f
− β1􏼠 􏼡

2

dx + λ􏽚
Ω

|Du|.

(9)

Note that (6) is a special case of (9) with K being the
identity operator.

We can show that the above model (9) is convex if α
satisfies some certain conditions.

Proposition 3. If α is chosen satisfying

α≥
1
12

, (10)

then the model (9) is convex.

In view of Proposition convexdesp and the fact that K is
linear, it is not hard to show that the conclusion of Prop-
osition 3holds.

We next show that Ku∗ is positive; i.e.,
x ∈ Ω: (Ku∗)(x) � 0{ } has a zero Lebesgue measure when ε
approaches to zero. And furthermore, we can obtain that
Ku∗ is strictly positive in the discrete situation.

Proposition 4. Suppose f ∈ L∞(Ω) and infΩf> 0. Let
K ∈L(L2(Ω)) be a linear and continuous blurring operator.
Assume that u∗ is the solution of (9). <en, there exists a
constant C such that, for any 0< ε< 1,

x ∈ Ω: Ku
∗

( 􏼁(x)≤ εf(x)􏼈 􏼉
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
ε2

1 + 2ε2log ε

· C − 2􏽚
Ω
logfdx􏼒 􏼓.

(11)

,e following Proposition 5 implies that, in general,
model (9) cannot automatically preserve the mean of the
original image.

Proposition 5. Let u∗ be a solution of (7). Suppose that K1 �

1 and infΩKu∗ > 0. <e following statements hold:

(i) 􏽒Ω[(f2/(Ku∗)3) − α((Ku∗/f2) − (β1/f))]dx �

􏽒Ω(1/Ku∗)dx .
(ii) If there exists a solution of (10) for α � 0, then

􏽚
Ω

Ku∗

f2 dx≥􏽚
Ω

1
Ku∗

dx. (12)

We can enhance the model (9) to reduce the influence
from the bias by keeping the same mean of the recovered
image as f by the following model:

inf
u∈S(Ω):EΩ(u)�EΩ(f){ }

􏽚
Ω

2 logKu +
f2

(Ku)2
􏼠 􏼡dx

+ α􏽚
Ω

Ku

f
− β1􏼠 􏼡

2

dx + λ􏽚
Ω

|Du|,

(13)

where EΩ(f) is the mean value of f. Due to the fact that
u ∈ S(Ω): EΩ(u) � EΩ(f)􏼈 􏼉 is closed and convex, it is easy
to see that (13) has exactly one solution.

2.3. An Iterative Algorithm. For the sake of developing
numerical algorithms in real-world applications, in this
section, we discuss a discrete version of model (6). For
simplicity, we use the same notation as the abovementioned
continuous version. Here, let K ∈ Rd×d, Q � u ∈ Rd:􏽮

ui ≥ 0, i � 1, . . . , d, and 􏽐
d
i�1 ui � 􏽐

d
i�1 fi}, and the images

u, f ∈ Rd, and ∇∈ R2 d×d be the discrete gradient operator
with ∇x and∇y being, respectively, the discrete derivatives in
the x-direction and y-direction. With the above notations,
the discrete version of model (6) is given as follows:

min
u∈Q

EK(u) ≔ FK(u) + λ‖u‖TV, (14)

where

FK(u) ≔ 〈2 logKu, 1〉 +〈
f2

(Ku)2
, 1〉 + α

Ku

f
− β1

��������

��������

2

2
,

‖u‖TV � 􏽘
d

i�1

��������������

∇xu( 􏼁
2
i + ∇yu􏼐 􏼑

2
i

􏽲

.

(15)
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,e minimization problem (14) can be solved by many
numerical algorithms, such as the split-Bregman algorithm
[41], the ADMM [42], and proximity algorithm [43]. In this
section, we adopt the primal-dual algorithm to solve the
problem (14) by formulating it as

max
p∈P

min
u∈Q

FK(u) − λ〈u, divp〉, (16)

where div is the divergence operator and P �

p ∈ R2 d: maxi∈ 1,...,d{ }|(p2
i + p2

i+d)1/2|≤ 1􏽮 􏽯 with p being the
dual variable.

Now, similar to [36], we present the primal-dual al-
gorithm in Algorithm 1. In order to ensure the iterates
(un, pn)􏼈 􏼉 of Algorithm 1 converge to a saddle point of
(14), the parameters μ, ρ, and λ should satisfy μρλ2 < 1/8
[36, 44]. And for simplification, we set μ � ρ � 3 in our
experiments.

3. Results and Discussion

In this section, we conduct numerical experiments on
simulated images and real SAR images to evaluate the
approximation accuracy and computational efficiency of
our proposed algorithm. We compare our method in the
denoising case with the Lee filters [20], the speckle reducing
anisotropic diffusion (SRAD) method [45], the probabi-
listic patch-based (PPB) method [27], and the model (13)
with α � 0 using the algorithm adopted in [39] (here, we
call it AA-like method), while in the deblurring and
denoising case, our method is compared with the AA-like
method. In order to preserve the mean of the observed
image, the bias correction technique [36] is utilized for the
AA-like method and our method. All the experiments are
performed in MATLAB R2017b on a laptop with Intel(R)
Core(TM) i7-5500U central processing unit (CPU,
2.40 GHz), 8.0 G memory, and Windows 8.1 operating
system.

In our simulated test, we choose images of “Boat” and
“Lena” of size 512 × 512, “Cameraman” of size 256 × 256,
“Remote1” of size 460 × 460, and “Remote2” of size
570 × 570, which are shown in Figure 1.

,e quality of recovered images obtained from various
despeckling algorithms is evaluated by the structural simi-
larity index (SSIM) [46] and the peak signal-to-noise ratio
(PSNR):

PSNR(u, 􏽢u) � 10 log10
2552 d

‖u − 􏽢u‖2
􏼠 􏼡, (17)

where u and 􏽢u denote the original image and the recovered
image, respectively; and d is the total number of pixels of u.
All the methods except PPB and Lee filter are terminated by
the following stopping criterion:

un − un+1
����

����2
un‖ ‖2

< ε, (18)

where ε is a fixed threshold. We set ε � 1.5 × 10− 4 in the
denoising experiment and ε � 2 × 10− 5 in the deblurring
experiment.

3.1. Denoising Experiment. ,e first experiment focuses on
the denoising case; i.e., K in model (14) is the identity
operator. We first choose the test image of “Boat” and
degrade it by multiplicative Nakagami noise with L � 10.
With a large value of L, the value of β is 1. We denote
Algorithm 2, Algorithm 3, and Algorithm 4 by the same
algorithm framework of Algorithm 1 but with the initiali-
zation replaced by u0 � u0 � uPPB, uLee, uSRAD, and
p0 � (0, . . . , 0)T ∈ R2 d. Here, uPPB, uLee, and uSRAD are the
solutions of the PPB method [27], Lee filter [20], and SRAD
method [45], respectively. ,e parameter settings of four
algorithms are λ � 0.01, α � 2.7, and β � 1. It can be seen
from Figure 2 that although Algorithms 1, 2, 3, and 4 using
the same parameters converge to the same stable PSNR value
in accordance with the strict convexity and the uniqueness of
the solution of the model, the curve of PSNR values asso-
ciated with Algorithm 2 has a higher peak than that of
Algorithms 1, 3, and 4. AA-like method with the same initial
guess (named the PPB-AAmethod) is also added for making
the experiments more persuading. Based on this observa-
tion, Algorithm 2, PPB-AA, together with Algorithm 1, Lee
filter, SRAD method, PPB method, and AA-like method are
listed in Table 1 tomake a comparison. In Table 1, the images
are corrupted by multiplicative noise (Nakagami distribu-
tion with L � 10, L � 7, and L � 5). ,e smaller the L is, the
noisier the images are. We tune the parameters to insure a
better performance for every image. ,e parameter settings
of proposed algorithms are shown in Table 2. For the Lee
filter, the default window size of 5 is used. For the SRAD
method, the parameters are set as suggested in [45]. For the
PPB method, we use the codes provided by the work in [27].
And for PPB-AA and Algorithm 2, the computing time is
expressed as the sum of the CPU cost of getting the initial
solution uPPB and true CPU time of Algorithm 2 and AA-like
method, respectively. We observe that the PSNR and SSIM
values of the restored images by Algorithm 1 are always
higher than those of AA-like method, which indicates that
the choices of α and β have a significant impact on the
quality of denoised images. Moreover, the PSNR and SSIM
values of the restored images by Algorithm 2 are generally
the highest among all those seven methods tested.

To visually compare the image restoration performance
of above sevenmethods, Figures 3 and 4 report the denoising
results of “Lena” and “Remote1” with L � 5, and the certain
corresponding partial enlarged denoising images of “Lena”
and “Remote1” with L � 10, L � 7, and L � 5 by these
methods are shown in Figures 5–10, respectively. Firstly, we
find that much noise remains in the results of Lee filter,
SRAD method, and AA-like method (e.g., the hat of “Lena”
shown in Figures 5–7 and roofs in “Remote1” shown in
Figures 8–10). Lee filter leads to a blurred effect on restored
images. Since the AA-like method is oversmoothing in the
process of despeckling, details of images tend to be reduced.
Conversely, more details are preserved by Algorithm 1 and
SRAD method. Secondly, the PPB method in [27] can
remove the multiplicative noise effectively because it is a
patch-based method, which is a different framework from
TV-based methods (e.g., AA-like method and Algorithm 1).
,e images obtained from the PPB method provide
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smoother regions and better shape preservation (e.g., “Re-
mote1” shown in Figure 4 and the backgrounds in “Lena”
shown in Figure 3). However, we still notice some artifacts
(e.g., the edge of the homogeneous regions in “Lena” and
“Remote1”), and the PPB method seems to attenuate the
image sharpness (e.g., the hat of “Lena” and trees in “Re-
mote1”) shown in Figures 5–10. Indeed, those spurious

artifacts can be removed by the TV regularization in our
method, but Algorithm 1 may suffer from staircasing effects
(e.g., the skin of “Lena”). Finally, we observe that Algorithm
2, which combines Algorithm 1 and PPB method, can re-
solve the problems of PPB method and Algorithm 1 and
performs better than the PPB-AA method in attenuating the
unpleasant artifacts.

Algorithm 1
Algorithm 2

Algorithm 3
Algorithm 4

500 1000 1500 2000 2500 3000 3500 40000
Iterations

20

22

24

26

28

30

PS
N

R 
(d

B)

Figure 2: ,e PSNR values against the number of iterations on Boat image using Algorithm 1, Algorithm 2, Algorithm 3, and Algorithm 4.

Given: a noisy image
f ∈ Rd

+. ,e positive parameters
λ, μ, ρ satisfying
ρμλ2 < 1/8.

Initialization: u0 � u0 � f and p0 � (0, . . . , 0)T ∈ R2 d.
repeat

Step 1: pn+1 � argmaxp∈Pλ〈un, di vp〉 − (1/2μ)‖p − pn‖22.
Step 2: un+1 � argminu∈QFK(u) − λ〈u, di vpn+1〉 + (1/2ρ)‖u − un‖22
Step 3: un+1 � 2un+1 − un.

until un+1 converges or satisfies a stopping criterion.
Output: u∗ � un+1.

ALGORITHM 1: Primal-dual iterative algorithm for solving model (14).

(a) (b) (c) (d) (e)

Figure 1: ,e five test images: (a) Lena; (b) Cameraman; (c) Boat; (d) Remote1; (e) Remote2.
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Table 1: ,e comparison of different denoising methods.

Image Method
L � 10 L � 7 L � 5

PSNR SSIM Time (s) PSNR SSIM Time PSNR SSIM Time (s)

Lena

Lee 29.52 0.872 0.22 28.58 0.847 0.22 27.75 0.816 0.19
SRAD 29.75 0.896 1.55 29.42 0.873 1.22 29.02 0.877 1.68
AA-like 30.01 0.882 50 29.01 0.864 58 28.12 0.844 71

Algorithm 1 30.99 0.910 89 29.95 0.895 105 28.91 0.874 125
PPB 31.82 0.935 52 31.08 0.924 51 30.37 0.909 50

PPB-AA 32.05 0.932 52 + 6 31.09 0.921 51 + 6 30.18 0.908 50 + 7
Algorithm 2 32.28 0.938 52 + 23 31.29 0.928 51 + 23 30.82 0.922 50 + 32

Boat

Lee 27.00 0.839 0.25 26.29 0.814 0.24 25.57 0.786 0.20
SRAD 27.54 0.856 1.11 27.28 0.842 1.09 26.84 0.825 1.17
AA-like 28.30 0.867 41 27.42 0.845 53 26.55 0.818 64

Algorithm 1 28.90 0.885 92 28.02 0.863 109 27.11 0.839 125
PPB 29.01 0.884 52 28.24 0.858 51 27.53 0.835 51

PPB-AA 29.07 0.875 52 + 5 28.19 0.849 51 + 5 27.33 0.826 51 + 6
Algorithm 2 29.44 0.891 52 + 27 28.49 0.865 51 + 29 28.02 0.851 51 + 40

Cameraman

Lee 27.11 0.757 0.12 26.07 0.719 0.14 25.06 0.686 0.13
SRAD 27.46 0.753 0.32 27.06 0.740 0.28 26.61 0.760 0.35
AA-like 27.91 0.759 9 26.85 0.740 11 25.93 0.729 14

Algorithm 1 28.46 0.767 26 27.77 0.794 23 26.84 0.774 27
PPB 28.09 0.833 17 27.53 0.811 16 26.83 0.788 15

PPB-AA 28.19 0.832 17 + 2 27.63 0.822 16 + 2 26.82 0.813 15 + 1
Algorithm 2 29.67 0.848 17 + 10 28.66 0.832 16 + 10 27.66 0.817 15 + 10

Remote1

Lee 26.12 0.900 0.26 25.23 0.880 0.19 24.46 0.860 0.20
SRAD 27.46 0.934 0.83 27.13 0.931 0.64 26.60 0.918 0.79
AA-like 27.98 0.939 30 26.91 0.922 36 25.91 0.896 47

Algorithm 1 28.67 0.952 85 27.52 0.941 96 26.69 0.920 99
PPB 27.54 0.943 44 26.81 0.929 42 26.07 0.912 42

PPB-AA 28.03 0.935 44 + 9 27.22 0.923 42 + 8 26.39 0.898 42 + 12
Algorithm 2 28.79 0.953 44 + 35 27.90 0.937 42 + 39 26.86 0.922 42 + 38

Remote2

Lee 26.12 0.836 0.22 25.39 0.813 0.31 24.68 0.785 0.25
SRAD 26.93 0.865 1.03 26.59 0.846 1.42 26.30 0.832 1.34
AA-like 27.81 0.871 50 26.84 0.844 64 25.91 0.814 75

Algorithm 1 28.43 0.885 143 27.57 0.866 131 26.64 0.839 150
PPB 27.94 0.868 64 27.22 0.844 63 26.55 0.821 62

PPB-AA 28.02 0.858 64 + 7 27.23 0.831 63 + 8 26.47 0.809 62 + 8
Algorithm 2 29.02 0.889 64 + 47 28.04 0.865 63 + 52 27.10 0.838 62 + 49

Table 2: ,e parameter values used in the denoising experiment.

Image Method
L � 10 L � 7 L � 5

λ α β λ α β λ α β

Lena

AA-like 0.23 — — 0.23 — — 0.23 — —
Algorithm 1 0.02 1.9 1 0.02 1 1 0.02 0.4 1.1
PPB-AA 0.25 — — 0.25 — — 0.25 — —

Algorithm 2 0.01 0.6 1 0.01 0.3 1 0.01 0.4 1.1

Boat

AA-like 0.22 — — 0.23 — — 0.23 — —
Algorithm 1 0.02 3.3 1 0.02 1.8 1 0.02 0.9 1.1
PPB-AA 0.22 — — 0.22 — — 0.22 — —

Algorithm 2 0.01 2.7 1 0.01 1.7 1 0.01 1.4 1.1

Cameraman

AA-like 0.18 — — 0.19 — — 0.19 — —
Algorithm 1 0.01 1/12 1 0.02 2.2 1 0.02 1.1 1.1
PPB-AA 0.21 — — 0.21 — — 0.2 — —

Algorithm 2 0.02 7.5 1 0.02 3.9 1 0.02 1.5 1.1

Remote1

AA-like 0.17 — — 0.17 — — 0.18 — —
Algorithm 1 0.01 1/12 1 0.01 1/12 1 0.02 1.5 1.1
PPB-AA 0.17 — — 0.16 — — 0.18 — —

Algorithm 2 0.01 3 1 0.01 0.9 1 0.01 1 1.1

Remote2

AA-like 0.17 — — 0.18 — — 0.18 — —
Algorithm 1 0.01 0.1 1 0.02 3 1 0.02 1.6 1.1
PPB-AA 0.17 — — 0.18 — — 0.18 — —

Algorithm 2 0.01 3.2 1 0.01 2 1 0.01 1.2 1.1
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3.2. Deblurring Experiment. In the second experiment, we
compare our proposed method with AA-like method for the
simultaneous deblurring and denoising case. ,e two dif-
ferent blurring operators are the motion blur with length 5
and angle 30 and Gaussian blur with a window size 7 × 7 and
a standard deviation of 2. And after the test images are

blurred, they are corrupted by multiplicative Nakagami
noise with L � 10, L � 7, and L � 5, respectively. We list the
parameter values in Table 3, and the empirical choice of β is
the same as denoising case. ,e numerical results are pre-
sented in Table 4. We can see that the PSNR and SSIM values
of the restored images by Algorithm 1 are higher than that of

(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 3: Denoising results of different methods on Lena image with L � 5: (a) PSNR� 18.73dB; (b) PSNR� 27.75 dB; (c) PSNR� 29.02 dB;
(d) PSNR� 28.12 dB; (e) PSNR� 28.91 dB; (f ) PSNR� 30.37 dB; (g) PSNR� 30.18 dB; (h) PSNR� 30.82 dB.

(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 4: Denoising results of different methods on Remote1 image with L � 5: (a) PSNR� 20.44 dB; (b) PSNR� 24.46 dB;
(c) PSNR� 26.60 dB; (d) PSNR� 25.91 dB; (e) PSNR� 26.69 dB; (f ) PSNR� 26.07 dB; (g) PSNR� 26.39 dB; (h) PSNR� 26.86 dB.
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the AA-like method. Moreover, we show the degraded
images and the restored results of both methods for the
images “Cameraman” in Figures 11–13. One can see Al-
gorithm 1 preserves more details (e.g., the tripod in
“Cameraman”). Due to oversmoothing, the AA-like method
tends to lose details and attenuate the image contrast. Note
that both methods cost more time than that in the denoising
case because of the existence of the blurring operator.

3.3. Real SAR Images Restoration Experiment.
Furthermore, we evaluate the performance of a newly
proposed model for despeckling based on three real SAR

images. ,e stopping criterion is the same as that of the
denoising experiment. Since there are no original noise-free
images to be compared, PSNR and SSIM cannot be used to
evaluate the quality of recovered images. Assuming L � 5,
we tune the parameters until the recovered images show the
best results. ,e parameters settings are reported in Table 5.
Figures 14–16 present the denoising results on real SAR
images. It is obvious that all of their objective function values
are monotonically decreasing. ,e less speckle is eliminated
by Lee filter, SRAD method, and AA-like method. Lee filter
does not enhance edges. ,ere are staircasing effects existing
in the results of AA-like method. Algorithm 1 can remove
noise more effectively than AA-like method. PPB method

(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 5: Partial enlarged detail of the denoising results on Lena image with L � 10: (a) PSNR� 21.73 dB; (b) PSNR� 29.52 dB;
(c) PSNR� 29.75 dB; (d) PSNR� 30.01 dB; (e) PSNR� 30.99 dB; (f ) PSNR� 31.82 dB; (g) PSNR� 32.05 dB; (h) PSNR� 32.28 dB.

(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 6: Partial enlarged detail of the denoising results on Lena image with L � 7: (a) PSNR� 20.16 dB; (b) PSNR� 28.58 dB;
(c) PSNR� 29.42 dB; (d) PSNR� 29.01 dB; (e) PSNR� 29.95 dB; (f ) PSNR� 31.08 dB; (g) PSNR� 31.09 dB; (h) PSNR� 31.29 dB.
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performs well in restoring images, such as smoother regions
and better shape preservation. But there are some spurious
artifacts in the edge of the images. Comparing the experi-
mental results, we can find that Algorithm 2 reduces the
artifacts more effectively than PPB-AA method. At the same
time, the staircasing effects also decrease in these two
methods.

3.4. <e Influence of Parameters and Mean. Here, we study
the sensitivities of parameters and the effect of mean of our
restoration model. According to the analysis in Section 2.1,

the value of parameter β varies with the level of the noise.
Experimentally, β is chosen as 1 when L> 5.When L � 5, β is
set as 1.1. In the proposed model, parameter α needs to
satisfy condition α≥ (1/12). Parameter λ is set as λ2 < (1/72)

based on the description in Section 2.3, which is changing
from 0.01 to 0.11 with an interval 0.01 in experiment. In the
denoising case, we take the noisy images “Lena” and
“Cameraman” as examples. For each image, we vary the
values of α with three levels of the noise, L � 10, 7, 5. ,e
PSNR values of restored images using Algorithm 1 are
presented in Figure 17. We observe that there is an upmost
point on each curve. With the increasing α, the performance

(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 7: Partial enlarged detail of the denoising results on Lena image with L � 5: (a) PSNR� 18.73 dB; (b) PSNR� 27.75 dB;
(c) PSNR� 29.02 dB; (d) PSNR� 28.12 dB; (e) PSNR� 28.91 dB; (f ) PSNR� 30.37 dB; (g) PSNR� 30.18 dB; (h) PSNR� 30.82 dB.

(a) (b) (c) (d) (e)

(f ) (g) (h)

Figure 8: Partial enlarged detail of the denoising results on Remote1 image with L � 10: (a) PSNR� 23.45 dB; (b) PSNR� 26.12 dB;
(c) PSNR� 27.46 dB; (d) PSNR� 27.98 dB; (e) PSNR� 28.67 dB; (f ) PSNR� 27.54 dB; (g) PSNR� 28.03 dB; (h) PSNR� 28.79 dB.
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of “Lena” with L � 5 and “Cameraman” with L � 10 de-
creases rapidly, which means that the denoising results are
sensitive to value of α for each L. In the simultaneous
deblurring and denoising case, we take the noisy image of
“Cameraman” blurred by the motion blur with length 5 and
angle 30 and then corrupted by multiplicative Nakagami
noise with L � 10 as an example. ,e parameter settings are
λ � 0.01, α � 7, and β � 1 in this case known from Table 3.
At first, for the case of λ � 0.01, we study the sensitivity of
the parameter α in terms of solution quality and

computation time. ,e PSNR (dB), SSIM, and CPU time (s)
used for various values of α are listed in Table 6. We observe
that if α is less than 7, the PSNR value of the restored image
by Algorithm 1 increases with the increase in α. However,
the PSNR and SSIM values decrease as the value of α in-
creases when α is more than 7.,e numerical results indicate
that there is a certain value of α to make the model get the
best quality of recovered image for a fixed value of λ. ,en,
for the case of α � 7, we further analyze the sensitivity of the
parameter λ. ,e PSNR (dB), SSIM, and CPU time (s) used

(a) (b) (c) (d) (e)

(f) (g) (h)

Figure 9: Partial enlarged detail of the denoising results on Remote1 image with L � 7: (a) PSNR� 21.90 dB; (b) PSNR� 25.23 dB;
(c) PSNR� 27.13 dB; (d) PSNR� 26.91 dB; (e) PSNR� 27.52 dB; (f ) PSNR� 26.81 dB; (g) PSNR� 27.22 dB; (h) PSNR� 27.90 dB.

(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 10: Partial enlarged detail of the denoising results on Remote1 image with L � 5: (a) PSNR� 20.44 dB; (b) PSNR� 24.46 dB;
(c) PSNR� 26.60 dB; (d) PSNR� 25.91 dB; (e) PSNR� 26.69 dB; (f ) PSNR� 26.07 dB; (g) PSNR� 26.39 dB; (h) PSNR� 26.86 dB.
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Table 3: ,e parameter values used in deblurring experiment.

L Image Method
Motion blur Gaussian blur

λ α β λ α β

10

Lena AA-like 0.03 — — 0.04 — —
Algorithm 1 0.01 3.5 1 0.01 7.1 1

Boat AA-like 0.04 — — 0.04 — —
Algorithm 1 0.01 5.5 1 0.01 11.5 1

Cameraman AA-like 0.03 — — 0.03 — —
Algorithm 1 0.01 7 1 0.01 12 1

7

Lena AA-like 0.03 — — 0.04 — —
Algorithm 1 0.01 1.9 1 0.01 4 1

Boat AA-like 0.04 — — 0.04 — —
Algorithm 1 0.01 3.2 1 0.01 6.2 1

Cameraman AA-like 0.03 — — 0.03 — —
Algorithm 1 0.01 3.6 1 0.01 7 1

5

Lena AA-like 0.03 — — 0.04 — —
Algorithm 1 0.01 1 1.1 0.01 2 1.1

Boat AA-like 0.03 — — 0.04 — —
Algorithm 1 0.01 1.8 1.1 0.01 3.4 1.1

Cameraman AA-like 0.03 — — 0.03 — —
Algorithm 1 0.01 1.8 1.1 0.01 3.7 1.1

Table 4: ,e comparison of different deblurring and denoising methods.

L Image Method
Motion blur Gaussian blur

PSNR (dB) SSIM Time (s) PSNR (dB) SSIM Time (s)

10

Lena AA-like 27.73 0.832 522 26.80 0.828 554
Algorithm 1 29.40 0.903 941 28.29 0.874 869

Boat AA-like 25.50 0.804 587 24.47 0.751 518
Algorithm 1 26.48 0.840 2302 25.54 0.796 2349

Cameraman AA-like 23.58 0.674 88 22.21 0.614 97
Algorithm 1 25.21 0.750 486 23.57 0.724 638

7

Lena AA-like 27.03 0.806 603 26.47 0.815 713
Algorithm 1 28.76 0.890 1042 27.84 0.863 1012

Boat AA-like 25.03 0.777 778 24.17 0.731 648
Algorithm 1 25.96 0.818 2210 25.06 0.769 2215

Cameraman AA-like 23.31 0.649 120 22.09 0.594 120
Algorithm 1 24.66 0.748 460 23.37 0.716 491

5

Lena AA-like 26.34 0.778 738 25.96 0.805 991
Algorithm 1 27.99 0.874 1164 27.15 0.847 1131

Boat AA-like 24.51 0.741 708 23.80 0.710 922
Algorithm 1 25.43 0.798 2198 24.56 0.748 2319

Cameraman AA-like 22.99 0.619 142 21.81 0.575 143
Algorithm 1 24.25 0.736 528 22.97 0.709 562

(a) (b) (c)

Figure 11: Continued.

Mathematical Problems in Engineering 11



for various values of λ are listed in Table 7. From Table 7, we
observe that λ � 0.01 is the best choice for obtaining the
highest PSNR value of denoised image.

Finally, in order to discuss the influence of preserving the
mean of the original image, there are four assumptions,

including recovered images obtained from model (9) and
model (9) with preserving 1 times, 1.2 times, 0.8 times the
mean of the original image, respectively. Table 8 reports the
PSNR (dB) and SSIM values on Cameraman image with
different mean. We find the fact the PSNR (dB) and SSIM

(d) (e) (f )

Figure 11: Deblurring results of different methods on Cameraman image with L � 10: (a) degraded (motion); (b) AA-like (23.58 dB); (c)
Algorithm 1 (25.21 dB); (d) degraded (Gaussian); (e) AA-like (22.21 dB); (f ) Algorithm 1 (23.57 dB).

(a) (b) (c)

(d) (e) (f )

Figure 12: Deblurring results of different methods on Cameraman image with L � 7: (a) degraded (motion); (b) AA-like (23.31 dB); (c)
Algorithm 1 (24.66 dB); (d) degraded (Gaussian); (e) AA-like (22.09 dB); (f ) Algorithm 1 (23.37 dB).
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(a) (b) (c) (d)

(e) (f )

Figure 13: Deblurring results of different methods on Cameraman image with L � 5: (a) degraded (motion); (b) AA-like (22.99 dB); (c)
Algorithm 1 (24.25 dB); (d) degraded (Gaussian); (e) AA-like (21.81 dB); (f ) Algorithm 1 (22.97 dB).

Table 5: ,e parameter values used in SAR images restoration experiment.

Images Methods λ α β

SAR image 1

AA-like 0.12 — —
Algorithm 1 0.02 1/12 1.1
PPB-AA 0.12 — —

Algorithm 2 0.02 0.1 1.1

SAR image 2

AA-like 0.15 — —
Algorithm 1 0.02 1/12 1.1
PPB-AA 0.17 — —

Algorithm 2 0.01 1/12 1.1

SAR image 3

AA-like 0.15 — —
Algorithm 1 0.02 1/12 1.1
PPB-AA 0.15 — —

Algorithm 2 0.02 1/12 1.1

(a) (b) (c) (d)

Figure 14: Continued.
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Figure 14: Denoising results on SAR image 1: (a) degraded image; (b) Lee; (c) SRAD; (d) PPB; (e) AA-like; (f ) Algorithm 1; (g) PPB-AA; (h)
Algorithm 2.
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Figure 15: Denoising results on SAR image 2: (a) degraded image; (b) Lee; (c) SRAD; (d) PPB; (e) AA-like; (f ) Algorithm 1; (g) PPB-AA; (h)
Algorithm 2.
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values obtained from model (9) with preserving mean of the
original image are almost higher than the others. As shown
in Figure 18, when the mean of recovered image is larger

than that of the original image, the restored image by Al-
gorithm 1 looks lighter. In contrast, the restored image is
darker. PSNR and SSIM values of both decrease significantly.
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Figure 16: Denoising results on SAR image 3: (a) degraded image; (b) Lee; (c) SRAD; (d) PPB; (e) AA-like; (f ) Algorithm 1; (g) PPB-AA; (h)
Algorithm 2.
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Figure 17: ,e PSNR values against the values of α under three noise levels: (a) Lena; (b) Cameraman.
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Although there is not much difference between the recov-
ered images obtained from preserving the mean and not
preserving the mean, the PSNR value is higher when the
mean is maintained as the original. ,ese indicate that bias
correction technique [36] is helpful to enhance the per-
formance of the model (9).

4. Conclusion

,is paper proposes a new variational model for solving the
SAR image restoration problem by investigating the sta-
tistical property of multiplicative noise from Nakagami
distribution. Under a mild condition, we show that the new
model is strictly convex. We further analyze some mathe-
matical properties of the model in detail. We adopt the
primal-dual algorithm to solve the convex optimization
problem. Two kinds of simulated experiments and real SAR
images experiments are conducted.,e experimental results
demonstrate the excellent performance of the proposed
method over some state-of-the-art methods in terms of the
noise removal capability and detail preservation capability.

Appendix

,e ideas for proving Propositions 1, 2, and 4 and,eorem 1
are similar to those in [36, 39]. For readers’ convenience, we
present them in detail as follows.

A. Proof of Proposition 1

Proof. For any α> 0 and β≥ 1, we consider a function

h(t) ≔ 2 log t +
1
t2

+ α(t − β)
2
, ∀t ∈ R+

, (A.1)

and its second order derivative is in the form of

h″(t) � − 2t
− 2

+ 6t
− 4

+ 2α. (A.2)

Since t4h″(t) � − 2t2 + 6 + 2αt4 for t> 0, it is not hard to
show that t4h″(t) reaches its unique minimum − (1/2α) + 6
at t � (1/

���
2α

√
). When α≥ (1/12), one can see

− (1/2α) + 6≥ 0, and hence, h″(t)≥ 0. Moreover, since h has
only one minimizer, we can claim that h is strictly convex if
α≥ (1/12).

Table 6: Numerical results of Algorithm 1 with parameter λ � 0.01 on Cameraman image.

α 0.1 3 7 8 9
PSNR (dB) 24.15 24.99 25.21 25.20 25.17
SSIM 0.762 0.776 0.750 0.738 0.726
Time (s) 274 395 486 528 529

Table 7: Numerical results of Algorithm 1 with parameter α � 7 on Cameraman image.

λ 0.01 0.02 0.05 0.08 0.11
PSNR (dB) 25.21 24.85 23.77 23.10 22.62
SSIM 0.750 0.774 0.751 0.734 0.725
Time (s) 486 367 246 231 229

Table 8: Numerical results on Cameraman image with different mean.

Mean Preserved Not preserved Increased Decreased
PSNR (dB) 25.21 24.34 19.11 18.22
SSIM 0.750 0.750 0.726 0.732

(a) (b) (c) (d)

Figure 18: Results on Cameraman image with different mean: (a) preserved (25.21 dB); (b) not preserved (24.34 dB); (c) increased
(19.11 dB); (d) decreased (18.22 dB).
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For each x ∈ Ω, we denote u(x)/f(x) by t, and we can
obtain the strict convexity of the first two terms in (6) based
on the analysis above and the fact that logf is a constant. In
view of the convexity of the TV regularization, we can see
that E(u) in (6) is strictly convex when α≥ (1/12). In ad-
dition, the feasible set S(Ω) is convex and we can conclude
that the model (6) is strictly convex when α≥ (1/12). □

B. Proof of Theorem 1

Proof. We first prove that E(u) in (6) is bounded from
below. By the monotonic property of the function g(s) �

2 log s + (1/s2) on R+, we have 2 log t + (f(x)/t)2 ≥
1 + 2 logf(x) for any t ∈ R+∪ 0{ } and x ∈ Ω. It then follows
that

E(u)≥􏽚
Ω

2 log u +
f2

u2􏼠 􏼡dx≥􏽚
Ω

(1 + 2 logf)dx, (B.1)

which implies that E(u) is bounded from below.
We next show that the solution of model (6) exists and is

bounded. Let a � infΩf and b � βsupΩf. We define

E0(u) ≔ 􏽚
Ω

2 log u +
f2

u2􏼠 􏼡dx + α􏽚
Ω

u

f
− β1􏼠 􏼡

2

dx.

(B.2)

For each fixed x ∈ Ω, we consider the following function:

h(t) ≔ 2 log t +
f(x)2

t2
+ α

t

f(x)
− β􏼠 􏼡

2

, ∀t≥ 0. (B.3)

It is not hard to show that h(t) is decreasing on [0, f(x))

while increasing on (βf(x), +∞) and continuous on
[f(x), βf(x)]. According to minimum-maximum princi-
ple, there exists at least one u∗ ∈ [f(x)), βf(x)] that
minimizes the equation h(t). It then follows that
h(min(t, M))≤ h(t) if M≥ βf(x). If we set M � b and
t � u, we immediately have

E0(inf(u, b))≤E0(u). (B.4)

By 􏽒Ω|Dinf(u, b)|≤􏽒Ω|Du| (see Lemma 1 in Section 4.3
of [47]), we have E(inf(u, b))≤E(u) [39]. Similarly,
E(sup(u, a))≤E(u). Similar to the proof of ,eorem 3.6 in
[36], there exists a solution, u∗, of the model (6), satisfying
0< a≤ u∗ ≤ b. And based on Proposition 1 and the discus-
sion above, the uniqueness of solution immediately
follows. □

C. Proof of Proposition 2

Proof. According to theorem unique, we know that u∗i exists
and it is a minimizer of E(u) with f � fi, which is defined in
(6), i � 1, 2. It is clear that E(inf(u∗1 , u∗2 )) +

E(sup(u∗1 , u∗2 ))≥E(u∗1 ) + E(u∗2 ). Using the fact 􏽒Ω|D

(inf(u∗1 , u∗2 ))| + 􏽒Ω|D(sup(u∗1 , u∗2 ))| ≤􏽒Ω|Du∗1 | + 􏽒Ω|Du∗2 |

in [48, 49], we get

􏽚
Ω

2 log inf u
∗
1 , u
∗
2( 􏼁( 􏼁 +

f2
1

inf u∗1 , u∗2( 􏼁
2

⎡⎣

+ α
inf u∗1 , u∗2( 􏼁

f1
− β1􏼠 􏼡

2
⎤⎦dx

+ 􏽚
Ω

2 log sup u
∗
1 , u
∗
2( 􏼁( 􏼁 +

f2
2

sup u∗1 , u∗2( 􏼁
2

⎡⎣

+ α
sup u∗1 , u∗2( 􏼁

f2
− β1􏼠 􏼡

2
⎤⎦dx

≥􏽚
Ω

2 log u
∗
1 +

f2
1

u∗1( 􏼁
2 + α

u∗1
f1

− β1􏼠 􏼡

2
⎡⎣ ⎤⎦dx

+ 􏽚
Ω

2 log u
∗
2 +

f2
2

u∗2( 􏼁
2 + α

u∗2
f2

− β1􏼠 􏼡

2
⎡⎣ ⎤⎦dx.

(C.1)

Note that Ω � u∗1 > u∗2􏼈 􏼉∪ u∗1 ≤ u∗2􏼈 􏼉. One can see

􏽚
u∗1>u
∗
2{ }

f1 − f2( 􏼁 u
∗
1 − u
∗
2( 􏼁 f1 + f2( 􏼁 u

∗
1 + u
∗
2( 􏼁􏼂

·
1

u∗21 u∗22
+ f1 + f2( 􏼁 u

∗
1 + u
∗
2( 􏼁

α
f2
1f

2
2

− 2αβ
1

f1f2
􏼣≥ 0.

(C.2)

Define h(x): � (f1 + f2)(u∗1 + u∗2 )(1/u∗21 u∗22 ) + (f1 +

f2)(u∗1 + u∗2 )(α/f2
1 f2

1) − 2αβ(1/f1f2). Based on ,eorem
1, we have 0< a1 ≤ u∗1 ≤ b1 and 0< a2 ≤ u∗2 ≤ b2, which yields

h(x)≥ a1 + a2( 􏼁 a1 + a2( 􏼁
1

b21b
2
2

+ a1 + a2( 􏼁 a1 + a2( 􏼁
α

b21b
2
2

−
2αβ
a1a2
≥
2a1a2

b21b
2
2

+
2αa1a2

b21b
2
2

−
2αβ
a1a2

.

(C.3)

Hence, one can see that
2a1a2

b21b
2
2

+
2αa1a2

b21b
2
2

−
2αβ
a1a2
> 0, (C.4)

given (αβ/(1 + α))< (a2
1a

2
2/b

2
1b

2
2). ,is together with the fact

that f1 <f2 implies that u∗1 > u∗2􏼈 􏼉 has a zero Lebesgue
measure, i.e., u∗1 ≤ u∗2 a.e. in Ω. □

D. Proof of Proposition 4

Proof. Let C be theminimum of (9), which is independent of
ε. Set w � (Ku∗/f). We then have

􏽚
Ω

2 logw +
1

w2􏼒 􏼓dx≤C − 2􏽚
Ω
logfdx. (D.1)
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Since h(t) � 2 log t + (1/t2) is decreasing on (0, 1) and
increasing on (1, +∞), it is obvious that 2 log t + (1/t2)≥ 1
for t> 0, which immediately implies that

|Ω|≤􏽚
Ω

2 logw +
1

w2􏼒 􏼓dx. (D.2)

When t≤ ε< 1, we have 2 log t + (1/t2)≥ 2 log ε + (1/ε2),
which together with (D.1) and (D.2) yields

| x ∈ Ω: w(x)≤ ε{ }| 2 log ε +
1
ε2

􏼒 􏼓≤􏽚
x∈Ω:ω(x)≤ε{ }

· 2 logω +
1
ω2􏼒 􏼓dx≤C − 2􏽚

Ω
logfdx.

(D.3)

Since w � (Ku∗/f) and infΩf> 0, the conclusion
holds. □
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