
Research Article
Validation of Text Data Preprocessing Using a Neural
Network Model

HoSung Woo ,1 JaMee Kim,2 and WonGyu Lee 3

1Department of Computer Science and Engineering, Graduate School, Korea University, Seoul 02841, Republic of Korea
2Major of Computer Science Education, Graduate School of Education, Korea University, Seoul 02841, Republic of Korea
3Department of Computer Science and Engineering, College of Informatics, Korea University, Seoul 02841, Republic of Korea

Correspondence should be addressed to WonGyu Lee; lee@inc.korea.ac.kr

Received 24 March 2020; Accepted 1 May 2020; Published 14 May 2020

Guest Editor: Sanghyuk Lee

Copyright © 2020 HoSungWoo et al.'is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Many artificial intelligence studies focus on designing new neural network models or optimizing hyperparameters to improve
model accuracy. To develop a reliable model, appropriate data are required, and data preprocessing is an essential part of acquiring
the data. Although various studies regard data preprocessing as part of the data exploration process, those studies lack awareness
about the need for separate technologies and solutions for preprocessing. 'erefore, this study evaluated combinations of
preprocessing types in a text-processing neural network model. Better performance was observed when two preprocessing types
were used than when three or more preprocessing types were used for data purification. More specifically, using lemmatization
and punctuation splitting together, lemmatization and lowering together, and lowering and punctuation splitting together showed
positive effects on accuracy.'is study is significant because the results allow better decisions to be made about the selection of the
preprocessing types in various research fields, including neural network research.

1. Introduction

Recently, attempts have been made to increase work effi-
ciency through studies using similarities between sentences.
Examples include document classification, plagiarism de-
tection, document summarization, paraphrasing, and au-
tomatic question-and-answer systems using a similarity
measurement model between sentences [1].

Studying the similarity between sentences requires a
deep understanding of the semantic and structural infor-
mation of the language. Previous studies have extracted and
used features in sentences [2], but the feature-extraction
process was complicated, and the performance was irregular
depending on the extracted features. 'erefore, attempts
have been made to learn a language model that computes
probability distributions without extracting features. 'e
linguistic model, which was based on statistical theory, used
the conditional probability of a single word (unigram) or a
sequence of multiple words (n-gram). In addition, a method
has been proposed that combines a word-embedding

method, in which information about the meaning or
structure of a word is expressed in terms of a real-time
multidimensional vector and a deep belief network structure
that uses a prelearning method [3].

To improve the prediction accuracy of a high-perfor-
mance neural-network-based sentence model or a natural-
language-based study, confidence in the data should be the
highest priority. 'e dataset of the public database is already
purified. Data for research studies should be processed
through a filtering step, in which the researcher himself
conducts the preprocessing. 'erefore, it is necessary to
investigate the data preprocessing features that should be
selected for machine learning [4] as well as the effects of
various preprocessing tasks on the performance of classi-
fication models [5–7].

Data integration, refinement, reduction, discretization,
feature selection, and data conversion can be used for data
preprocessing. Recently, studies have been conducted in
which various evaluationmethods or preprocessing steps are
performed automatically to select appropriate data features

Hindawi
Mathematical Problems in Engineering
Volume 2020, Article ID 1958149, 9 pages
https://doi.org/10.1155/2020/1958149

mailto:lee@inc.korea.ac.kr
https://orcid.org/0000-0001-8059-9524
https://orcid.org/0000-0001-5335-2913
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/1958149


[8]. However, most studies on machine learning to date do
not include data preprocessing [9–14]. Furthermore, even in
the studies where preprocessing was mentioned, only some
parts of various processes, such as word normalization and
elimination, were presented [15, 16].

'e purpose of this study is to analyze the effect of text
data preprocessing on the sentence model. If previous
studies were aimed at improving the performance of the
model through preprocessing, this study focuses on the
effect of combinations of data preprocessing types on per-
formance. Various preprocessing methods were compared
and analyzed, such as the setting method for using the
preprocessing technique or performance analysis where
learning is performed according to the order of complexity
of sentences.

'e Materials and Methods section describes the
different types of text data preprocessing. It also describes
the research methods used and explains the sentence
model, preprocessing type, and dataset. In the Results and
Discussion section, the results of using combinations of
different preprocessing types are discussed, and finally,
the conclusions of this study are presented in the last
section.

2. Materials and Methods

2.1. Text Data Preprocessing. 'e quality of the data plays an
important role in the performance of the algorithm. If data
are not preprocessed, the algorithm may behave unex-
pectedly due to inconsistent data, and performance may be
affected.

Existing data preprocessing studies have been mainly
conducted in the field of data mining. 'ere have been
studies that process web data to format them into an ana-
lytical form. 'ese studies did not explain the effect of data
preprocessing on the algorithm as a method included in the
process of preparing data for analysis [17–19]. 'ere is also a
study that analyzed the effect of data preprocessing on
predictive ability, limited to numerical data in neural net-
work models [4, 20]. Feature selection, outlier data removal,
dimension reduction, etc., were conducted; however, it is
difficult to understand their effects on text data.

'e sentence model uses word-based text data that in-
clude plural words, special characters, and numerals.
'erefore, preprocessing for analysis is divided into trans-
formation, in which the original form is transformed to a
word-based form, and elimination, in which the words that
are considered unnecessary for semantic interpretation are
eliminated. 'e text preprocessing technique is shown in
Table 1.

'ere are three types of normalization: lowering, which
converts uppercase letters to lowercase letters, stemming,
and lemmatization.

Stemming, which is a normalization technique that
reduces the complexity of data, removes affixes and separates
stems from words with modified word forms. Lemmatiza-
tion is a technique that converts words used in various forms
into dictionary forms [21, 22]. Table 2 compares stemming
and lemmatization techniques.

In stemming, words with different roots are mapped to
the same stem.'erefore, it is mainly used in search engines.
Lemmatization extracts the original form of a word as the
word is converted to a basic form. 'erefore, lemmatization
does not change the meaning of words [23–25].

As an example of punctuation, the method of removing
“-” from the word “brute-force” and obtaining the two words
“brute” and “force” is called splitting. Furthermore, if you get
the word “bruteforce,” it is called merging. Splitting is the
same as tokenization, which divides sentences into words.

Elimination assumes that all words that make up a
sentence, paragraph, or document do not have the same
significance. In other words, according to this method, a
word with a low frequency of occurrence or a word with a
high frequency of occurrence in a document but with low
semantic information, such as a stop word, a one-syllable
character or a special character, is deleted.

2.2. ResearchMethods. 'is study was conducted to analyze
the effects of data preprocessing on sentence models and not
to examine fine-tuning or performance improvement. 'is
section describes the setting of the preprocessing study,
structure of the sentence model, and datasets used in the
study. 'e procedure used in this study is shown in Figure 1.

'is study, which aims to analyze the performance of
combining types of text data preprocessing in a sentence
model, can be divided into a typical preprocessing type and a
preprocessing type that is developed according to the needs
of the study. In the typical data preprocessing step, lowering,
lemmatization, punctuation splitting and merging, and
special character elimination were used by considering the
preservation and accuracy of the part-of-speech informa-
tion. However, splitting and merging, which transform
based on punctuation, were also used.

'is study considered that preprocessing steps such as
normalization and punctuation could semantically damage
the meaning of a sentence by making modifications. For
example, technical terms can be important in a paragraph or
sentence and can help readers to understand the meaning.
Because terminology can consist of a single word or multiple
words, the segmentation of all words may not reflect the
essential meaning of the terminology. To analyze the method
of using technical terms in the sentence model, this study
developed a module that can identify technical terms
composed of complex words and process them as multiple
single words. In addition, an entropy-based sorting module
was developed to check the effect of sentence complexity on
accuracy.

'is study applied various combinations of typical
preprocessing types, and the techniques developed in this
study were analyzed separately. Table 3 shows the pre-
processing types used in the analysis.

'e accuracy of the model was measured five times for
each of the 25 preprocessing types, for a total of 125
measurements.

2.3. Preprocessing Techniques. 'e preprocessing techniques
developed in this study are the sorting module, which sorts

2 Mathematical Problems in Engineering



Table 1: Text preprocessing technique.

Technique Feature

Normalization

Lowering Conversion to
lowercase

Pros: search accuracy can be improved
Cons: proper nouns composed of capital letters can be incorrectly classified as

general nouns

Stemming Conversion to stems Pros: time efficiency can be improved by reducing the size of the text
Cons: dilution of meaning can affect accuracy

Lemmatization Conversion to
headwords

Pros: part-of-speech information is converted into a preserved form, and search
accuracy can be improved

Cons: conversion time is long

Punctuation
Splitting Word splitting Pros: meaning can be preserved

Cons: different rules should be applied depending on the purpose, and the rules
are complicatedMerging Word merging

Table 2: Stemming vs. lemmatization.

Word Stemming Lemmatization
Innovation Innovat Innovation
Innovations Innovat Innovation
Innovate Innovat Innovate
Innovates Innovat Innovate
Innovative Innovat Innovative

Special 
character 

elimination
Lowering Punctuation 

splitting /merging

Preprocessing

Lemmatization

Typical preprocessing type

Sort by sentence complexity Terminology identification

Developed preprocessing type

Paired dataset

Learning model

Similarity 
between 
sentences

Input

Output

Representation of 
sentence

Convolutional 
layer

Sentence model

Max pooling Fully connected 
layer

Figure 1: Structure of the similarity measurement model between sentences.

Table 3: Preprocessing types.

Type Number
Preprocessing is not applied 1
Only one type of preprocessing is applied (a combination of traditional techniques + two proposed techniques) 8
Two types of preprocessing are combined 9
'ree types of preprocessing are combined 5
Four types of preprocessing are combined 2
Total 25

Mathematical Problems in Engineering 3



the sentences according to an order of complexity of sen-
tences, and the terminology-identification module. 'e
details are described as follows.

2.3.1. Complexity Sorting Module. 'e characteristics of the
data used in machine learning are an important factor in
determining the efficiency of learning [26]. Documents are
composed of various sentences, and each sentence has a
different length, parts of speech, and complexity. Deter-
mining entropy for information complexity is a general-
purpose technology that is commonly used for signal or
video compression. 'e entropy of a sentence is calculated
according to the distribution of syllables, and the calculated
entropy is used to define the sentence complexity. 'is study
also analyzed the relationship between the complexity,
which is a characteristic of a sentence, and the accuracy of
the model. In other words, based on the entropy, a sorting
module that classified sentences according to their com-
plexity was developed and confirmed.

'e process of model development progressed as follows.
Information entropy is an expected value (average) of in-
formation in data (as explained below), and when the ex-
pected value is high, it can be expressed as “much
information.” In other words, “much information” in a
sentence indicates that the sentence is complicated on the
surface. For a random variable for an event, P (X), the in-
formation entropy, H (X), is defined as follows:

H(p) � − 
x∈X

p(x)logp(x). (1)

'e operation algorithm of the complexity sorting
module is shown in Figure 2.

In Figure 2, Dm indicates a set of sentences in the corpus
and counts each sentence read from Dm according to the
ASCII code value. In other words, it calculates the number of
ASCII codes in a sentence. 'en, the entropy is calculated
based on the ASCII code value of a sentence. Finally, it
returns the sentences sorted in the ascending or descending
order based on the calculated entropy.

2.3.2. Module to Identify Technical Terms Composed of
Complex Nouns. Technical term identification is a time-
consuming and costly task that can be divided into statistical
and rule-based methods. Statistical methods can have high
portability because they are not affected by domain re-
strictions [27]. However, the low accuracy of the identified
terms and the inclusion of noise pose difficulties in semantic
interpretation. 'e rule-based method analyzes many terms
and processes them through morphemes such as prefixes
and suffixes. Although this method can have a low porta-
bility because the rules are manually defined and supple-
mented for each specific field, the accuracy of the identified
terms can be high.

In this study, an algorithm to apply the rule-based
method and achieve high accuracy was developed. To extract
the rules, 1,540 morphemes in the technical term corpus
published by the Japan Information Processing Society in
2018 were analyzed. 'e analysis found that the number of

parts-of-speech among the technical terms was 82, and these
were composed of single words or combinations of mor-
phemes. 'e technical term identification algorithm we
developed is shown in Figure 3.

First, morphemes are analyzed for each word in the
sentence. For analysis, NLTK’s pos_tag module was used.
Second, technical terms were identified from the learning
data using the extracted rules. From the most common
composition to the least common composition of the part of
speech, there were 485 singular nouns, 396 adjecti-
ves + singular nouns, and 257 singular nouns + singular
nouns, etc. 'ird, a search engine (Wikipedia API) was used
to verify the identified technical terms. When a search result
for a technical term exists in the search engine, the term is
converted into an identified sentence. For example, in the
sentence “People in a car_race,” “car race” is identified to
convert it into the sentence “People in a car_race.” Fourth,
the sentence in which technical terms have been processed is
newly stored in Transformed−D. Learning of the sentence
model was conducted using the dataset in Transformed−D.

2.4. Sentence Model. 'e model used to measure the simi-
larity between sentences consists of an encoder/decoder
method, which can process two sentences. Siamese networks
include two identical subnetwork components to handle
each of the two inputs. In other words, Siamese networks can
be used as a method to measure the similarity between two
sentences. 'is section describes the structure and perfor-
mance of the Siamese networks’ convolutional neural net-
work- (CNN-) based sentence model for the study.

2.4.1. Structure of the Sentence Model. To measure the
similarity between sentences, the CNN model was imple-
mented based on Siamese networks [9]. 'e model devel-
oped by Kim et al. [9] for emotion analysis and question
classification is a CNN structure using one layer, but the
model proposed in this study is composed of two layers. In
addition, hyperparameters for filter size and feature map size
were properly tuned. 'e proposed model is shown in
Figure 4.

In Figure 4, n is the number of words in the sentence, k is
the dimension of the word vector, and h is the filter window
size. Based on the CNN, sentences X (i) and X (j) are se-
quentially processed through the convolutional, pooling,
and fully connected layers, and feature vectors are produced
as outputs. For hyperparameters, the filter sizes were set to 2,
3, and 4, and they were set to have 50 feature maps. 'e
dropout was set to 0.5. To compare two sentences, X (i) and
X (j), the distance can be expressed as follows, by outputting
a feature vector that is the encoding result of the same neural
network structure.

If x (i) and x (j) are semantically similar, ‖f(X(i)) −

f(X (j)) ‖ 2 is small.
If x (i) and x (j) are semantically different, ‖f(X(i)) − f

(X(j)) ‖ 2 is large.
If the characteristics of the two sentences are well

expressed, the distance between the vectors is small. Oth-
erwise, the distance is large. In this study, the Manhattan

4 Mathematical Problems in Engineering



distance, which is a similarity function and has excellent
performance, was applied (Jonas Mueller, 2016). 'is study
was developed using Python 3.6.8 in the Linux 16.04 op-
erating system environment.

2.4.2. Comparison of the Performance of Sentence Models.
In the present study, a CNN-based model (Figure 4), Sia-
mese LSTM model [28], and transformer model [29] were
implemented for model selection. For the learning

Input : Dm = {Sen[0} , ..., Sen[m}} # Set of sentences

Initialization : Tagged_Senm = {{0, ... Sen[0,n}}, ..., {0, ... Sen[m,n}}} # Set of entropy 

complexity values
Output : Transformed_Dm = {TSen[0} , ..., TSen[m}} # Set of sentences sorted by entropy 

complexity 

for i = 0, ..., N - m do
Tagged_Seni = pos_tag (Sen[i))

Sentence = ‘’
for j = 0, ..., len (Sen[i,j)) do

Terminology = Rule_based_Identifier (Sen[I,j), Size_of_Terminology) 

Exists = Search_engine_API (Terminology)

if Exists is True
Sentence = Sentence + Terminology
j = j + Size_of_Terminology

else if Exists is not True
Sentence = Sentence + SenI,j

Transformed_Di.Append (Sentence)

return Transformed_D

No �e morpheme of the technical term N

1 Singular noun 485

2 Adjective + singular noun 396

3 Singular noun + singular noun 257

4 Adjective 75

5 Adjective + singular noun + singular noun 53

6 Present participle 30

7 Present participle + singular noun 23

8 Singular noun + singular noun + singular noun 23

9 Plural noun + singular noun 17

10 Adjective + plural noun 16

11 Past participle + singular noun 11

12 Past tense verb + singular noun 11

13 Singular noun + preposition + singular noun 11

Figure 3: Technical term identification algorithm.

Input : Dm = {Sen[0} , ..., Sen[m}} # Set of sentences
Initialization : Em = {0, ..., Sen[m}} # Set of entropy complexity values 
Output : Sorted_Dm = {Sen[0} , ..., Sen[m}} # Set of sentences sorted by entropy complexity 

for i = 0, ..., N - m do
Size = len (Sen[i)) ∗ 1.0
for j = 0, ..., 128 do

result + = Seni.count (chr (j)) / size ∗ log (Sen[i).count (chr (j)) / size, 2) 
E(i) = result ∗ -1.0

E = dictionary (E)
Sorted_D = sort (D, E)

return Sorted_D

Figure 2: Complexity sorting algorithm.

Mathematical Problems in Engineering 5



parameters of each model, the epoch was set to 10, batch size
to 512, and learning rate to 0.001, and learning time and
accuracy were as shown in Table 4.

To evaluate how the performance was affected using
combinations of various types of preprocessing, a study was
conducted using a CNN-based model, which had low ac-
curacy but the fastest learning time.

2.5. Dataset. For model training, the Stanford Natural
Language Inference (SNLI) corpus was used. 'e SNLI
corpus is a dataset that expresses the logical relationship
between two sentences, and it is used in research for various
inferences [30, 31]. 'e corpus consists of 367,369 instances,
of which 257,158 (70%) are training sets, 36,737 (10%) are
validation sets, and 73,474 (20%) are testing sets. 'e
structure of the SNLI corpus is shown in Table 5.

'is structure includes two sentences and a corre-
sponding label that is based on the similarity between the
sentences. For example, “A person on a horse jumps over a
broken down airplane” and “A person is at a diner, ordering
an omelette” in the first line are not semantically/logically
equivalent, and therefore the label is 0 (False).

3. Results and Discussion

Table 6 shows the results when the models with different
combinations of preprocessing types were sorted by
accuracy.

'e variance of the average value of the results by the
preprocessing type ranged from a minimum of 0.05 to a
maximum of 0.34. Based on analysis of the results, we de-
termined that a combination of two preprocessing tech-
niques showed good performance. If only two preprocessing
techniques can be used, lemmatization and punctuation
splitting (No. 1) are good candidates. 'is combination

showed the highest accuracy with 79.09%, which is 0.73%
higher than the accuracy without preprocessing (No. 21).
Furthermore, it was found that the use of the normalization
techniques, lemmatization and lowering (No. 2) together or
the use of lowering and punctuation splitting or merging
(Nos. 3 and 4) also increased accuracy. It should be noted
that, in any of these combinations, lemmatization, lowering,
and punctuation splitting were used. Lemmatization and
lowering are techniques that can improve accuracy by
normalizing different words.

If only one technique was used (Nos. 9, 10, 11, 15, and
18), then the accuracy was higher than that without pre-
processing. Among these, the accuracies associated with
lemmatization (No. 9), lowering (No. 10), and punctuation
splitting (No. 11) were similar and ranged from 78.876% to
78.842%. 'is implies that splitting a word into two words
based on punctuation, such as during normalization or
punctuation splitting, can extend the length of a sentence
and have a positive effect on accuracy.

Characteristic features include the use of special char-
acter elimination and punctuation merging. When special
character elimination was combined with lemmatization
and lowering, the accuracy was increased (Nos. 5, 7, and 8).
However, if lemmatization or lowering was used separately,
the accuracy decreased (Nos. 12, 13, 16, 19, 20, and 22). In
addition, except for the case where it was combined with
lowering (No. 3), the accuracy decreased when punctuation
merging was used. 'is contrasts with the fact that

A
person

on
a

horse
jumps
over

a
broken
down

airplane

n × k representation of sentence Convolutional layer with multiple filter widths 
2, 3, 4 and feature maps

Max pooling

ReLU activation

Fully connected layers with 
so�max output

Dropout 0.5

A
person

on
a

horse
jumps
over

a
broken
down

airplane

Contrastive loss
function

X (i) of sentences

X (j) of sentences

h

n

k

Figure 4: Siamese network based on the CNN model.

Table 4: Learning time and accuracy by the model.

Architectures Learning time Accuracy
Siamese LSTM model 2 :14 : 02 79.66
Transformer model 1 : 54 : 52 79.61
CNN-based model 25 : 48 77.67

6 Mathematical Problems in Engineering



punctuation splitting leads to high accuracy. 'e results are
similar to those obtained for the technical term identification
preprocessing technique that was developed in this study for
comparison.

In No. 25, technical terms composed of complex nouns
were recognized as one word for learning, and the associated
accuracy was 72.76%. 'e accuracy was lower than that
without preprocessing by 5.54%, and it was also relatively
low compared with other preprocessing combinations. As
suggested by the algorithm, there are many technical terms
that contain more than two words, such as in the forms
(adjective-singular noun), (singular noun-singular noun),
and (adjective-singular noun-singular noun). As a result, the
meanings of these terms cannot be correctly interpreted. In
other words, because the technical terms consisting of two or

more segments were processed as one word and the length of
the sentence was shortened, the accuracy decreased.

When sentences were sorted according to their entropy
complexity (Nos. 23 and 24), the accuracies were 78.624%
and 78.286% for the descending and ascending order, re-
spectively. 'is represents a difference of +0.322% and
−0.016% compared with data that were not preprocessed.
'erefore, ordering sentences according to their complexity
may not affect the accuracy.

4. Conclusions

In neural network research, data, algorithms, and parallel
hardware are essential elements. Even with good algorithms
and high-performance hardware, studies cannot be conducted

Table 6: Accuracy based on the preprocessing type.

No. Type
Accuracy

1st 2nd 3rd 4th 5th Mean (SD.)

Traditional method

1 [2] + [4] 79.17 79.01 79.31 78.93 79.03 79.090 (0.15)
2 [2] + [3] 79 79.14 79.25 78.73 79.09 79.042 (0.20)
3 [3] + [5] 79.15 78.98 79.17 78.89 78.97 79.032 (0.12)
4 [3] + [4] 78.96 79.12 78.82 79.13 79.09 79.024 (0.13)
5 [1] + [2] + [3] + [4] 79 78.96 79.12 78.93 79.01 79.004 (0.07)
6 [1] + [4] 78.94 78.59 79.33 79.15 78.97 78.996 (0.28)
7 [1] + [2] + [3] + [5] 78.8 78.86 79.09 78.79 78.98 78.904 (0.13)
8 [1] + [2] + [3] 78.54 79.22 78.93 78.95 78.87 78.902 (0.24)
9 [3] 79.02 78.97 78.75 78.73 78.91 78.876 (0.13)
10 [4] 78.94 79 78.62 78.77 78.89 78.844 (0.15)
11 [2] 78.83 78.78 78.83 78.87 78.9 78.842 (0.05)
12 [1] + [3] + [4] 78.44 78.94 78.8 79.15 78.85 78.836 (0.26)
13 [1] + [3] + [5] 78.41 78.8 78.67 79.34 78.8 78.804 (0.34)
14 [2] + [5] 78.79 78.77 78.85 78.68 78.78 78.774 (0.06)
15 [5] 78.34 78.67 78.86 78.94 78.7 78.702 (0.23)
16 [1] + [2] + [5] 78.78 78.25 78.88 78.75 78.67 78.666 (0.24)
17 [1] + [5] 78.51 78.38 78.72 78.96 78.59 78.632 (0.22)
18 [1] 78.7 78.28 78.46 78.51 78.51 78.492 (0.15)
19 [1] + [2] 78.22 78.61 78.27 78.56 78.36 78.404 (0.17)
20 [1] + [2] + [4] 78.26 78.45 78.35 78.17 78.31 78.308 (0.10)
21 [0] 78.42 78.36 78.28 78.11 78.34 78.302 (0.12)
22 [1] + [3] 78.24 78.16 78.07 78.36 78.3 78.226 (0.11)

Developed method
23 [7-2] 78.35 78.68 79.1 78.65 78.34 78.624 (0.31)
24 [7-1] 78.39 78.15 78.19 78.37 78.33 78.286 (0.11)
25 [6] 73 72.96 72.43 72.59 72.8 72.756 (0.24)

[0]: no applied preprocessing; [1]: special character elimination; [2]: lemmatization; [3]: lowering; [4]: punctuation splitting; [5]: punctuation merging; [6]:
essential terminology preprocessing; [7-1]: ascending order based on entropy complexity; [7-2]: descending order based on entropy complexity.

Table 5: Structure of the SNLI corpus.

Premise Hypothesis Label
A person on a horse jumps over a broken down airplane A person is at a diner, ordering an omelette 0
A person on a horse jumps over a broken down airplane A person is outdoor on a horse 1
Children smiling and waving at the camera 'ere are children present 1
Children smiling and waving at the camera 'e kids are frowning 0
A boy is jumping on the skateboard in the middle of a red bridge 'e boy skates down the sidewalk 0
A boy is jumping on the skateboard in the middle of a red bridge 'e boy does a skateboarding trick 1
Two blond women are hugging one another 'e women are sleeping 0
Two blond women are hugging one another 'ere are women showing affection 1

Mathematical Problems in Engineering 7



if the quality of data is low or no data are available. Despite its
importance, many existing neural network studies do not
provide any information about data preprocessing.

'is study analyzed the effect of preprocessing through
text data preprocessing of sentence models. To this end,
experiments were conducted to evaluate combinations of
typical data preprocessing types. Furthermore, the effects of
two new techniques on the accuracy of the model were
analyzed: preprocessing of technical terms composed of
compound words and determining the learning order based
on data complexity.

Based on the results of this study, the following con-
clusions can be drawn. First, when only two preprocessing
techniques are used, we recommended using lemmatization
and punctuation splitting, lemmatization and lowering, or
lowering and punctuation splitting. Second, when only one
preprocessing technique is used, it is better to use lemma-
tization, lowering, or punctuation splitting. 'ird, to im-
prove accuracy, it is generally not recommended to use a
preprocessing type that shortens the lengths of sentences.
Fourth, the use of special character elimination and nor-
malization techniques does not contribute to improving the
accuracy. Fifth, setting the learning order according to
sentence complexity does not contribute to improving the
accuracy.

Building predictive or sentence models from refined data
can help improve the performance of the model. 'e ac-
curacy of the preprocessing of text data in this study sug-
gested a certain combination of preprocessing types could
improve performance when various models are established.
Consequently, this study is significant in that it allows better
decision-making about which preprocessing type should be
selected according to the purpose of the study or the type of
the construction model.

Data Availability

'e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

'e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

'is work was supported by the National Research Foun-
dation of Korea (NRF) grant funded by the Korean gov-
ernment (MSIP) (no. 2019R1H1A1079885).

References

[1] D.-K. Lee, K.-J. Oh, and H.-J. Choi, “Measuring the syntactic
similarity between Korean sentences using RNN,”2e Korean
Institute of Information Scientists and Engineers, vol. 6,
pp. 792–794, 2016.

[2] Y. Bengio, Neural Probabilistic Language Models,” Innova-
tions in Machine Learning, Springer, Berlin, Germany, 2006.

[3] T. Mikolov, “Distributed representations of words and
phrases and their compositionality,” in Proceedings of the
Advances in Neural Information Processing Systems,
pp. 3111–3119, Lake Tahoe, NV, USA, December 2013.

[4] A. L. Blum and P. Langley, “Selection of relevant features and
examples in machine learning,” Artificial Intelligence, vol. 97,
no. 1-2, pp. 245–271, 1997.

[5] S. F. Crone, S. Lessmann, and R. Stahlbock, “'e impact of
preprocessing on data mining: an evaluation of classifier
sensitivity in direct marketing,” European Journal of Opera-
tional Research, vol. 173, no. 3, pp. 781–800, 2006.

[6] C. A. Gonçalves, R. Camacho, and E. C. Oliveira, “'e impact
of pre-processing on the classification of MEDLINE docu-
ments,” pattern recognition in information systems,” in
Proceedings of the 10th International Workshop on Pattern
Recognition in Information Systems, PRIS 2010, Funchal,
Madeira, Portugal, June 2010.

[7] A. K. Uysal and S. Gunal, “'e impact of preprocessing on text
classification,” Information Processing &Management, vol. 50,
no. 1, pp. 104–112, 2014.

[8] J. Cai, J. Luo, S. Wang, and S. Yang, “Feature selection in
machine learning: a new perspective,” Neurocomputing,
vol. 300, pp. 70–79, 2018.

[9] Y. Kim, “Convolutional Neural Networks for Sentence
Classification,” 2014, http://arxiv.org/abs/1408.5882.

[10] D. Tang, B. Qin, and T. Liu, “Document modeling with gated
recurrent neural network for sentiment classification,” in
Proceedings. Of the 2015 Conference on Empirical Methods in
Natural Language Processing, Lisbon, Portugal, September
2015.

[11] T. Lei, R. Barzilay, and T. Jaakkola, “Molding cnns for text:
non-linear, non-consecutive convolutions,” 2015, http://arxiv.
org/abs/1508.04112.

[12] H. Chen, “Neural sentiment classification with user and
product attention,” Proceedings. Of the 2016 Conference on
Empirical Methods in Natural Language Processing, Austin,
TX, USA, November 2016.

[13] Y. Xiao and K. Cho, “Efficient character level document
classification by combining convolution and recurrent layers,”
2016, http://arxiv.org/abs/1602.00367.

[14] K. Kowsari, “Hdltex: hierarchical deep learning for text
classification,” 2017, http://arxiv.org/abs/1709.08267.

[15] Z. Yang, “Hierarchical attention networks for document
classification,” in Proceedings. Of the 2016 Conference of the
North American Chapter of the Association for Computational
Linguistics, Human Language Technologies, San Diego, CA,
USA, June 2016.

[16] S. Lai, “Recurrent convolutional neural networks for text
classification,” AAAI, vol. 333, 2015.

[17] T. Kuzar and P. Navrat, “Preprocessing of slovak blog articles
for clustering,” in Proceedings of the 2010 IEEE/WIC/ACM
International Conference on Web Intelligence and Intelligent
Agent Technology, Toronto, ON, USA, September 2010.

[18] J.-S. Lee, “A study on the data mining preprocessing tool for
efficient database marketing,” Journal of Digital Convergence,
vol. 12, no. 11, pp. 257–264, 2014.

[19] S. K. Dwivedi and B. Rawat, “A review paper on data pre-
processing: a critical phase in web usage mining process,” in
Proceedings of the 2015 International Conference on Green
Computing and Internet of 2ings (ICGCIoT), Greater Noida,
Delhi, India, October 2015.

[20] H.-S. Shin, Y. Jin, and C.-S. Park, “Influence of data pre-
processing on a machine learning model,” Architectural In-
stitute of Korea, vol. 37, no. 1, pp. 491-492, 2017.

8 Mathematical Problems in Engineering

http://arxiv.org/abs/1408.5882
http://arxiv.org/abs/1508.04112
http://arxiv.org/abs/1508.04112
http://arxiv.org/abs/1602.00367
http://arxiv.org/abs/1709.08267


[21] M. Kasthuri and Dr. S. Britto Ramesh Kumar, “A framework
for language independent stemmer using dynamic pro-
gramming,” International Journal of Applied Engineering
Research, vol. 10, pp. 39000–39004, 2013.

[22] K. Abainia, S. Ouamour, and H. Sayoud, “A novel robust
Arabic light stemmer,” Journal of Experimental & 2eoretical
Artificial Intelligence, no. 1–17, 2016.

[23] P. Han, S. Shen, D. Wang, and Y. Liu, “'e influence of word
normalization in english document clustering,” in Computer
Science and Automation Engineering (CSAE), 2012 IEEE In-
ternational Conference, Zhangjiajie, China, May 2012.

[24] M. Attia and J. Van Genabith, “A jellyfish dictionary for
Arabic,” in Proceedings of the Electronic lexicography in the
21st century: thinking outside the paper: proceedings of the eLex
2013 conference, Tallinn, Estonia, Europe, October 2013.

[25] R. J. Prathibha and M. C. Padma, “Design of rule based
lemmatizer for kannada inflectional words,” in Proceedings of
the Emerging Research in Electronics, Computer Science and
Technology (ICERECT), 2015 International Conference,
Mandya, India, December 2015.

[26] S. Samsani, “An RST based efficient preprocessing technique
for handling inconsistent data,” in Proceedings of the 2016
IEEE International Conference on Computational Intelligence
and Computing Research (ICCIC), pp. 1–8, Chennai, India,
December 2016.

[27] P. Pantel and D. Lin, “A statistical corpus-based term ex-
tractor,” in Proceedings of the Biennial Conference of the
Canadian Society on Computational Studies of Intelligence,
pp. 36–46, Ottawa, Canada, June 2001.

[28] J. Mueller and A. 'yagarajan, “Siamese recurrent architec-
tures for learning sentence similarity,” in Proceeding AAAI’16
Proceedings of the 2irtieth AAAI Conference on Artificial
Intelligence, pp. 2786–2792, Quebec, Canada, May 2000.

[29] A. Vaswani, N. Shazeer, N. Parmar et al., “Attention is all you
need,,” in Proceedings of the Advances in Neural Information
Processing Systems, pp. 6000–6010, Cambridge, MA, USA,
December 2015.

[30] A. Talman and S. Chatzikyriakidis, “Testing the generalization
power of neural network models across NLI benchmarks,” in
Proceedings of the Second BlackboxNLP Workshop on Ana-
lyzing and Interpreting Neural Networks for NLP, Brussels,
Belgium, November 2018.

[31] A. Conneaum, D. Kiela, H. Schwenk, L. Barrault, and
A. Bordes, “Supervised learning of universal sentence rep-
resentations from Natural Language inference data,” in
Proceedings of the 2017 Conference on Empirical Methods in
Natural Language Processing, pp. 670–680, Copenhagen,
Denmark, September 2018.

Mathematical Problems in Engineering 9


