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Vehicle counting plays a significant role in vehicle behavior analysis and traffic incident detection for established video sur-
veillance systems on expressway. Since the existing sensor method and the traditional image processingmethod have the problems
of difficulty in installation, high cost, and low precision, a novel vehicle counting method is proposed, which realizes efficient
counting based on multivehicle detection and multivehicle tracking. For multivehicle detection tasks, a construction of the new
expressway dataset consists of a large number of sample images with a high resolution (1920×1080) captured from real-world
expressway scenes (including the diversity climatic conditions and visual angles) by Pan-Tilt-Zoom (PTZ) cameras, in which
vehicle categories and annotation rules are defined. Moreover, a correlation-matched algorithm for multivehicle tracking is
proposed, which solves the problem of occlusion and vehicle scale change in the tracking process. Due to the discontinuity and
unsmooth of the trajectories that occurred during the tracking process, we designed a trajectory optimization algorithm based on
least square method. Finally, a new vehicle counting method is designed based on the tracking results, in which the driving
direction information of the vehicle is added in the counting process. -e experimental results show that the proposed counting
method in this research can achieve more than 93% accuracy and an average speed of 25 frames per second in expressway
video sequence.

1. Introduction

As a core component of intelligent transportation, the real-
time and effective vehicle counting method is of great sig-
nificance for the expressway management department to
implement traffic management and control violations. Since
expressway has the characteristics of large traffic flow [1] and
high speed, once traffic jam and parking events occur, it is
easily to cause traffic accidents, which is extremely harmful
to traffic safety. Over the past several years, video surveil-
lance equipment was installed in all key sections of the
expressways, but the vehicle counting is still based on
sensors or just traditional image processing methods, which
results in serious road damage, expensive information

construction, and poor vehicle counting accuracy [2].
-erefore, it is of great theoretical and practical significance
to make full use of existing monitoring resources and apply
the methods of deep learning and computer vision to study
the video-based vehicle counting method for traffic safety,
traffic guidance, and traffic violation handling.

-e widely applied methods of vehicle counting mainly
include vehicle detection and vehicle tracking. -e earliest
vehicle detection was to extract the moving targets from the
image sequence and identify the extracted targets. -e
vehicle detection method during this period mainly in-
cluded background subtraction method [3, 4], frame dif-
ference method [5], and optical flow method [6]. However,
the background subtraction method uses the weighted
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average method for background update, and the effect of
background update will affect the integrity of the vehicle
extraction and the accuracy of vehicle detection. Moreover,
the frame difference method is greatly affected by the
vehicle speed and the time interval of continuous frames.
Furthermore, the optical flow method is a pixel-level
density estimation, which is not suitable for real-time
applications due to its large computation. In recent years,
to solve the impact of complicated scenarios towards ac-
curate target detection [7], machine learning methods and
classification methods have been widely used before deep
learning becomes the mainstream of computer vision.
However, machine learning methods and classification
methods have the disadvantages of high time complexity,
weak region selection, and poor robustness of manually
extracted features. Consequently, deep learning method is
presented for target detection, which demonstrated that
features extracted by the deep convolutional neural net-
works are more superior than hand-crafted features. Unlike
machine learning, the existing target detection systems
based on deep learning can be divided into proposal-based
methods, such as R-CNN [8], SPP-net [9], Fast R-CNN
[10], Faster R-CNN [11], and Mask R-CNN [12], and
proposal-free methods, such as Single Shot Multibox De-
tector (SSD) [13] and You Only Look Once (YOLO) [14].
Unlike the proposal-based methods, SSD and YOLO use
the method of setting the default box and the method of
dividing the input image into a fixed grid to predict the
target location and classification quickly, which makes the
process of training and detecting much faster than the
R-CNN series. However, SSD guarantees a fast detection
speed, and its detection accuracy is far superior to YOLO.
Moreover, the sufficient number of labelled training
samples and the reasonable selection of representative
training samples play a crucial role in SSD method [15]. On
the whole, the comprehensive use of the effective deep
learning models and dataset is of critical importance to
improve the speed and accuracy of vehicle detection.

Vehicle tracking plays a significant role in vehicle
counting and has attracted more and more attention in
recent years. -e existing approaches for vehicle counting
based on videos can be categorized into deep learning-
based tracking algorithms [16], online methods (MDP
[17]), and batch-based methods (IOUT [18]). In practice,
online methods and batch-based methods have difficulty in
small target detection. Xiang et al. [17] applied online
method to extract vehicles for target detection, but its
measurement accuracy is seriously affected by occlusion if
there are various types of vehicles and the distribution of
vehicle speed is not uniform. Currently, the main methods
for video-based vehicle tracking can be divided into gen-
erative method and discriminative method [19]. Sparse
Coding was the mainstream of generative tracking [20]
methods such as ALSA and L1APG [21] in previous years.
Currently, as a representative of the discriminative tracking
method, the correlation filtering method has gradually
occupied the mainstream position and achieved satisfac-
tory results, such as Kalman filter [22] and Kernel Cor-
relation Filter (KCF) [23]. -e existing deep learning-based

tracking algorithms [16] are based on deep learning de-
tection and then use KCF, Kalman filtering, and other
algorithms for tracking. However, KCF and Kalman fil-
tering need to infer the state of the current frame from the
state of the previous frame, that is, to establish constraints
by constructing a motion model, so as to obtain a group of
possible candidate regions of target positions. -is method
is only suitable for single target tracking, but when mul-
titarget tracking is performed, it is easy to produce tracking
errors due to occlusion problems. Consequently, in order
to solve the tracking difficulties caused by the variety of
moving scenes, target occlusion, deformation, and vehicle
scale changes, the design of an effective vehicle tracking
algorithm plays an important role in improving the per-
formance of the counting system.

-is paper presents a new vehicle counting method
based on expressway video sequence, which includes vehicle
detection, vehicle tracking, and vehicle counting. Different
from the natural images, a new dataset based on the ex-
pressway video sequence we designed is trained by the SSD
model to effectively detect the various vehicles. Moreover,
the proposed algorithm for the vehicle tracking can effec-
tively deal with the trajectory problem caused by occlusion,
deformation, and vehicle scale change. In order to solve the
problem of trajectory breakage and nonsmoothing after
tracking, a trajectory optimization algorithm is proposed,
which is superior to the state-of-the-art methods. Finally, a
new multivehicle counting algorithm with strong adapt-
ability is designed. In summary, the contribution of this
study includes the following points:

(1) A new dataset named NOHWY was constructed by
the total number of 7849 RGB images in diverse
climatic conditions captured by Pan-Tilt-Zoom
(PTZ) cameras from expressway. For the sample
annotation, LabelImg [24] tool was used to label the
training images based on the annotation rules we
defined.

(2) In order to solve the problem of trajectory point
instability of moving vehicles, a novel vehicle cor-
relation-matched algorithm is proposed for vehicle
tracking, which considers the spatiotemporal dis-
tribution information of moving vehicles and ef-
fectively solves the problem of vehicle occlusion.

(3) A motion vehicle trajectory optimization algorithm
based on least squares method is proposed, which
effectively solves the problem of interruption and
nonsmoothing problems in process of the vehicle
tracking.

(4) A multivehicle counting method is designed, which
realizes the counting of vehicles by the vehicle cat-
egory in different driving directions.

-is paper will be organized as follows. Section 2 in-
troduces the construction process of the NOHWY dataset
and the methodology for vehicle tracking and counting.
Section 3 presents the experimental results and the analysis
of the results and discussion. Section 4makes a conclusion of
the paper.
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2. Materials and Methods

We present a novel video-based method (Figure 1) to count
vehicles from expressway. Different from the traditional
methods which only rely on the image processing to segment
images and count vehicles, our approach is designed to
achieve vehicle counting task through multitarget detection,
multitarget tracking, and trajectory acquisition. Firstly, we
collected RGB images in complex environments in ex-
pressways, including rainy weather, strong illumination, and
insufficient night light. Meanwhile, a NOHWY dataset was
constructed for SSD model training by labeling different
types of vehicles. Furthermore, the original SSD model was
adjusted from 300× 300 to 512× 512 for better detection and
recognition. Secondly, based on the location information
and scale variation characteristics of vehicle detection at
different moments, a new vehicle correlation-matched al-
gorithm is designed to track the motion trajectory of
multiple vehicles. Moreover, due to problems such as in-
terruption and nonsmoothing of the trajectory, the least
squares method was employed to optimize the trajectory to
obtain a good and accurate trajectory. Finally, we designed a
new multivehicle counting algorithm, which can calculate
the number of various types of vehicles, the current frame
record, and the total number of vehicles in different driving
directions.

2.1. Vehicle Detection

2.1.1. Dataset. Many studies have demonstrated that natural
images can have good detection effects based on deep
learning. Based on the advantages of the convolutional
neural network (CNN), a variety of datasets such as
ImageNet and PASCALVOC [25] were designed to push the
state-of-the-art target detection and classification results
based on various networks. Different from these natural
images, expressways have the characteristics of top-down
view, known resolution, and linear motion. Hence, we
conduct the following work to construct the NOHWY
dataset.

(1) Data Collection. All images in this dataset are captured by
the traffic monitoring software provided by Hangzhou
Huijing Technology Co., Ltd., which realizes the online
monitoring of the expressway through the Pan-Tilt-Zoom
(PTZ) camera installed on the Hangzhou expressway. Ac-
tually, the installation height of PTZ cameras on the ex-
pressway is about 12 meters. Moreover, the camera’s focal
length, pitch angle, and deflection angle are variable; that is,
the shooting angle can rotate freely without preset position.
Since the traffic monitoring software provides an image
acquisition interface for online sample collection, as shown
in Figure 2, it can remotely monitor the expressway sections
corresponding to 25 PTZ cameras within 24 hours.
According to the working principle of the software, we need
to set the interface number corresponding to a PTZ camera
in advance, after the monitoring is turned on, the image can
only be saved at any time through manual selection. Hence,

a NOHWY dataset we designed is a collection of images with
a resolution of 1920×1080 captured by the traffic moni-
toring software under different climate condition, different
scenes, and different angles. In addition, we select samples
according to the principle of sample balance to solve the
problem of more cars and fewer other types of vehicles in
expressway scenarios. However, in the case of large simi-
larity between samples, it is necessary to delete the redun-
dant samples. Consequently, the final sample set needs to
satisfy the characteristics of rich scenes, diverse angles, and
complex climatic environment.

(2) Vehicle Annotation. Referring to the domestic auto-
mobile standard classification manual, vehicles on ex-
pressway can be divided into three categories: truck, bus, and
car. Moreover, there are six PhD students using LabelImg
annotation tool to label our dataset for three months, which
can effectively reduce the annotation error rate. However,
the strengths and weaknesses of the dataset rely on the
definition of annotation rules, and annotation rules are of
great significance to network training. Based on the char-
acteristics of expressway traffic, we appoint annotation rules
as follows:

Small target: the farther away from the camera, the less
characteristics of the vehicle, so the small targets in the
distance are not labelled (Figure 3(a)). In our approach,
vehicles that appear in one-third of the distant scenes
are defined as small targets that do not need to be
labelled.
Target occlusion: the objective of the rule is to set
occlusion rate in each image to ensure the effective
extraction of multi-scale spatial features. If the oc-
cluded area of the vehicle is more than 1/2 of its own
area, the vehicle is not labelled (Figure 3(b)).
Target truncation: target truncation means that the
target is truncated by the boundaries of the image.
-erefore, if the vehicle area outside the image is more
than 2/3 of its own area, the vehicle is not labelled
(Figure 3(c)).
Special samples: a few samples have the problem of
category ambiguity. -e samples can be labelled as
difficult (difficult samples) and the field is set to 1,
which means that this is an object rather than multiple
objects. As shown in Figure 3(d), object 1 with red sign
is labelled as one vehicle instead of multiple vehicles, so
it can be detected and classified as a vehicle during
training.

In NOHWY dataset, we employed the real-time online
acquisition platform of Figure 2 to capture samples. In
Figure 2, the “channel” button corresponds to 25 PTZ
camera channels. You can select a certain camera by setting
the “channel” value. -e installation positions of these 25
PTZ cameras include top-view, side-view, and front-view.
Since PTZ cameras can rotate and adjust its own angle
according to the position information of the moving target,
therefore, we used the letters A to E to represent 5 angles of
rotation by the PTZ camera. Among them, A, B, C, D, and E
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represent the rotation of PTZ camera to 30°, 45°, 60°, 90°,
and 120°, respectively. -erefore, we employed five doctoral
students to collect a total of 7849 samples with a resolution of
1920×1080 using the online acquisition platform of Fig-
ure 2, and each doctoral student was responsible for five
camera channels. We randomly selected 1962 samples as the
test set and the rest 5887 samples as the training set labelled
by the annotation tool of LabelImg. -e statistical results of
the number of classified samples in different scenarios are
presented in Table 1.

2.1.2. SSD Model. SSD is a high accuracy and fast speed
target detection algorithm, which is proposed for real-time
detection. SSD is built on a basic network that ends with
some convolutional layers. SSD predicts the category scores
and location offsets for the default bounding boxes by two
3× 3 convolutional layers. In order to detect targets at
different scales, SSD adds a series of progressively smaller
convolutional layers to construct pyramid feature maps and
sets aspect ratios for adjusting varying target shapes

according to the receptive field size of the layers. Moreover,
non-maximum suppression (NMS) is used to post-process
the final predictions to get the detection results. In SSD
model, SSD detector uses VGG [26] as the base network, and
each input image needs to be resized to a fixed size
(300× 300). However, most of the images on the expressway
are high-definition images. If the image is directly resized to
300× 300, the image will be blurred. -erefore, we modify
the 300× 300 model to 512× 512 (Figure 4). After analysis,
our 512 ×512 SSD model can achieve real-time vehicle
detection, and its processing speed is faster than other most
advanced target detectors.

2.2. Vehicle Tracking

2.2.1. Correlation-Matched Algorithm for Vehicle Tracking.
Vehicle detection is a requisite process for vehicle tracking.
Since existing tracking algorithms such as KCF can only
track one type of vehicle, we design a new multi-vehicle
tracking algorithm based on the correlation-matched

Figure 2: Online image acquisition interface of traffic monitoring software. -e figure on the left is the image acquisition interface, which
can use the “open” and “snapshot” buttons to obtain the expressway image at any time. -e figure on the right shows examples of the
training images collected by the traffic monitoring software.
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Figure 1: Framework of our proposed approach. It contains dataset construction, moving multivehicle detection, multivehicle tracking,
trajectory acquisition, and vehicle counting.
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method of multi-vehicle detection information. In the
previous section, the SSD model effectively learns the
characteristics of vehicles in expressway scenes by training
the NOHWY dataset, and it can efficiently provide accurate
detection results for vehicle tracking, including vehicle
category information and vehicle location information.

Since the targets detection in the previous chapter pro-
vided category information and four-parameter information

of the target bounding box for each detected target, the four
parameters are the width and height of the target bounding
box and the center point coordinate values are expressed as
(x, y, w, h). -e study found that the Euclidean distance
between two adjacent frames of the same vehicle is the
smallest when it is driving on the expressway. -erefore, the
main idea of vehicle tracking algorithm is derived based on
video sequence from expressway. We represent the vehicle

(a) (b)

(c) (d)

Figure 3: Examples showing our proposed annotation rules. (a) -e red line in the figure represents the demarcation line of the labelled
area, and the small vehicle located outside the red line is not labelled. (b) Truck (the red signs 2) occludes car (the red signs 1) less than 1/2 of
car’s own area, so car is labelled. (c) Truck (the red signs 1) is truncated less than 2/3 of its own area, so the truck is labelled. (d) -e
description of a special sample (the red signs 1) which is labelled as difficult.

Table 1: Classification statistics in different scenarios.
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Car 511 324 223 313 287
Bus 398 671 423 361 119
Truck 423 316 588 348 582
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Figure 4: Framework of SSD model (512× 512) [13]. As is shown, the red box in the figure contains the structure of our SSD 512× 512
model. If an image is input, it will be resized to 512× 512. Moreover, VGG-16 is still employed as the base network for the SSD model to
extract features.
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bounding boxes detected by the SSD model as a four-
dimensional vector Vt(xt, yt, wt, ht), where t denotes a ve-
hicle, t � (1, . . . , i, j, . . . , n), x and y represent the coordi-
nates of the center point of the bounding box, and w and h

represent the width and height of the bounding box, re-
spectively. Assuming that the ith frame is adjacent to the jth
frame, we need to calculate the minimum Euclidean distance
between each bounding box detected in the ith frame and all
the bounding boxes detected in the jth frame.-e calculation
formula is as follows:

pi1 � min

·

���������������������

xi1 − xj1􏼐 􏼑
2

+ yi1 − yj1􏼐 􏼑
2

􏽲

, . . . ,

���������������������

xi1 − xjk􏼐 􏼑
2

+ yi1 − yjk􏼐 􏼑
2

􏽲

􏼠 􏼡,

(1)

where i and j represent the ith frame and the jth frame,
respectively, and k represents the last bounding box in the
jth frame. Similarly, the minimum Euclidean distance
between each bounding box in the ith frame and all
bounding boxes in the jth frame is calculated. In addition,
we connect the center point of the two bounding boxes in
adjacent frames, which need to satisfy the condition that
the Euclidean distance of the bounding box center point in
the adjacent frame is the smallest. However, it is not
possible to obtain the correct trajectory of each vehicle by
applying this method alone. Because the expressways are
not single-lane roads, if the vehicle occlusion problem
occurs, although the minimum distance between adjacent
frames is satisfied, it will cause the track connection to be
incorrect.

-rough our research, the solution to solve this problem
is to add another important constraint condition to judge the
trajectory points. Generally, the bounding box of the same
vehicle has the largest overlap area between adjacent frames.
-erefore, we calculate the overlap area U of the bounding
box between adjacent frames. -e larger the overlap area of
the two bounding boxes, the larger the U value. -e U value
between the ith frame and the jth frame is calculated as
follows:

Ui1 �max wi1∗hi1( 􏼁∩ wj1∗hj1􏼐 􏼑, . . . , wi1∗hi1( 􏼁∩ wjk∗hjk􏼐 􏼑􏼐 􏼑,

(2)

-is formula calculates the maximum value of the
overlap area between each bounding box detected in the ith
frame and all the bounding boxes detected in the jth frame.
Considering the constraints of formula 1 and formula 2, we
stipulate that the connection of the central point of the
bounding box will be performed only when formula 1 and
formula 2 are satisfied at the same time.

-rough the above approach, we can achieve vehicle
tracking perfectly, especially when large vehicles occlude the
small vehicles. However, when the same type of vehicles
occludes each other or runs in parallel, the algorithm will
have an error (Figure 5). To solve this problem, we need to
add the driving direction information of the vehicle and set

the angle threshold to enhance the judgment of the tra-
jectory points.

We define the set of trajectory points satisfying the
tracking conditions of formula 1 and formula 2 as
S � S1, S2, . . . , Sn􏼈 􏼉. Since the detection efficiency of the SSD
model is 28 frames per second (FPS), the same vehicle can
obtain the position coordinates of 28 bounding box center
points per second. According to the characteristics of the
expressway, the vehicle can be considered as a linear motion,
and the calculation of the angle between adjacent trajectory
points is added to the existing tracking algorithm. -e
smaller the angle value, the greater the possibility that same
vehicle will occlude each other (Figure 5(c)). Based on this
theory, the adjacent trajectory points x, y, and z are con-
nected, and the angle between two straight lines connected
by three adjacent trajectory points is calculated. Moreover,
we set a threshold for the angle to exclude abnormal tra-
jectory points. -e calculation formula is as follows:

αt � arccos
St − St− 1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ St+1 − St

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

− St+1 − St− 1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

2 St − St−1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 St+1 − St

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

⎛⎝ ⎞⎠,

(3)

y � ρ ×
􏽐

n−1
t�2αt

n − 2
, ρ ∈ [0.5, 0.7], (4)

where αt represents the angle between adjacent trajectory
points. St−1, St, and St+1 represent three adjacent trajectory
points. y is a threshold, ρ represents the weight, and n

represents the number of the trajectory points. When the
angles (W and c in Figure 5(c)) produced by the abnormal
trajectory points (red points in Figure 5(c)) are relatively
small, the range of ρ is set to [0.5, 0.7]. -at is to say, if a
targets’ trajectory points number is n, then calculate the
angle value of each adjacent three trajectory points and find
the average value of all the angle values. In addition, the final
threshold is equal to the result of the average of the angle
times the weight, where the range of weights is defined as
[0.5, 0.7]. As the vehicle is moving in a straight line, the angle
value of the abnormal trajectory points caused by the same
type of vehicle running in parallel will not exceed 0.5 times of
the average value. -erefore, the weight in this article is 0.5.
-us, if the value of αt is equal to 0, it means that a con-
gestion or parking event occurs. In addition, if the value of αt

is between 0 and y, it is considered that the trajectory point is
an abnormal trajectory point, which needs to be deleted and
the judgment of tracking conditions should be continued.

2.2.2. Trajectory Optimization by Least Squares Method.
Since the camera will jitter on the expressway, the trajectory
between adjacent frames is often not smooth. Generally, the
motion of the vehicle on the expressways has a characteristic
of local linearity. -erefore, the least square method is used
to fit the trajectory points to solve the problem of trajectory
smoothness. Due to reducing the trajectory deviation, our
trajectory optimization algorithm based on least squares is
performed in a piecewise linear fashion, and every ten
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trajectory points were performed by the optimization
algorithm.

A series of trajectory points S � S1, S2, . . . , Sk, . . . , Sn􏼈 􏼉

are obtained by using the correlation-matched algorithm,
where Sk is the central point of the detection bounding box
and its coordinates are expressed as (mk, vk). Suppose that
the linear fitting equation is as follows:

p � f(x) � qx + c, (5)

and when the deviation between the value of vk and f(xk)

on the straight line is minimum, the fitting formula is op-
timal. Based on this theory, the values of q and c in the linear
equation are solved:

􏽘
n

k�1
vk − f xk( 􏼁( 􏼁

2
� 􏽘

n

k�1
vk − qxk + c( 􏼁( 􏼁

2
� 0. (6)

Solve equations as follows:

−2 􏽘
n

k�1
vk − qmk − c( 􏼁 � 0,

−2 􏽘
n

k�1
vk − qmk − c( 􏼁mk � 0.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(7)

q �
􏽐

n
k�1 mk 􏽐

n
k�1 vk − n 􏽐

n
k�1 mkvk

􏽐
n
k�1 mk( 􏼁

2
− n 􏽐

n
k�1 m2

k

,

c �
􏽐

n
k�1 mkvk 􏽐

n
k�1 mk − 􏽐

n
k�1 vk 􏽐

n
k�1 m2

k

􏽐
n
k�1 mk( 􏼁

2
− n 􏽐

n
k�1 m2

k

.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(8)

-e fitted straight line is obtained by taking the values of
q and c into the straight line equation. Finally, the trajectory
is smoothed by least square fitting (Figure 6).

2.3.VehicleCounting. Considering the original approach for
vehicle counting is based on virtual test lines [27], which is to
set up virtual test lines on the road, we design an algorithm

that can be applied to multi-vehicle counting, which si-
multaneously counts different categories of vehicles.

Based on the local linearity of the expressway, we set up a
vehicle counting area according to the shooting range of the
camera (Figure 7(a)).-e driving direction of vehicles can be
divided into the forward direction and the backward di-
rection. Since the multi-vehicle tracking algorithm we
designed, it is not necessary to design multiple detection
lines to determine whether there is a vehicle passing
through.We divide the counting area into four regions,A, B,
C, and D, and establish a coordinate system for the counting
area (Figure 7(b)). Moreover, the center of the counting
region is set to the origin of the coordinate system, and the
four regions A, B, C, andD correspond to the four quadrants
of the coordinate system, respectively. Suppose that the
coordinates (coordinates of the center points of the detection
bounding box) of the starting and ending points of the
vehicle trajectory points in the counting area are expressed
as S(x, y) and S′(x′, y′). It is necessary to calculate the
angle between the start point of the trajectory and the x-axis
and the angle between the end point of the trajectory and
the x-axis, respectively. -e calculation formula is as
follows:

tan θ1 �
−y

x

tan θ2 �
y

x

tan θ3 �
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y
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−y

−x
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. (9)

If the angle satisfies the condition that θ1 is a negative
value and θ2 is a positive value, then the forward counter
adds 1. Similarly, if θ3 is a negative value and θ4 is a positive
value, the backward counter adds 1.

(a) (b)

θ

γ

(c)

Figure 5: Example errors about our tracking algorithms and schematic diagram of abnormal trajectory points. We define that the forward
direction is from near to far and the backward direction is from far to near. (a) -e two buses occlude in the backward direction, satisfying
the constraints of the tracking algorithm, but the trajectory connection is error. (b) -e two trucks travelling in parallel in the forward
direction also satisfy the constraints of the tracking algorithm so that the trajectory connection is wrong. (c) A schematic representation of
the trajectory points of two trucks travelling in parallel for a period of time.
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3. Results and Discussion

3.1. Experimental Results and Evaluation of Vehicle Detection.
To evaluate the effectiveness of the vehicle detection method
we proposed, we applied the method aforementioned in
Section 2.1 to the Hangzhou expressway for training and
testing. -e vehicle detection method includes two key is-
sues, one is the dataset, and the other is the deep learning
model. In Section 2.1, by analyzing the necessity of con-
structing an expressway dataset, we define the annotation
rules for the dataset named NOHWY. Moreover, we ad-
justed the parameters of SSD model during the training
process to suit the environment of the expressway.

3.1.1. Training

(1) Preparation of Basic Work. -e machine we used with
CPU Inter Core i9-9900X 10 Core/3.50 GHz/19.25MB
and NVIDIA RTX 2080TI GPU named DEVMAX402.
Our experiments were based on Caffe framework, which is
extensively used in deep learning. Moreover, NOHWY
dataset was prepared for training, including 5887 training
samples with a resolution of 1920 ×1080 and their label

files. After analyzing the size of vehicles (trucks, buses,
and cars) on the collected images, we choose the SSD
512 × 512 model as shown in Figure 4 for training and
testing.

(2) Data Augmentation. For the training processing of SSD
model, besides the original image, image clipping, brightness
adjustment, and noise addition are used to data augmen-
tation. For example, the image clipping in Figure 8 is to
better detect the small targets in large images, while
adjusting the brightness of the image is conducive to the
detection of night scene. In addition, adding noise to the
training samples can improve the robustness of the SSD
detector.

(3) Setting Aspect Ratios of the Default Boxes. Considering
the characteristics of trucks, cars, and buses, we set six types
of aspect ratios (1/1, 3/1, 4/1, 1/3, and 1/4) for the default box
to make the SSD model fit better to trucks and buses with a
shape other than square. During the process of the training,
since each ground truth box can match different default
boxes, we must set an overlap value to indicate the largest
IoU. -erefore, when the overlap value is over 0.6, the
default boxes can be considered as “matched”.
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Figure 6: Examples of smoothing results for trajectory points. (a) -e abscissa indicates the number of trajectory points, and the ordinate
indicates the abscissa of the center point of bounding boxes. (b) -e abscissa indicates the number of trajectory points, and the ordinate
indicates the ordinate of the center point of bounding boxes.

(a)
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Figure 7: Examples of multivehicle counting methods. (a) Set the counting area. -e area surrounded by the red line is defined as the count
area. (b) A graph of the counting method. Different colors represent different regions, such as region A representing the fourth quadrant,
region B representing the first quadrant, region C representing the second quadrant, and region D representing the fourth quadrant. -e
trajectory points of different regions satisfy the coordinate characteristics of the corresponding quadrants.
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(4) Setting Training Parameters. Since the number of iter-
ations is too small, the convergence cannot be achieved.
Conversely, if the number of iterations is too large, over-
fitting occurs. -erefore, after repeated verification, the
number of iterations is set to 120,000, and the number of
Epochs is 652. However, the learning rate is an important
parameter for the training of deep learning models; it di-
rectly affects the quality of model training. Many experi-
ments have proved that using the same learning rate all the
time will lead to training which cannot converge, and the
detection accuracy of the model declines. -erefore, this
paper uses the piecewise method to set the learning rate; that
is, in the first 60,000 iterations, the value of learning rate is
set to 0.001, and in the last 60,000 iterations, the value of
learning rate is set to 0.001× 0.05.

3.1.2. Testing and Results. In the vehicle detection method,
based on our parameter setting method, the SSD 512× 512
model is applied to train NOHWY dataset, and the obtained
training model preserves all the parameters generated during
the training process. In order to validate our training model,
beside some of the test set, we use 15 video sequences to test,
which are selected from over 30 minutes taken by the traffic
monitoring software provided by Hangzhou Huijing Tech-
nology Co., Ltd. -e video with the resolution of 1920×1080
including a variety of different climatic conditions. Figure 9
shows our training and testing results on NOHWY dataset.

As the criteria, mean average precision (mAP) is the
average of three categories, Aps, recall, and accuracy ware
used to evaluate expressways’ vehicle detection. In our ex-
periment, recall and precision curve were drawn for each
vehicle, in which Average Precision (AP)measures the quality
of SSD 512× 512 model in each category. Moreover, we draw
curves based on test accuracy, training time, and training loss
for training and testing results. Moreover, some parameters
are used to calculate the criteria mentioned before. -erefore,
AP and accuracy can be calculated as follows:

AP �
TP

TP + FN
,

Accuracy �
TP + TN

TP + TN + FP + FN
.

(10)

TN means true negatives, which represents the number
of negative samples predicted correctly. TP means true
positives, which represents the number of positive samples
predicted correctly. FN means false negatives, which rep-
resents the number of negative samples predicted

incorrectly. FP means false positives, which represents the
number of positive samples predicted incorrectly.

As shown in Figure 9, it has a test accuracy of more than
93% on the test experiment in Figure 9(a), which is much
higher than the value of 76.88% from SSD 300× 300 model.
-e loss in Figure 9(b) is lower than 1, which guarantees the
performance of the model. In the test process, the GPU
which is used from NVIDIA 1080Ti can predict time of SSD
512× 512 which is 28 frames per second (FPS). Moreover, we
used AP to describe the vehicle detection models’ perfor-
mance. In Figure 9(c), our dataset trained by SSD 512× 512
model has a higher mAP value, and the recalls are also more
than 90% on the experiment. Compared with SSD 300× 300
model, the modified SSD 512× 512 model not only elimi-
nates the system crash caused by too many training pa-
rameters but also improves the information loss. Since the
NOHWY dataset has a good adaptability to the expressway,
the improved SSD 512× 512 model not only achieves good
detection results but also guarantees the speed of detection
and meets the real-time requirements of expressways.

In order to further illustrate that the SSD 512× 512 model
also guarantees the detection effect under the condition of
ensuring real-time requirements, we compare it with the Faster-
RCNN method with high detection accuracy and the YOLO
method with fast detection speed. As shown in Figure 9(d), the
SSD 512× 512 model has performed well on our dataset.

3.1.3. Evaluation. To further demonstrate the robustness of
the NOHWY dataset, we conduct more experiments to
compare the adaptability of our dataset to the state-of-the-art
datasets. -erefore, we used the mainstream dataset or the
latest dataset currently applied to vehicle detection tasks to
compare our dataset. We choose KITTI [28], UAV-DT [29],
and UA-DETRAC [30] datasets for experiments. Among
them, KITTI dataset is currently the largest international
dataset for computer vision algorithm evaluation in autono-
mous driving scenarios. UAV-DT dataset is a complex scene
dataset for Unmanned Aerial Vehicle (UAV) recognition and
tracking tasks. UA-DETRAC dataset is a challenging real-
world multi-target detection dataset. In Table 2, we compared
the three datasets with NOHWY dataset in detail. As shown in
Table 2, image represents the total number of images in the
dataset, and year represents the time the dataset was published.

To further compare the adaptability of our dataset, we
used the SSD 512× 512 model to train the dataset of KITTI,
UAV-DT, and UA-DETRAC and prepared six expressway
videos over one hour in different time periods to test the
training model. It should be noted that we only selected the

Figure 8: Examples of data augmentation. Left: image clipping. Middle: adjust image brightness Right: add Gaussian noise.
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output of car, bus, and truck in the KITTI dataset. In order to
analyze the adaptability of the datasets, we draw a Precision-
Recall curve for each dataset to observe the AP value of
independent categories. Each type of AP can be used as an
indicator to evaluate the dataset. As shown in Figure 10, the
AP values performed much better in the UA-DETRAC
dataset than in the in KITTI and UAV-DTdataset. However,
by comparing the Precision-Recall curves of KITTI, UA-
DETRAC, UAV-DT, and NOHWY dataset in Figure 9, it is
found that the mAP of NOHWY dataset is the best, which
shows that the improved SSD 512× 512 model has a good
adaptability on NOHWY dataset. -e reason for this result
may be that our dataset contains high-resolution samples,
sample collection methods based on real-time monitoring,
different target labeling methods, and larger geographical
transfer problem in other datasets.

3.2. Results and Discussion of Vehicle Tracking

3.2.1. Results. To verify the effectiveness of our proposed
vehicle tracking methods, we applied the methods afore-
mentioned in Section 2.2 to the Hangzhou expressway for
testing. In the testing process, six PTZ cameras installed on
the Hangzhou Expressway were selected to capture 20 video
sequences in different climatic conditions corresponding to
more than 28,000 frames recorded at different times, and the
capture rate of PTZ camera was 32 frames per second.
Among them, we tested our multi-target detection and
tracking algorithm with four video sequences in rainy days,
four video sequences in foggy days, four video sequences in
sunny days, four video sequences in cloudy days, and four
video sequences at night. Previews of the five types of de-
tection and tracking results are shown in Figure 11.
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Figure 9: Curves of training results and testing results on NOHWY dataset. (a) Test accuracy-training time curves of NOHWY dataset
trained by the improved SSD 512∗ 512 model. (b) Training loss-training time curves of NOHWY dataset trained by the improved SSD
512∗ 512 model. (c) Precision-Recall curves of the SSD 512∗ 512 model detection algorithms. AP scores were used to describe the vehicle
detection models’ performance. (d) Precision-Recall cures on the testing set of the NOHWY dataset.
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As shown in Figure 11, firstly, we constructed a new
dataset, which mainly includes three types of targets: car,
bus, and truck on the expressway. Secondly, we trained our
data set by an improved SSD 512× 512 model. After testing
themodel, we obtained the result of vehicle classification and
vehicle location information, which mainly includes four

parameters, that is, vehicle category and the vehicle
bounding boxes’ height, width, and the coordinate values of
the center point.-irdly, we designed a correlation-matched
algorithm for vehicle tracking, which was designed to focus
on the characteristics of approximate linear motion of ex-
pressway vehicles. It is found that the trajectory of the same
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Figure 10: Precision-Recall curves of the improved SSD 512× 512 method on KITTI/UA-DETRAC/UAV-DTdataset. -e legend presents
the AP score of each category, which can describe the performance of the detection methods. (a) KITTI. (b) UA-DETRAC. (c) UAV-DT.

NOWHY dataset SSD 512 ∗ 512 model Vehicle detection
Training

Euclidean distance minimum; overlap area maximum; 
the direction angle satisfies the threshold condition

Correlation-matched algorithmLeast squares trajectory optimizationVehicle tracking Solve fracture and trajectory unsmoothness

Solve
occlusion

Video sequence

CloudySunnyNightFoggyRainy

CloudySunnyNightFoggyRainy

Vehicle detection

Vehicle tracking

Figure 11: Proposed methodology for vehicle tracking is used to track the video sequences under different climatic conditions.

Table 2: Comparison of datasets performance under different conditions.

KITTI UAV-DT UA-DETRAC NOHWY

Acquisition equipment/year Unmanned
vehicle/2012

Unmanned aerial
vehicle/2018

Cannon EOS 550D
camera/2016

PTZ
cameras/no

Image resolution 1242× 375 1080× 540 960× 540 1920×1080
Images 14,999 80,000 140,000 7,849
Annotation categories 8 3 3 3
Multiple scene types Yes Yes Yes Yes
Multiple views Yes Yes Yes Yes
Multiple times of day No Yes Yes Yes
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target is the shortest in two adjacent frames and the overlap
area of the same vehicles’ bounding box is the largest in the
two adjacent frames, so the coordinates of the center point in
the bounding box of the vehicle detected in the second step
were connected. However, the connection must meet two
conditions. One is to determine whether they are the same
target (formula 1 and formula 2), and the other is to de-
termine whether the trajectory connection errors caused by
the same type of targets occlude each other or are running in
parallel (formula 3 and formula 4). -erefore, after the
correlation-matched algorithm, we obtained the trajectory
points of the moving target and the trajectory connecting
lines. Fourthly, we developed a trajectory optimization al-
gorithm based on the least squares method, which smoothed
the trajectory obtained in the third step and solved the
problem of the trajectory unsmooth in the vehicle tracking.
In the trajectory smoothing algorithm, we used the piecewise
smoothing method to smooth every ten trajectory points,
which can ensure the accuracy of the trajectory to the
greatest extent. Finally, our trackingmethod in Figure 11 can
achieve 26 frames per second (FPS).

3.2.2. Discussion. -e correlation-matched algorithm for
vehicle tracking we designed is used for the real-time
monitoring system of expressway vehicles. -erefore, we
compared four recent tracking algorithms including cor-
related kernel filters (Kalman [22], KCF [23]), online
methods (MDP [17]), and batch basedmethods (IOUT [18]).
In the testing process, four videos with a resolution of
1920×1080 in different camera view obtained by the ex-
pressway monitoring system provided by Hangzhou Huijing
Technology Co., Ltd. were used in our experiment. We used
multiple parameters as evaluation indicators to verify the
quality of the tracking algorithm. -ese include FM, IDS,
MOTA, and FPS (frames per second). Among them, FM
indicates the total number of times the target’s trajectory was
fragmented during the tracking process. IDS means the total
number of times the target’s trajectory changed the vehicle
category. MOTA represents multiple object tracking accu-
racy; in fact, it is a final accuracy that combines missing
targets, false alarm rates, and wrong conversions of
categories.

-e further experiments were conducted to compare the
efficiency of different tracking algorithms. As shown in
Table 3, we run the tracking methods on the testing videos of
the NOHWY dataset on the machine with a NVIDIA RTX
2080TI GPU. It should be emphasized that the tracking
results in Table 3 are based on the accuracy of correct de-
tection, that is, the statistical result in Table 3 do not include
detection errors, but only the tracking results of the vehicles
detected by the SSD 512×512 model. Due to the lack of
appearance information, IOUTmethod only using vehicles’
position information had the lower accuracy and lower IDs
and FM. Moreover, MDP with SSD 512× 512 had the best
FPS value and the worst MOTA score among all the
combinations. It is because MDP method establishes a
tracking model for each vehicle, which greatly increases the
FPS, but the MOTA value is lower for the reason of vehicle

characteristic information absence. Meanwhile, KCF and
Kalman filter method need to predict the possible candidate
regions of the vehicle position, so the KCF and Kalman
method perform poorly on complex background interfer-
ence, similar object occlusion, which leads to unsatisfactory
values of FM, IDS, and MOTA. In contrast, our tracking
algorithm does not need to predict the vehicle position but
directly connects the center points of the bounding box of
the detection target, which greatly improves the tracking
value of FPS. However, the premise of the connection is to
meet the constraints we designed for occlusion, deforma-
tion, and vehicle scale change. -erefore, our tracking al-
gorithm had the best value of FM, IDS, and MOTA, which is
far superior to the other all the combinations.

3.3.Results andDiscussionofVehicleCounting. When vehicle
tracking is completed, the method of detection line is usually
used to achieve vehicle counting, including single detection
line and double detection line. -e detection line method is
that when the trajectory crosses the detection line, the counter
is incremented by one. However, this method can only be
detected when the trajectory reaches a specific location; es-
pecially if the trajectory is discontinuous, the counting effect
will be poor. In contrast, our counting algorithm is designed
based on the change of the vehicles’ movement trajectory point
in a period of time, which greatly improves the accuracy of
counting. In Section 2.3, our counting algorithm counts ve-
hicles by establishing a coordinate system for the detection
area and judging the positive and negative of the first and last
trajectory points of the vehicle in the detection area. As shown
in Figure 12, the height, visual angle, and climate conditions of
the cameras are different. In our experiments, we implemented
the correlation-matched algorithm (Figure 12(a)), optimiza-
tion of the trajectory by least squares method (Figure 12(c)),
detection line counting method (Figure 12(b)), and our
counting method (Figure 12(d)). In the implementation of the
method, Figures 12(a) and 12(c) use the traditional single line
detection method to count vehicles, which has an error count
problem such as omission. Compared with Figure 12(a),
Figure 12(c) adds the least square method to optimize the
trajectory after the correlation-matched algorithm to ensure
the smoothness of the trajectory for multi-vehicle tracking.
Meanwhile, both Figure 12(c) and Figure 12(d) use our
tracking algorithm, which not only solves the tracking dis-
continuity caused by occlusion based on smooth trajectory but
also has significant effect on small vehicles tracking under
high-perspective scenario. Compared with the single detection
line counting method of Figure 12(c) and the double detection
line counting method of Figure 12(b), our counting method in
Figure 12(d) is the most advanced method, and its counting
time is 25 frames per second (FPS). Moreover, the error rate of
our counting method is the lowest.

To further demonstrate the robustness of our proposed
multi-vehicle counting method, we tested five expressway
video sequences in different climatic conditions. Table 4
shows the results of the counting algorithm under different
climatic conditions, in which the accuracy refers to the
average accuracy.However, it should be noted that the
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counting results in Table 4 are based on the detection
results. -erefore, the statistics do not include detection
errors. It can be said that the count statistics (including
tracking error and count error) in Table 4 are for the vehicle
detection results of the SSD 512 × 512 model. We compared
the detailed results of different scenarios and different
camera heights and evaluated the quantitative performance
of fixed background. In addition, total vehicles in Table 4
represents the total number of vehicles detected by the SSD

512×512 model. As reflected by the results, the accuracy of
our counting method is higher than 90% under the con-
dition of low camera height and good weather conditions.
Different from the single detection line method and the
double detection line method, which only record the in-
stantaneous changes of the vehicle motion, our counting
method records the changes of vehicles in a period of time
(within the region), which greatly improved the accuracy of
counting.

(a) (b)

(c) (d)

Figure 12: Illustrations of vehicle tracking and counting result on expressway video sequence. (a) Experimental results of correlation-
matched algorithm and single detection line counting method under low-perspective scenario. (b) Experimental results of the correlation-
matched algorithm and the double detection line (forward direction and backward direction) counting methods under low-perspective
scenario. (c) Experimental results of our tracking algorithm and single detection line counting method. Among them, our tracking al-
gorithm uses the least squares method to optimize the trajectory after the correlation-matched algorithm under challenging high-per-
spective scenario. (d) -e experimental results of our tracking and counting methods. Among them, our counting method defines the
forward and backward directions mentioned in Section 2.3 under challenging high-perspective scenario.

Table 4: Vehicle counting results and quantitative evaluation for test video.

Counting results

Expressway videos Scenarios Camera height (meters)
Background

Total frames Counted vehicles/total vehicles Accuracy (%)
Fixed Moving

TEST-VIDEO-1 Sunny 17 Yes No 2864 9813/9872 99.4
TEST-VIDEO-2 Rainy 15 Yes No 2179 9024/9143 98.7
TEST-VIDEO-3 Cloudy 16 Yes No 2430 14479/14581 99.3
TEST-VIDEO-4 Foggy 15 Yes No 2099 6226/6340 98.2
TEST-VIDEO-5 Night 15 Yes No 2510 8895/8976 99.1

Table 3: Vehicle tracking results and quantitative comparison for different methods.

Methods Test video
FM IDS MOTA FPS

Detector Tracker Total frames
Camera view

Front view Side view Top view
SSD 512× 512 KCF [23] 4830 Yes No No 1084 597 87.8 17
SSD 512× 512 Kalman [22] 3699 No Yes No 1756 629 83.2 14
SSD 512× 512 MDP [17] 5124 No No Yes 2539 1332 74.5 52
SSD 512× 512 IOUT [18] 3876 No Yes No 1875 931 76.6 7
SSD 512× 512 Ours 5421 Yes No No 52 101 99.8 26
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3.4. Comparative Studies. Vehicle counting of expressway
is of great significance to traffic management. To further
prove the counting method we designed in this paper, a
series of experiments were conducted on our dataset to
compare our counting method with the state-of-the-art
vehicle counting methods. Liu et al. [2], Abdelwahab
[31], and Rosas-Arias et al. [27] applied image processing
method such as updated background image, background
subtraction, and Incremental PCA to detect vehicles.
Meanwhile, vehicle tracking was not used for vehicle
counting in the three methods mentioned in [2, 27, 31].
Moreover, Yang et al. [32] adopted background sub-
traction method for vehicle detection and Kalman filter
algorithm for vehicle tracking to achieve vehicle counting.
However, vehicle counting employed Deep Neural Networks
(DNN) for vehicle detection and KLT tracker for vehicle
tracking were proposed by Abdelwahab [16]. Compared with
the background subtraction method in image processing to
detect vehicles, the accuracy of our deep learning-based de-
tection method has been greatly improved. On the other
hand, compared with KLT [16] and Kalman filter tracking
algorithms [32], our proposed tracking algorithm does not
need to predict the vehicle position. Instead, it considers the
occlusion, deformation, and other problems caused by the
vehicle movement, in which constraints have greatly im-
proved tracking efficiency and accuracy. As reflected by
Table 5, we summarized the related works in detail as much as
possible by their performance in term of platform, detector,
tracker, FPS, and accuracy used. In a word, our counting
method is superior to the method of reference mentioned in
Table 5, which is mainly reflected in the improvement of the
multi-vehicle detection efficiency and the superiority of the
tracking algorithm performance, especially in terms of
counting speed and counting accuracy.

4. Conclusions

We propose a new vehicle counting method based on
multi-vehicle detection and tracking for expressway video
sequence. As a result of the particularity of monitoring
visual angle and vehicle operation mode in expressway

video sequence, we constructed a new expressway vehicle
dataset (NOHWY) including vehicle classification and
labeling rule definitions. Meanwhile, we employed the SSD
512 × 512 deep learning method to train and test our
dataset, which greatly improves the accuracy of multi-
vehicle detection. In order to further validate our detection
method, we compared the performance of different deep
learning methods on different datasets. -e experimental
results show that our vehicle detection method had higher
detection efficiency and accuracy. Moreover, unlike the
traditional single-target tracking method, we proposed a
correlation-matched algorithm for multi-vehicle tracking
based on the change of time and space position when the
vehicle is driving on the expressway. Meanwhile, a trajec-
tory optimization method based on least squares method is
proposed to ensure the smoothness of the tracking trajectory.
In both study algorithms, the proposed multivehicle tracking
method performed better than the state-of-the-art approaches.
Finally, we designed a new vehicle counting method, which
can accurately count the vehicles on the expressway according
to the driving direction. -e comparative analysis demon-
strated that the proposed vehicle counting method for ex-
pressway can obtain more than 93% accuracy and 25 FPS
speed on vehicle counting based on vehicle detection and
vehicle tracking.

Future research work will design new algorithms for
vehicle behavior analysis and traffic incident detection based
on the approach and experimental results in this paper.
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Table 5: Comparison of vehicle counting performance and evaluations between related works.

Method Platform Detector Tracker FPS Accuracy (%)

Liu et al. [2]
Inter core i9-9900X 10
Core/3.50GHz/19.25MB

CPU

Image processing method (updated
background image and background

subtraction)
No 10 91.5

Abdelwahab [31]
Inter core i9-9900X 10
Core/3.50GHz/19.25MB

CPU

Image processing method (create
background model) No 8 90.7

Yang and Su [32]
Inter core i9-9900X 10
Core/3.50GHz/19.25MB

CPU

Background subtraction method (low-
rank + sparse)

Kalman filter
algorithm 12 92.2

Abdelwahab [16] NVIDIA RTX 2080TI
GPU DNN KLT 15 90.4

Rosas-Arias et al. [27] 2.0 GHz Intel CPU Incremental PCA No 24 92.9

Ours NVIDIA RTX 2080TI
GPU SSD 512× 512 Correlation-

matched algorithm 25 93.1

Accuracy, mean average accuracy; FPS, frame per second.

14 Mathematical Problems in Engineering



Acknowledgments

-e authors are very grateful to Hangzhou Huijing Tech-
nology Co., Ltd. for providing expressway videos for this
research. -is research was funded by the Science and
Technology Project in Qinghai Province (no. 2017-ZJ-717),
the National Natural Science Foundation of China (Grant
no. 61572083), and the Youth Fund Project of Qinghai
University (no. 2019-QGY-15).

References

[1] W. JiankaiT and S. Agachai, “Automatic freeway incident
detection for free flow conditions: a vehicle reidentification
based approach using image data from sparsely distributed
video cameras,” Mathematical Problems in Engineering,
vol. 2015, Article ID 102380, 13 pages, 2015.

[2] F. Liu, Z. Zeng, and R. Jiang, “A video-based real-time
adaptive vehicle-counting system for urban roads,” PLoS One,
vol. 12, Article ID e0186098, 2017.

[3] Z. Chengming and L. Wei, “Background updating algorithm
based on classification in complex scene,” Journal of Com-
puter Applications, vol. 28, pp. 2274–2277, 2008.

[4] G. Deng and K. Guo, “Self-adaptive background modeling
research based on change detection and area training,” in
Proceedings of the IEEE Workshop on Electronics, Ottawa,
Canada, May 2014.

[5] M. Wang, G. Huang, and X. Da, “A new interframe difference
algorithm for moving target detection,” in Proceedings of the
2010 3rd International Congress on Image and Signal
Processing, Yantai, China, October 2010.

[6] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert, “High
accuracy optical flow estimation based on a theory for
warping,” Lecture Notes in Computer Science, vol. 10,
pp. 25–36, 2004.

[7] J. Ankang, G. Yuanbo, Y. Ziwei, L. Tao, and M. Jing,
“HeteMSD: A big data analytics framework for targeted cyber-
attacks detection using heterogeneous multisource data,”
Security and Communication Networks, vol. 2019, Article ID
5483918, 9 pages, 2019.

[8] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate target detection and semantic seg-
mentation,” in Proceedings od the IEEE Conference Computer
Vision Pattern Recognition (CVPR), pp. 580–587, Columbus,
OH, USA, June 2014.

[9] H. Kai, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling
in deep convolutional networks for visual recognition,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. 37, no. 9, pp. 1904–1916, 2015.

[10] R. Girshick, “Fast R-CNN,” in Proceedings of the IEEE In-
ternational Conference on Computer Vision (ICCV),
pp. 1440–1448, Araucano Park, Chile, December 2015.

[11] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: towards
real-time object detection with region proposal networks,”
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 39, no. 6, pp. 1137–1149, 2017.

[12] K. M. He, G. Gkioxari, D. Piotr, and G. Ross, “Mask R-CNN
computer vision and pattern recognition,” 2018, https://arxiv.
org/abs/1703.06870.

[13] L. Wei, A. Dragomir, E. Dumitru, and S. Christian, “S. S. D.
Single shot multibox detector,” in Proceedings of the 14th
European Conference Computer Vision—ECCV 2016, pp. 21–
27, Amsterdam, Netherlands, October 2016.

[14] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only
look once: unified, real-time target detection,” in Proceedings
of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, pp. 1804–1812, Las Vegas, NV, USA,
June 2016.

[15] Z. Chen, T. Zhang, and C. Ouyang, “End-to-end airplane
detection using transfer learning in remote sensing images,”
Remote Sensing, vol. 10, no. 1, pp. 139–152, 2018.

[16] M. A. Abdelwahab, “Accurate vehicle counting approach
based on deep neural networks,” in Proceedings of the IEEE
International Conference on Innovative Trends in Computer
Engineering (ITCE), Aswan, Egypt, February 2019.

[17] Y. Xiang, A. Alahi, and S. Savarese, “Learning to track: online
multi-object tracking by decision making,” in Proceedings of
the Computer Vision (ICCV), pp. 4705–4713, Santiago, Chile,
December, 2015.

[18] E. Bochinski, V. Eiselein, and T. Sikora, “High-speed tracking-
by-detection without using image imformation,” in Pro-
ceedings of the Advanced Video and Signal Based Surveillance
(AVSS), Lecce, Italy, September 2017.

[19] M. Danelljan, G. Hager, and F. S. Khan, “Learning spatially
regularized correlation filters for visual tracking,” in Pro-
ceedings of the IEEE International Conference on Computer
Vision, pp. 4310–4318, Santiago, Chile, December 2015.

[20] R. Ding, M. Yu, H. Oh, and W.-H. Chen, “New multiple-
target tracking strategy using domain knowledge and opti-
mization,” IEEE Transactions on Systems, Man, and Cyber-
netics: Systems, vol. 47, no. 4, pp. 605–616, 2017.

[21] B. Coifman, D. Beymer, P. McLauchlan, and J. Malik, “A real-
time computer vision system for vehicle tracking and traffic
surveillance,” Transportation Research Part C: Emerging
Technologies, vol. 6, no. 4, pp. 271–288, 1998.

[22] Z. Zhang and J. Zhang, “A new real-time eye tracking based
on nonlinear unscented Kalman filter for monitoring driver
fatigue,” Journal of Control Beory and Applications, vol. 8,
no. 2, pp. 181–188, 2010.

[23] S. Battiato, G. M. Farinella, A. Furnari, G. Puglisi, A. Snijders,
and J. Spiekstra, “An integrated system for vehicle tracking
and classification,” Expert Systems with Applications, vol. 42,
no. 21, pp. 7263–7275, 2015.

[24] Tzutalin, “LabelImg git code(2015), http://github.com/
tzutalin/labelImg.

[25] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 4700–4708, Honolulu, HI, USA, June 2017.

[26] K. Simonyan and A. Zisserman, “Very deep convolutional
network for large-scale image recognition,” 2014, https://
arxiv.org/abs/1409.1556.

[27] L. Rosas-Arias, J. Portillo-Portillo, A. Hernandez-Suarez et al.,
“Vehicle counting in video sequences: an incremental sub-
space learning approach,” Sensors, vol. 19, no. 13, p. 2848,
2019.

[28] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for au-
tonomous driving? the KITTI vision benchmark suite,” in
Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, pp. 16–21, Provi-
dence, RI, USA, June 2012.

[29] D. Du, Y. Qi, H. Yu et al., “-e unmanned aerial vehicle
benchmark: object detection and tracking,” 2018, https://
arxiv.org/abs/1804.00518.

[30] L. Wen, D. Du, Z. Cai et al., “UA-DETRAC: A new bench-
mark and protocol for multi-object detection and tracking,”
2016, https://arxiv.org/abs/1511.04136.

Mathematical Problems in Engineering 15

https://arxiv.org/abs/1703.06870
https://arxiv.org/abs/1703.06870
http://github.com/tzutalin/labelImg
http://github.com/tzutalin/labelImg
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1804.00518
https://arxiv.org/abs/1804.00518
https://arxiv.org/abs/1511.04136


[31] M. A. Abdelwahab, “Fast Approach for efficient vehicle
counting,” Electronics Letters, vol. 55, no. 1, pp. 20–22, 2019.

[32] H. Yang and S. Qu, “Real-time vehicle detection and counting
in complex traffic scenes using background subtraction model
with low-rank decomposition,” IET Intelligent Transport
Systems, vol. 12, no. 1, pp. 75–85, 2017.

16 Mathematical Problems in Engineering


