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High-utility pattern mining is a research hotspot in the field of pattern mining, and one of its main research topics is how to
improve the efficiency of the mining algorithm. Based on the study on the state-of-the-art high-utility pattern mining algorithms,
this paper proposes an improved strategy that removes noncandidate items from the global header table and local header table as
early as possible, thus reducing search space and improving efficiency of the algorithm. )e proposed strategy is applied to the
algorithm EFIM (EFficient high-utility Itemset Mining). Experimental verification was carried out on nine typical datasets
(including two large datasets); results show that our strategy can effectively improve temporal efficiency for mining high-
utility patterns.

1. Introduction

)e main challenge of data mining is to find meaningful
information frommassive amounts of data.)e technique of
finding interesting, unexpected, and useful data patterns
from large databases is called pattern mining. Many studies
have focused on traditional frequent pattern mining and just
concern the occurrence of itemsets/patterns in the database,
without considering the internal utility values (i.e., quantity)
and external utility values (e.g., importance, profit, and
price) of each item in the itemset [1]. To address this issue,
the utility information of each item or itemset is introduced
into frequent pattern mining, hence the emergence of high-
utility patterns/itemsets (HUPs/HUIs) mining. HUPmining
has been used in many fields, unfolding its commercial value
in many application fields, such as website clickstream
analysis [2, 3], mobile commerce environment [4], cross-
marketing commercial value of retail stores [5, 6], and gene
regulation and biomedical applications [7]. Utility patterns
are also applied on sequential data, such as algorithmHUSP-
ULL [8], and uncertain data, such as algorithm MUHUI [9].

Yao et al. [10] proposed the definition and mathematical
model of high-utility pattern (HUP): the utility valueU(X) of
an itemsetX on a datasetD is defined as the sum of the utility
valueU(X, t) of X on all transactions t (see Definition 3). )e

task of the high-utility pattern mining is to find all patterns
whose utility value is not less than the minimum utility value
(threshold value). )e pruning strategy of traditional fre-
quent pattern mining algorithms no longer works in HUP
mining, because a superset of a non-HUP might be an HUP;
this makes the search space of the mining algorithm even
larger. Improving the spatial-temporal efficiency of the
mining algorithm has been a challenge [11–13].

Existing HUPs mining algorithms may be categorized
into a two-phase approach and one-phase approach. Two-
phase mining algorithms need two phases to find all HUPs:
in the first phase, the candidate itemsets are generated by
estimating the utility value of each candidate itemset, in the
second phase, the true utility value of each candidate itemset
is calculated by scanning the dataset. )is two-phase ap-
proach is adopted by the algorithms of Two-Phase [11],
IHUP [2], UP-Growth [14], and MU-Growth [15]. )ese
algorithms often generate a large number of candidate
itemsets in the first phase, not only requiring much of
storage memory but also drastically increasing the com-
putation cost in the second phase.

In order to avoid the problems caused by candidate
itemsets, newly proposed HUP mining algorithms tend to
use a no-candidate approach, such as HUI-Miner [16] and
d2HUP [17]; they try to find HUPs directly without
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generating candidate itemsets. Comparing with the two-
phase HUP mining algorithms, the speeds of algorithms
d2HUP and HUI-Miner are greatly improved. Based on
HUI-Miner, two improved algorithms HUP-Miner [12] and
FHM [18] are developed. Also, there is a new fast mining
algorithm EFIM [19] proposed by Zida et al., in which two
new upper bounds of utility value are used to reduce the
search space and consequently boost the performance
greatly. )e algorithm HMiner [20] proposed two pruning
techniques, LAprune and C-prune, to reduce the search
space for mining HUPs. )e algorithm ULB-Miner [21]
extended the algorithms FHM [18] and HUI-Miner [16] by
utilizing a utility list buffer structure, which improved the
performance of the FHM algorithm in terms of the memory
and runtime usage.

Although the spatial-temporal efficiency of HUP mining
algorithm has been greatly improved, the time cost is still
relatively high. )e improvement of algorithm performance,
especially the improvement of its temporal efficiency, is still
a challenge in this field. In this paper, an improved strategy is
proposed to boost the temporal efficiency of HUP mining
algorithm and is applied to the algorithm EFIM.

)e rest of this paper is organized as follows. Section 2
introduces the problem description and relevant definitions.
Section 3 introduces the improvement strategy and the
improved algorithm EFIM-IMP. Section 4 reports the ex-
perimental results. Section 5 draws the conclusions.

2. Problem Description and Definitions

A utility-valued transaction dataset D� {T1, T2, T3, . . . , Tn}
contains n transactions andm unique items I� {i1, i2, . . ., im}.
Each transaction Td (d� 1, 2, 3, . . ., n) is called a transaction
itemset and includes a subset of all unique items in I, for
example, T1 � {(A,4) (C,3) (F,1)}. Each item ij in each
transaction Td is attached with a quantity which is called
internal utility (denoted as q(ij,Td)); for example, the first
transaction in Table 1 includes 3 items “A,” “C,” and “F”;
their quantities are 4, 3, and 1, respectively, denoted as
q(A,T1)� 4, q(C,T1)� 3, and q(F,T1)� 1. Each item ij has a
unit profit p(ij), which is called external utility, for example,
p(A)� 4 in Table 2. |D| indicates the number of transactions
in the dataset D, and | Td | indicates the number of items in
the transaction Td.

Definition 1. )e utility value of the item ij in a transaction
Td is denoted as U(ij, Td) and is defined as

U ij, Td  � p ij ∗ q ij, Td . (1)

For example, in Tables 1 and 2, U(A,T1)� 4 ∗ 4�16,
U(C,T1)� 10 ∗ 3� 30, and U(F,T1)� 1 ∗ 1� 1.

Definition 2. )e utility value of the itemset X in a trans-
action Td is denoted as U(X, Td) and is defined as

U X, Td(  �


ij∈X

U ij, Td , if X⊆Td,

0, else.

⎧⎪⎪⎨

⎪⎪⎩
(2)

For example, in Tables 1 and 2,U({AC}, T1)� 46,U({AF},
T1)� 17.

Definition 3. )e utility value of the itemset X in a dataset D
is denoted as U(X) and is defined as

U(X) � 
Td∈D∧X⊆Td

U X, Td( .
(3)

For example, in Tables 1 and 2, U({AC})�U({AC},
T1) +U({AC}, T6)� 46 + 22� 68.

Definition 4. )e utility value of the transaction Td in a
dataset D is denoted as TU(Td) and is defined as

TU Td(  � 
ij∈Td

U ij, Td .
(4)

For example, in Tables 1 and 2, TU(T1)�U(A, T1) +U(C,
T1) +U(F, T1)� 16 + 30 +1� 47.

Definition 5. )e utility value of the dataset D is denoted as
TU and is defined as

TU � 
Td∈D

TU Td( .
(5)

For example, in Tables 1 and 2, TU� 47 + 58 + 54 + 46 +
30 + 49� 284.

Definition 6. )e transaction-weighted utility value of the
itemset X is denoted as TWU(X) (also called TWU value)
and is defined as

TWU(X) � 
Td∈D∧Td⊇X

TU Td( .
(6)

Table 1: A transaction dataset D.

TID Transaction TU
T1 (A, 4) (C, 3) (F, 1) 47
T2 (C, 1) (D, 4) (E, 10) 58
T3 (A, 4) (B, 4) (D, 2) (E, 6) 54
T4 (A, 6) (B, 2) (D, 2) (E, 1) 46
T5 (A, 3) (B, 3) (D, 1) (G, 1) 30
T6 (A, 3) (B, 7) (C, 1) (E, 3) 49

Table 2: A profit table.

Item Profit
A 4
B 3
C 10
D 7
E 2
F 1
G 2

2 Mathematical Problems in Engineering



Definition 7. )e minimum utility threshold δ is a user-
specified percentile of the total transaction utility value of the
given dataset D; so the minimum utility value,MinU, in D is
defined as

MinU � TU∗ δ. (7)

Definition 8. An itemset X is called a high-utility pattern/
itemset (HUP/HUI) if its utility is not less than theminimum
utility value.

Definition 9. An itemset/itemX is called a candidate itemset/
item for high-utility itemset/item if twu(X)≥MinU, and it
is also called a promising itemset/item; otherwise it is an
unpromising itemset/item.

Theorem 1. Transaction-weighted downward closure prop-
erty [4]: any nonvoid subset of a promising itemset is a
promising itemset, and any superset of an unpromising
itemset is an unpromising itemset.

Definition 10. Assume that the transaction Td in dataset D is
ordered (e.g., in lexicographic order), for item ij, the sub-
sequent items ik (k≥ j) are the remaining itemset of item ij,
denoted as RI(ij, Td).

Definition 11. )e utility value of the remaining itemset (ij,
Td) in transaction Td is denoted as RU(ij, Td) and is defined as

RU ij, Td  � 

i∈RI ij,Td( 

U i, Td( .
(8)

For example, items of each transaction in Table 1 are
ordered lexicographically, so RU(C, T1)�

U(C,T1) +U(F,T1)� 31, RU(C, T2)�

U(C,T2) +U(D,T2) +U(E,T2)� 10 + 28 + 20� 58, and RU(C,
T6)�U(C,T6) +U(E,T6)� 10 + 6�16.

Definition 12. )e utility value of the remaining itemset of
item ij in dataset D is denoted as RU(ij) and is defined as

RU ij  � 
Td∈D∧ij∈Td

RU ij, Td .
(9)

For example, for Tables 1 and 2, RU(C)� 31 + 58
+ 16�105.

Theorem 2. For an itemset/item {ij}, if RU(ij)<MinU, then it
is not an HUP, and its any superset Y
(Y ∈ RI(ij, Td)|, ∀ ij  ⊂ Td ) is not an HUP either.

Proof. According to Definitions 3 and 12, RU(ij)>U(ij) and
RU(ij)>U(Y); so itemset {ij} or Y is not an HUP if RU(ij)
<MinU. □

3. Algorithm EFIM and the Improved
Version EFIM_IMP

3.1. Algorithm EFIM. )e algorithm EFIM uses a pattern-
growth approach to find HUPs; the main process is to find
candidate items by scanning the dataset, and then itera-
tively generates new candidate items by scanning the local
dataset of each candidate. We can see from the above that
the fewer of the candidates, the less search space is needed
in the iterative process, and the more efficient the algo-
rithm will be.

So EFIM proposes two upper bounds of utility value of
HUP, and apply them respectively to the global and local
dataset, to tighten the criteria of candidates and to reduce the
number of candidate items generated, resulting more effi-
cient mining algorithm. )e algorithm EFIM is shown as
Algorithms 1 and 2.

Lines 1–8 in Algorithm 1 process the global dataset for
all candidates with the remaining utility value not less
than the minimum utility threshold. Lines 1–3 calculate
twu values of each item (lu (α,i)), and candidates (whose
twu values are not less than the minimum threshold) are
stored to list Secondary (α). Line 4 sorts the items in
Secondary (α) by ascending order of twu values. Line 5
deletes noncandidates from each transaction, sorts items
in each transaction according to the order of list Sec-
ondary (α), and removes empty transactions. Line 6 sorts
all transactions and merges the transactions with the same
items. Line 7 calculates the remaining utility value of each
item in transactions. By Line 8, items with remaining
utility value note less than the minimum utility are stored
to list Primary (α). Line 9 iteratively processes each
candidate in Primary (α) and determines if it (and its
extended itemset) is an HUP.

Detailed procedures of Line 9 (in Algorithm 1, for it-
eratively processing the local dataset) are shown in Algo-
rithm 2, as a subroutine named Search. Lines 1–9 deal with
each item in Primary (α). Line 3 scans dataset α–D (that
contains itemset α), calculates utility value of itemset β, and
gets dataset β-D (that contains itemset β). Line 4 outputs β as
an HUP if its utility value is not less than the minimum
threshold. Lines 5–7 scan β-D and get Primary(β) and
Secondary(β) using the same mechanism as Figure 1 for
Primary (α) and Secondary (α). Line 8 iteratively calls Search
for iteration on Primary (β).

By utilizing two upper bounds on utility value, EFIM can
effectively reduce the number of candidates (candidate-
items) and boost the performance of the mining algorithm.
But the number of candidates still can be reduced in al-
gorithms like EFIM, so we propose two additional strategies
to further reduce the number of candidates.

3.2. Improvement of Algorithm EFIM. )ere is a fact that
EFIM does not take into consideration: when deleting
noncandidate items from the dataset, the TWU values of
candidate items might be affected and reduced, resulting in
some of the candidate items to be changed to noncandidates.
)is is an iterative process until the dataset goes stable for a
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specified minimum TWU threshold. We harness this fact for
an improved strategy to reduce the number of candidate
items effectively, applying this strategy to the candidate
generating process of the EFIM algorithm from both the
original (global dataset) and local datasets.

3.2.1. Improved Strategy on Global Candidate Itemset.
Algorithm EFIM calculates TWU value of each item (Line 2
in Algorithm 1) and filters out those items with TWU values
less than the minimum threshold from the original trans-
action dataset, leaving the rest of the items as the candidate
items. If we recalculate the TWU value of each item again
after the deletion, the new TWU values might be less than
their original counterparts; that is, some of the candidate
items might no longer reach the criteria of minimum TWU
threshold. We can delete the newly established noncandi-
dates to reduce the computational cost hereafter and in-
crease the time-space efficiency of the algorithm.

So, we propose our first improving strategy.

Strategy 1. Repeatedly calculate TWU values and delete
noncandidate items from the global header table, till the
recalculation does not generate new noncandidate
items.

)e purpose of Strategy 1 is to reduce the number of
candidates in the global header table and hence reduce the

search space of the algorithm hereafter. Applying this
strategy to EFIM’s global dataset processing, we get the
improved algorithm EFIM-IMP in Algorithm 3.

Lines 1–3 of EFIM-IMP (Algorithm 3) function the same
way as EFIM: scan the dataset once, get each item’s TWU
value, and put those items with TWU values not less than the
minimum threshold to Secondary (α).

Lines 4–12 (Algorithm 3) are our improved strategy:
Line 4 counts the number of unique items in the original
dataset to count0; Line 5 counts the number of candidates to
count1; Lines 6–12 are repeated deletions of noncandidates,
as long as the number of candidates changes after a deletion;
Line 7 deletes all noncandidate items from the dataset; Line 8
recalculates the TWU value of each item; Line 9 recounts
candidates to Secondary (α); Line 10 saves the count of
candidates of the last iteration; and Line 11 gets the count of
the remaining candidates.

)is iterative deleting strategy reduces the number of
items in Primary (α) and Secondary (α) and hence reduces
the search space of algorithm EFIM.

3.2.2. Improved Strategy on Local Candidate Itemset. )e
algorithm in Algorithm 1 mainly deals with the original
dataset, resulting in two lists Primary (α) and Secondary (α);
these lists are called the global candidate lists. Algorithm 2
deals with the subset of a certain item/itemset β (called a

Input: D: a transaction database; MinU: a user-specified threshold.
Output: the set of high-utility itemsets
(1) α�∅
(2) Calculate lu (α,i) for all items i ∈ I by scanning D, using a utility-binary;
(3) Secondary(α)� {i|i ∈ I∧lu (α,i) ≥MinU };
(4) Let ≻ be the total order of TWU ascending values on Secondary(α);
(5) Scan D to remove each item i ∉ Secondary(α) from the transactions, sort items in each transaction according to≻, and delete

empty transactions;
(6) Sort transactions in D according to≻T;
(7) Calculate the subtree utility su(α,i) of each item i ∈ Secondary(α) by scanning D, using a utility-bin array;
(8) Primary(α)� {i|i ∈ Secondary(α)∧su(α,i)≥MinU};
(9) Search (α, D, Primary(α), Secondary(α), MinU);

ALGORITHM 1: )e EFIM algorithm.

Input: α: an itemset; α-D: the α projected database; Primary(α): the primary items of α; Secondary(α): the secondary items of α;
MinU: a user-specified threshold.
Output: the set of high-utility itemsets that are extensions of α

(1) for each item i ∈ Primary(α) do
(2) β� α∪{i};
(3) Scan α−D to calculate u(β) and create β−D//uses transaction merging;
(4) if u(β)≥MinU then output β;
(5) Calculate su(β,z) and lu(β,z) for all item z ∈ Secondary(α) by scanning β−D once, using two utility-bin arrays;
(6) Primary(β)� {z ∈ Secondary(α)|su(β,z) ≥MinU };
(7) Secondary(β)� {z ∈ Secondary(α)|lu(β,z)≥MinU };
(8) Search (β, β−D,Primary(β),Secondary(β), MinU);
(9) end for

ALGORITHM 2: )e search procedure.
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Figure 1: Continued.
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local dataset, denoted as β-D) and generates two lists Pri-
mary (β) and Secondary (β), as the local candidate lists.

)e global candidate lists generated by EFIM in Algo-
rithm 1 may contain noncandidate items; so do the local
candidate lists generated by Algorithm 2: they may also
contain noncandidates and hence reduce the mining effi-
ciency. So, we propose Strategy 2 and apply it to the local
dataset processing of EFIM; the improved algorithm is
shown in Algorithm 4.

Strategy 2. Repeatedly calculate TWU values and delete
noncandidate items from the local header table, till the
recalculation does not generate new noncandidate items.

Strategy 2 is augmented to the local data processing of
EFIM (between Line 7 and Line 8 in Algorithm 2); the
revised procedure (named Search-IMP) is shown in

Algorithm 4: Lines 9–10 record the number of candidates
before and after recalculation, respectively, to count0 and
count1; if the two counts differ, indicating that the local
candidates have been changed, the proposed strategy is
applied to delete those newly established noncandidates
(Line 12), recalculate lists Secondary (β) and Primary (β)
(Lines 13–15), recount items in these lists, and repeat the
above process if the counts differ (Lines 16–17, Line 11), till
Secondary (β) is stable through this process.

Algorithm 2 needs an additional scan on dataset α-D
when processing each item to obtain subdataset β-D; to
optimize this step, Algorithm 4 maintains an index of
candidate items in each transaction (line 1) of α-D, to enable
fast searches for transactions containing a certain item and
locating the position of this item (line 4).
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Figure 1: Running time on different datasets. (a) Accident. (b) BMS. (c) Foodmart. (d) Chainstore. (e) Kosarak. (f ) Pumsb. (g) Chess. (h)
Mushroom. (i) Connect.
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3.3. Algorithm Analysis. Both our two improved strategies
adopt the approach of deleting newly established noncan-
didates to reduce the number of candidate items in the
global/local header table. )e criteria for screening non-
candidates are based on whether the TWU value of an item is
less than the minimum threshold; and, according to
Property 1, these strategies will not affect the mining result;
that is, they do not cause loss on high-utility patterns during
the mining process.

)e time complexity of EFIM is O (lnw), where l is the
number of candidate items, n is the number of total
transactions in the dataset, and w is the average length of
transactions. )e time complexity of the augmented part of
our proposed strategy is O (krw), where k is the number of
loops, r is the number of transactions containing noncan-
didates, and w is the average length of transactions.

)e core functionality of our improved strategy is to
delete newly discriminated noncandidates constantly, that
is, to reduce the number of candidates (l), the average
length of transactions (w), and even the total number of
transactions (n); so, the more noncandidates it deletes, the
more efficiency boost will be achieved. )e time complexity
of the revised algorithm EFIM-IMP is still O(l1n1w), where
l1 is the number of candidate items, n1 is the average
number of transactions containing candidate items in the
dataset, and w is the average length of transactions.
According to strategies 1 and 2, l1 is not bigger than l, and
n1 is not bigger than n. So, O(l1n1w) is not bigger than O
(lnw).

But if there are not somany noncandidates to purge, due to
the time-costing characteristics of the strategy itself, the overall
performance boost for the mining process might be hampered,
even be reduced to less efficient than the original EFIM.

4. Experiments

)e improved algorithm of EFIM (we call EFIM-IMP
hereafter) is the integration of EFIM with our proposed
strategies. We compared the performance of EFIM-IMP
with three algorithms, EFIM, D2HUP, and ULB-Miner.
Source code of EFIM, D2HUP, and ULB-Miner can be
downloaded from the website, http://www.philippe-
fournier-viger.com/spmf/, and EFIM-IMP is a direct re-
vise upon the source of EFIM. All programs are written in
Java. Experimental platform, Windows 7 operating system,
16G of memory, Intel (R) Core I i7-6500 CPU @ 2.50GHz,
and Java Heap space, is set to 1.5G. Experimental com-
parisons of these four algorithms are carried out on classic
datasets. Nine standard datasets were used for our experi-
ments, including 2 high volume dataset (Chain-store and
Kosarak). )ese datasets can also be downloaded from the
above website. Table 3 shows the characteristics of these nine
datasets.

We ran four algorithms on different datasets while de-
creasing the minimum utility threshold. On the dataset
Pumsb, the algorithms D2HUP and ULB-Miner were slow,
for example, D2HUP ran 930 s and ULB-Miner ran 650 s, so
we did not run these two algorithms on the dataset Pumsb
under different thresholds. Figure 1 is the time cost com-
parison of the four algorithms on different datasets. Figure 2
is the memory cost comparison of the four algorithms on
different datasets. Multiple runs are conducted, and num-
bers are recorded and averaged as the final experimental
results.

We can see from Figure 1 that the revised algorithm
EFIM-IMP outperforms on running time except for the
dataset Foodmart. EFIM-IMP is faster than EFIM on each

Input: D: a transaction database; MinU: a user-specified threshold.
Output: the set of high-utility itemsets

(1) α�∅
(2) Calculate lu (α,i) for all items i ∈ I by scanning D, using a utility-binary;
(3) Secondary (α)� {i|i ∈ I∧lu (α,i) ≥MinU };
(4) count0� number of items in I;
(5) count1� number of items in Secondary (α);
(6) while count0 – count1 > 0 do
(7) Remove each item i ∉ Secondary (α) from the transactions;
(8) Recalculate lu(α,i) for all items i ∈ I by scanning D;
(9) Secondary (α)� {i|i ∈ I∧lu(α,i) ≥MinU };
(10) count0� count1;
(11) count1�number of items in Secondary (α);
(12) end while
(13) Let ≻ be the total order of TWU ascending values on Secondary (α);
(14) Scan D to remove each item i ∉ Secondary (α) from the transactions, sort items in each transaction according to ≻, and delete

empty transactions;
(15) Sort transactions in D according to ≻ T;
(16) Calculate the subtree utility su(α,i) of each item i ∈ Secondary (α) by scanning D, using a utility-bin array;
(17) Primary(α)� {i|i ∈ Secondary (α)∧su(α,i)≥MinU};
(18) Search (α-D, Primary(α), Secondary (α), MinU);

ALGORITHM 3: )e EFIM-IMP algorithm.
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dataset. )e revised algorithm EFIM-IMP has an obvious
improvement on the datasets with more distinct items, for
example, Chainstore and Kosarak. On the dense datasets,
EFIM-IMP came near to D2HUP, but D2HUP used more
memory than EFIM-IMP, as shown in Figure 2.

EFIM only calculates TWU values once, deletes non-
candidate items according to the aforesaid values, and leaves
all remaining items as candidates; EFIM-IMP iteratively
repeats the TWU calculating and noncandidates deleting
processes, till the number of candidates remains unchanged.

Among the aforementioned datasets, five of them
(Accident, BMS, Chess, Connect, and Mushroom) include

fewer distinct items (e.g., 75 distinct items in Chess),
among which 4 datasets (except BMS) are dense. As a
result, there are not so much number of candidate items to
be cut down by strategies 1 and 2, and the improvement of
algorithm EFIM-IMP is not obvious. As a contrast, for
datasets Chainstore and Kosarak, the improvement of al-
gorithm EFIM-IMP is obvious. )e reason is that these two
datasets include much more distinct items and transactions
(e.g., Chainstore includes 46,086 distinct items and
1,112,949 transactions) and are sparse. Our strategies can
efficiently reduce the number of candidate items on these
two datasets.

Input: α: an itemset; α-D: the α projected database; Primary(α): the primary items of α; Secondary(α): the secondary items of α;
MinU: a user-specified threshold.
Output: the set of high-utility itemsets that are extensions of α

(1) Record transaction ID and item index of each item to two lists (TransList and ItemList) by scanning
(2) for each item i ∈ Primary(α) do
(3) β� α∪{i};
(4) Scan α−D to calculate u(β) and create β−D//uses transaction merging;
(5) if u(β)≥minutil then output β;
(6) Calculate su(β,z) and lu(β,z) for all item z ∈ Secondary(α) by scanning β−D once, using two utility-bin arrays;
(7) Primary(β)� {z ∈ Secondary(α)|su(β,z) ≥MinU };
(8) Secondary(β)� {z ∈ Secondary(α)|lu(β,z) ≥MinU };
(9) count0� number of items in Secondary(α);
(10) count1� number of items in Secondary(β);
(11) while count0 – count1 >0 do
(12) Remove each item z ∉ Secondary(β) from the transactions inβ−D;
(13) Calculate su(β,z) and lu(β,z) for all items z ∈ Secondary(β) by scanningβ−D;
(14) Secondary(β)� {z|z ∈ Secondary(β)∧lu(β,z)≥MinU };
(15) Primary(β)� { z|z ∈ Secondary(β)∧su(β,z) ≥MinU };
(16) count0� count1;
(17) count1� number of items in Secondary(β);
(18) end while
(19) Search(β, β−D, Primary(β), Secondary(β), MinU);
(20) end for

ALGORITHM 4: )e Search-IMP procedure.

Table 3: Dataset characteristics.

Dataset #Transactions #Distinct items Avg. trans. length Type
Accident 340,183 468 33.8 Moderately dense, moderately long transactions
BMS 59,601 497 4.8 Sparse, short transactions
Foodmart 4,141 1559 4.4 Sparse, short transactions
Chainstore 1,112,949 46,086 7.2 Very sparse, short transactions
Kosarak 990,000 41,270 8.1 Very sparse, moderately short transactions
Pumsb 49,046 2,113 74 Dense, very long transactions
Chess 3,196 75 37 Dense, long transactions
Mushroom 8,124 119 23 Dense, moderately long transactions
Connect 67,557 129 43 Dense, long transactions
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Figure 2: Continued.
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5. Conclusion

)is paper focuses on optimization approaches of high
utility pattern mining algorithms and proposes an im-
proved strategy that, by iteratively removing newly dis-
criminated noncandidate items, reduces the search space of
the mining process and boosts mining efficiency. )e
proposed strategy was applied to algorithm EFIM. Nine
standard datasets were used for algorithm verification,
including 2 high volume datasets. Experimental results
show that the improved algorithm can reduce the number
of candidates effectively and outperform EFIM in time

efficiency; the improvement is significant on high volume
datasets.

Data Availability

)e data used to support the findings of this study can be
downloaded from the SPMF website (http://www.philippe-
fournier-viger.com/spmf/).
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